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MATHEMATICAL MODELING OF THE DEVELOPMENT OF DORMANT TUMORS AND IMMUNE 

STIMULATION OF THEIR GROWTH 

V. A. Kuznetsov UDC 519.6+612:017-006 

A degeneration of a normal cell into a malignant cell is accompanied by development on 
the cell membrane of molecules specific for tumor cells - the tumor antigens. Such antigens 
stimulate the immune response in the body, and near the ttunor cells cytotoxic T-lymphocytes 
(CTL), natural killers (NK), and macrophages appear, which bond to tumor cells and kill them. 

Both in vitro and in clinical experiments, however, a strengthening of the immune system 
in immunotherapy has been observed to stimulate tumor growth [i, 2]. The mechanisms of this 
paradoxical effect are unclear, but its existence is a restraining factor to immunotherapy 
[I, 2]. 

Another paradox in tumor development is the so-called state of tumor dormancy. This is 
a phenomenon where a small clinically unidentifiable number of tumor cells may exist in a 
body for a long time (months or years) [3, 4]. 

Such a state develops after successful treatment of a tumor (in the phase of remission) 
which usually leaves in the body a few tumor cells (metastases and residual tumors). These 
cells eventually determine the outcome of the relationship of the tumor to the body. The 
neoplastic process, surgery, chemotherapy, and radiotherapy reduce the number of immunocom- 
ponent cells and their functions. This creates conditions for a long-term local dynamic 
equilibrium between the cell and the immune system. 

Various disturbing factors (such as stress, trauma, or old age) may disrupt these dor- 
mant states of a tumor and allow the tumorous growth to resume [3, 4]. There is convincing 
experimental evidence that mechanisms of cell immunity play an important part in the resusci- 
tation of dormant tumors [4]. 

These phenomena have not been studied sufficiently, and the mechanisms responsible for 
them are unknown [1-4]. In particular, there is a lack of experimental models of dormant 
tumors and immune stimulation of tumor growth in vitro. 

Translated from Kibernetika, No. 4, pp. 96-102, July-August, 1987. Original article 
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Mathematical modeling may be a useful tool in this area. In the early mathematical 

simulations of antitumor immunity, some solutions were obtained that can be interpreted as 
dormant states of a tumor [5-11]. In [6] a model of T-cell immunity demonstrated that an 
increase in CTL may be conducive to growth, rather than obliteration, of a tumor. In [i0- 
!2] a simulation of the combined effect of CTL and NK (or NK-like cells) on tumors demon- 
strated the possibility of the development of a dormant state of a tumor and the stimulation 
of tumor growth when the activities of NK as well as of CTL are varied. Immunostimulation 
of tumor growth may occur in the framework of a model of tumor-NK interaction [13]. In [14] 
a mathematical modeling of the interaction of iymphocytes with tumor cells indicates that an 
increased concentration of the growth factor of lymphocytes IL-2 may promote a progressive 
development of a tumor. 

The effect of immunostimulation of tumor growth is closely associated with observations 
of a two-phase nature of the interaction of T-lymphocytes with allogenic stem cells [15] and 
the effect of tumor "escape" [i, 16, 17]: When transplanted into experimental animals, small 
tumors (1-102 cells) and large tumors (over 105 cells) grow, while medium-sized tumors are 
rejected or grow slowly. A similar behavior of the tumor-immune system has been discovered 
and investigated in several mathematical models [i0, 13, 16, 18-20]. 

An elementary mathematical model describing these effects has been suggested in [13]. 

Tumor cells are attacked not only by CTL, as was believed in the 1970s [17], but by 
other effector cells (EC) as well. On this basis, in [9, i0, 17] a concept of two-level anti- 
tumor resistance of the body was formulated which resolved some of the theoretical difficul- 
ties [17]. It was assumed that immune control is performed by two complementary subsystems: 
natural antitumor resistivity of the organism that is comprised on NK and macrophages, and 
a specific resistivity for which CTL are the EC~ The former subsystem is characterized by 
a rapid recognition of the various tumors and their subsequent elimination, but the possi- 
bility of accumulation of EC near the tumor cells is limited. The specific subsystem is highly 
selective to tumor antigens, with a capacity of an intense immune response to tumor antigens, 
but a long time is required for EC to develop (from a few weeks to several months). In the 
framework of this concept, the behavior of a mathematical model has been studied for slowly 
growing (spontaneous) tumors [9, 12, 21] in which the delay in the appearance of CTL from the 
memory cells can be disregarded. This constraint is not included in our model. 

Mathematical Model 

Under the concept of two-level antitumor resistance of a body, we consider a mathematical 
model of the growth of a clone of immunogenic tumor cells. The model generalizes models pro- 
posed earlier [11-13, 21]. Based on the experimental data on paired interactions of NK and 
CTL with tumor cells and the principles of chemical kinetics [22], we can write the model as 
follows: 

d T / d t  1 = T (cl  - -  c2C - -  c3N), 

d N / d t l  = IN - -  c4N - -  c s N T ,  

d S / d t  I = c6T/(I  + T/cT) - -  c8S, 

d P / d l  1 = cgCT/(clo @ S )  - -  c l i p - - -  c12PT,  

dC/d t l  = c13 0 ( t l  - -  ~1) P (tl  - -  TI~ @ lc/(  1 + S / C l d  - -  c15CT - -  c16C, 

(i) 

(2) 

(3) 

(4) 

(5) 

where T, N, S, P, and C are the current values of the local concentrations of free (not bonded 
with other cells) tumor cells, NK or NK-like cells, suppressors (T-lymphocytes and macro- 
phages) or molecular factors of suppression induced by the tumor (proteases and gangliosides), 
CTL memory cells, and mature CTL; @(t I - ~l) is the Heaviside function; @ = i at t1--T1~0 , 
@ = 0 at t I - ~i < 0; iN, JC are the constants of the velocity of flows of NK and CTL from 
outside into the localization area of the tumor cells; c I is the growth rate of the tumor 
mass; c 2 and c 3 are constants characterizing the sensitivity of tumor cells to the destruc- 
tive action of cytotexic EC; c~, c8, cll , c16 are the rates of natural death; c 6 and c 9 are 
the maximum cell accumulation rates; c v is the concentration of tumor cells at which the 
rate of generation of the suppressors is reduced by half; ci0 and Cl4 are the concentrations 
of suppressors at which the accumulation rate of the precursor cells of CTL and mature CTLs 
is reduced by half; cs, c12, c15 are the rates of inactivation of immunocytes on contact with 
tumor cells; c13 is the rate of conversion of the memory cells into CTL; and T l is the delay 
in the appearance of CTL that is comprised of the times of proliferation and differentiation 
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of the precursor cells and/or migration of CTL. In this model, CTL memory cells and sup- 
pressors induced by tumor antigens are included explicitly~ In order to clarify the function 
of delays in the development of mature CTL from memory cells as they affect the formation of 
a dormant state of a tumor and its resuscitation, we will consider several simplified ver- 
sions of the model. 

For numerous spontaneous tumors the characteristic times of the doubling of their mass 
are relatively long compared with the characteristic times of development of the immune re- 
sponse of NK and suppressors [3, 17, 22]; the variables N and S in model (1)-(5) can there- 
fore be viewed as fast variables. If we assume, in addition, that the memory cells change 
velocity compared with the tumor growth velocity is high, then upon attaining a quasistation- 
ary condition in the variables N, S, and P we will have, instead of (I)-(5), 

dT/d t l  : ( c I - - c ~ C - - c a N )  T ,  

dC/dtx ~ c*aO (tt -- ~t) P (t~ -- ~ )  + ~/(1 ~ S/ct~ ) -- ct~CT -- c,~C, 

(6) 

(7) 

(8) 

(9) 

(10) 

N = ]N/(C4 + csT), 

S = (qT/cs)/(1 + T / cJ ,  

P = ~CT/(c lo  + (c6T/~)/(1 + T/c7))l(cn + cloT). 

If the data on the facilitated induction of suppressor cells and suppressor factors by 
tumors cells [23, 24] are considered, we can set T ~ c 7. There is experimental evidence to 
the effect that suppressors more often affect the generation of CTL [23, 24]. We can assume 
thus that S ~ c14 (or T ~ cl4ca/c6). The analysis of the qualitative behavior of the model 
is then reduced to an examination of a system of the second order: 

dY/d t  1 = (e I - -  c~C - -  cs]N/(~ + csT)) T ,  ( 11 ) 

dC/dt l  = c13c9 0 (tl - -  ~1) C (t 1 - -  z l )  T (t I - -  T1) + ]c - -  Cl~CT - -  cisC" ( 12 ) 

(cl~ + C6 T ( t l - -X l ) )  

The o t h e r  v a r i a b l e s ,  a c c o r d i n g  t o  ( 8 ) - ( 1 0 )  a r e  d e p e n d e n t  on T and  a r e  " d r i v e n "  v a r i a b l e s .  

To simplify the analysis, let us make the variables t l, T, and C dimensionless. We 
normalize time (accurate to within in 2) by the tumor doubling period (t I = t/c I) and set 
C = (cl/c2)x, T = (c11/cl2)y. Now, (11) and (12) are rewritten as 

dx/dt  . . . .  dO (t -- ~) x (t -- x) y (t -- ~) 
( l + y ( t - - ~ l ) ( l + ~ y ( t - - ~ ) )  ~ l--~xy+rx, ( 1 3 )  

dy/dt  : y (l - -  x - -  ~/(1 + vy)), ( 1 4 )  

w h e r e  F = C3]N/(ClC~), ~ = C~Cn/(C4C12 ), �9 = C1T 1, ] = ~ 'CZ/C ~, ~ = C13~/(ClqoClz), ~ = Ct~ l l / (ClCs) ,  ? = C16/C1. 

When t < �9 in system (13)-(14), the term with the lag becomes equal to 0 and at ~ < i, 
+ j/7 > 1 or at ~ > i the model has in the positive quadrant {x, y}+ two stationary points: 

A(xl = J/Y, Yl = 0) is a stable node, and B(x2, Y2) is the saddle point. The coordinates of 
the point B are defined by the positive solution of the system 

xz = 1 -- ~/(1 + vyJ ,  ( i 5 )  

b o Y ~ + b x y 2 + b 2 : 0 ,  

where b0 =--v~, b~=--~(l--~)+vq--7), b 2 = y ( ~ - - l ) + ] .  If u + j/Y < I, then in {x, y}+ 
the only stationary point A is a saddle point. 

Thus, for t < �9 a stable stationary state with nonzero value of the variable y(t), i.e., 
the development of a dormant state of a tumor, is impossible. When t > <, stationary solu- 
tions of system (13)-(14) coincide with the stationary solutions at �9 = 0. This can readily 
be shown if the term with the lag argument is expanded as a Taylor series generalized for 
piecewise smooth functions [ii] and the definition of stationary solutions for a system of 
differential equations is taken. A system for �9 = 0 and {x, y} allows from one to four sta- 
tionary solutions. The first stationary solution has the coordinates A (x I = j/7, Yl = 0)~ 
the remaining three are defined by the positive solutions of the system 

xi = 1 - -  p J(1 -j- vb, iL 
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aoY~ + aly~ + a2y~ + a3Yi + a4 = O, (16) 

where  i = 2 , 3 , 4 ,  a 0 = - - ~ 6 ,  a ~ = 6 ~ ( j - - ~ - - ? ) + ~ ( ~ 6 - - 6 - - ~ ) ,  a 2 = ] ( - - 8 + ~ 6 + ~ ) + ( F - - 1 )  ( ~ 6 + ? 6 + ~ ) +  
~ (= -- ~ -- 76 -- ?), a3=l(6+~+l)+(F--l)(~+?+?6--~ )-Y~, a4=:]+ ?(~--i). 

The number of stationary solutions {x, y}+ is defined according to the Descartes theorem 
and the Sturm method. Only one of these solutions can be stable and interpreted as the dor- 
mancy of the tumor. 

Applying Lyapunov's theorem of stability in first approximation to systems (13)-(14) 
and analyzing the distribution of the solutions with respect to the stationary solutions, 
we have proved the following theorems. 

THEOREM i. The sufficient condition of the asymptotic stability of a stationary solu- 

tion (x I = j/y, Yl = 0) is the inequality 

x l + ~ > l .  (17) 

THEOREM 2. If x I + ~ > I, x I < 1 and x(0) = xl, 0 < y(0) < Ycr, where 

Ycr = (~ + x l  - -  1)/(~ (1 - -  x~)), ( 18  ) 

t h e  s o l u t i o n  y ( t )  d e c r e a s e s  on t h e  i n t e r v a l  i n  t6[O, ~ ] ,  where  y ( t )  § 0 a t  t § ~.  

Returning to the initial notations, the biological interpretation of this theorem is 
that the growth of a tumor (y) from a single transformed cell or in the case where there are 
a few such cells is impossible if the growth rate of the tumor c I is smaller than the sum of 
products of "basal" concentrations of effector cells (C~ - jc/cl6, N~ = jN/c4) multiplied by 
their corresponding coefficients of sensitivity of tumor cells to the damaging action of 
effector cells (c2, c3) , i.e., 

C~c2 + N~c3> c~. (19) 
The growth of a tumor and its prolonged existence are impossible if the number of new tumor 
cells in a tissue volume considered is smaller than 

Tc r :  c a ( C l % -  N l ~ -  ct) 
c, (c~ - -  C~c~) (2o) 

Condition (19) guarantees the existence in a body of a so-called "immune barrier" [20, 25] 
that would not allow a prolonged existence of limited (obviously, small) tumors or metastases 
and, hence, dormant tumors. 

From (12) and (19) it follows that such a barrier can exist even in the absence of CTL 
[when C(t) = 0], and its value Tcr is independent of the mechanisms of generation of CTL and 
the suppressor effect of a tumor upon CTL~ 

From an analysis of the experimental data in [21] it follows that the sensitivity of 
tumor cells to the damaging action of NK, CTL, and macrophages, if such sensitivity exists, 
is of the same order, while the "basal" concentrations of the specific CTL are usually by 
two or three orders of magnitude lower than NK or macrophages. As seen from (19), the main 
contribution to the immune barrier is made by cells comprised in the subsystem of natural 
antitumor resistance of the body. 

If condition (19) is not fulfilled, then, as numerical calculations show (Fig. i), an 
unlimited growth of the tumor (curves 1 and 2), its elimination (curve 3), or stabilization 
of the tumor in a dormant state (curves 4 and 5) may take place. The values of the model 
parameters were taken from [21]. As seen from Fig. i, small tumors can grow and stabilize 
in a dormant state (and thus preserve the threat of a relapse), medium-size tumors will be 
rejected, while large tumors will continue to grow. These results can be interpreted as a 
version of the tumor escape effect [16]. 

Note that Theorems 1 and 2 can be generalized to extend to the case of an n-component 
system of immune surveillance. 

Conditions of Asymptotic Stability of a Stationary Solution: 

The Existence of Tumor Dormancy 

Consider the conditions of existence of tumor dormancy and the role of the delay ~ in 
the development of CTL. 
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Fig. i. Solution of system 

(13)-(14) at JC = JN = 0 (no 
external inflow of effector 
cells) ~ = 7; $ = 1.125; 
y = 0.5; ~ = 3.0; ~ = 0.3. 
Wide line shows the stable 
limiting cycle with period 
14.4. Arrows indicate the 
direction of the process in 
time. 

Set in (13)-(14) 6 = 0.  
tionary solutions in that case appears as 

(e o + e~z + e2z2)chz + (d o + dlz + d2z2)shz = O, 

w h e r e ,  f o r  s t a t i o n a r y  s o l u t i o n s  d e f i n e d  by  ( 1 6 ) - ( 1 8 ) ,  

The characteristic quasipolynomial of system (13)-(14) for sta - 

(2i) 

z = ~,g/2, eo = - -  q/xl) ~vyd(1 + vy~)2 + Yixi [o~/(1 + yi) ~ --I~],  el = 2 [(j/x~) - -  

-- ~vyJ(1 + vyi)~]/'~, e~ = 4/'~ ~, d o = -- (~yj(1  + Yi) + [~Yl + ?) (IzvYi/( 1 +YO ~') -- x~y~ (cz/(1 +yi)Z+~), 

d 1 = 2 [(r q- Yi) + [~Yi + 7) - -  ~ v y j ( I  + vyi)2]/x, d2 = 4/x ~, i = 2, 3, 4. 
( 2 2 )  

The subscript i marks the nontrivial stationary solutions of the system; I is the character- 
istic root. 

Let B(x2, Y2) be a positive stationary solution of system (3)-(14) (of the type of a 
topological node at �9 = 0) corresponding to tumor dormancy. The existence conditions of this 
solution have been defined in [12]. From an analysis of the signs of coefficients of (21) 
we see that for B(x2, Y2) the necessary and sufficient conditions of asymptotic stability are 
possible. The necessary and sufficient conditions of asymptotic stability of quasipolynomialsl 
of the type (21) with real coefficients have been obtained by Chebotarev and refined by Guret- 
skii [26]. 

Introduce notations 

~rl,z = J z V ( - - D - - ( D 2 - - 4 A C ) I / 2 ) / 2 C ,  

where A = 2 e0ele2, C = dod~d 2, D = ele2d1(eo+do)--(d~--e2)~eg, E[z] is the integral part of the number 
z. Then for stationary solution B(x2, Y2), for the specific expressions of the coefficients 
of the quasipolynomial (22), the following theorem takes place. 

THEOREM 3. The necessary and sufficient conditions of an asymptotic stability of a 
positive stationary solution B(xz, Y2) of system (3)-(14) are the conditions 

e ~  e x > 0 '  e ' + d l > O '  (23) 

[ ~ (eo--do) t g r l ]  E [ r, 1 (eo--do)tgro] 
E - - f - ~  ~ e , + d a ~ 2 r  ' = I - - T + - ~  e , + d ,  tg=r , l .  

COROLLARY i. A stationary solution B(x 2, Y2) is asymptotically stable at �9 = 0, but it 
does not remain asymptotically stable if T > ~' = 2o/d I, where o is the coefficient at the 
linear term in the characteristic equation for the stationary solution B(x2, Y2) at T = 0. 

In biological terms this means that the appearance or an increase of an existing delay 
in the generation of cytotoxic T-lymphocytes caused by various effects reduces the stability 
of a dormant tumor and when �9 > ~' resuscitates it. 

Other stationary solutions of the system defined from (16)-(18) (which, at ~ = 0, are 
saddle points) are assymptotically unstable at �9 ~ 0. 

COROLLARY 2. At j = 0 the stationary solution B(x2, Y2) is asymptotic unstable at �9 e 0; 
the stability or instability of all stationary solutions defined from (16)-(18) remains un- 
changed for any �9 ~ 0. 
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Fig. 2o Solutions of system (13)-(14) at T = 0 (a) and at �9 > 0 (b). i) �9 = 
0.05; 2) ~ = 0.2; 3) T = 0.7; 4) �9 = 0.9; 5) �9 = 1.0. Coefficients in the mod- 
el: U = 0.4; j = 0.02; ~ = 5.0; ~ = 1.125; 7 = 0.5; v = 129.6; 6 = 0. B is the 
stable focus; C is the saddle point. 

In other words, the absence of a steady flow of cytotoxic T-lymphocytes j into the tumor 
focus causes a resuscitation of a dormant tumor and the transition of the system either to 
a stationary oscillational regime or to an unsuppressible growth of the tumor (x § 0, y + ~; 
t + ~). 

Nonstationary Solutions and Their Interpretations 

What is the subsequent course of development of a destabilized tumor as affected by the 
value of the parameter T? Numerical experiments on a computer show that ~ is an important para- 
meter. Figure 2 represents the projections of solutions of system (13)-(14) onto planes in 
the positive quadrant {x, y}+ for zero delay (a) and for various �9 > 0 (b). At �9 = 0, de- 
pending on the initial conditions, two types of tumor dormancy are possible: i) the number 
of tumor cells is constant (a stable stationary point B), and 2) the number of cells in the 
tumor varies periodically within a certain range (a stable limiting cycle). 

At �9 = 0 the model allows two nontrivial stable stationary solutions: a point B(x 2, Y2) 
and a limiting cycle (Fig. 2a), i.e., two types of tumor dormancy. 

Even a relatively small delay of the specific cell immune response much smaller than 
the tumor doubling period (curves 1 and 2, Fig. 2b) will destabilize a dormant tumor, and 
the development time of the process will be reduced. At small T, recovery will be achieved 
(y + 0) (curves 1-4), while with �9 comparable to tumor doubling period (curve 5) a rapid 
unlimited growth of the tumor (y § =) will result in the death of the individual. 

Similar qualitative regularities have been discovered with the consideration of delays 
in models of humoral immunity [25, 27]. A destabilization and a growth of leukosic clone 
can be caused by an unbalanced demand for the generation of cells of various histogenesis 
(including the cells of the lymphoid series) to the level of regulation of stem cells [28]. 
The relationship of the asymptotic behavior of solutions in system (13)-(14) as a function 
of T, however, may be much more complex. Figure 3 plots in the positive quadrant {x, y}+ 
projections of solutions of system (13)-(14) that go out of the stationary point B(x 2, Y2) 
(the state of a dormant tumor). The instances of moderate (~ = 2) (Fig. 3a) and "heightened" 
(~ = 5) (Fig. 3b) levels of the natural body resistance to a tumor are considered. As seen 
from the figures, an unlimited growth of a tumor may occur not only with large �9 (curves 4 
and 5, Fig. 3a; curve 5, Fig. 3b) but also at smaller �9 (curve I, Fig. 3a; curve 2, Fig. 3b). 
These values of �9 are separated by a region with favorable outcome of the disease (y § 0) 
(curves 2 and 3, Fig. 3a; curves i, 3, and 4, Fig. 3b). In other words, a monotonic increase 
of ~ starting from zero passes through an alternation of favorable (y + 0) and unfavorable 
(y + ~) outcomes, until at a sufficiently large r the resuscitation of a dormant tumor will 
result in the death of the organism. Hence, an immunization accelerating T-cell immune re- 
sponse (and thus reducing a delay in the development of CTL) may under certain circumstances 
stimulate unlimited growth of a tumor or its metastases. A comparison of Fig. 3a and 3b 

561 



5 4 2 

2 

f 

! 

/ 2 J 4 
a 

~ z  

! 2 j 
b 

Fig. 3. Solution of system (13)-(14) for the various values of ~, j = 0.0; 
= 5.0; ~ = 1,125; y = 0.5; v = 129.6; 6 = 0 (a). U = 2.0: i) ~ = 0.4; 2) 
= 0.8; 3) ~ = 1.0; 4) T = 1.2; 5) T = 2.0 (b). U = 5.0: i) T = 0.I; 2) 
= 0.2; 3) T = 0.4; 4) �9 = 0.8; 5) �9 = 1.0. 

indicates, however, that at a "heightened" level of natural body resistance (~ = 5) the same 
effects of immune stimulation appear as with a "moderate" level (~ = 2), but they are seen 
at a smaller value of ~. For example, at �9 = i.0 the solution y(t) in Fig. 3a tends to zero 
(recovery), while in Fig. 3b with the same value of �9 = 1.0 y(t) § ~ (death). 

The biological implications of these results can be formulated as follows: 

i. An accelerated development of specific CTL or a rise of the level of natural anti- 
tumor resistance stimulates the tumor growth under certain conditions. 

2. In order for the effect of immune stimulation of tumor growth to appear, a direct 
participation of suppressor cells induced by tumor antigens is not necessary, con- 
trary to what is frequently assumed [i, 2, 29]. 

3. The biological causes of the immune stimulation of tumor growth may vary. Mathe- 
matically, they are due to specific nonlinearities in tumor growth and body response 
processes. Under the concept of a two-level antitumor resistance, the immune stimu- 
lation of dormant tumors is due to the existence of two populations of killer cells 
with different generation velocities and different initial concentrations in the 
body. Suppose, for example, that NK and/or macrophages, usually present in far 
larger amounts in a tissue than are cytotoxic T-lymphocytes, kill tumor cells slowly 
while the time required for damage to the tumor cell in the EC-target cell conjugate 
is comparable to or greater than the time of division of the target cell of the tu- 
mor. With a certain delay in the development of specific CTL from memory cells the 
CTL may come up in a period when most of the tumor cells will be "screened" by NK 
and/or macrophages. In that case, at a low immune response of CTL to tumor antigen 
[i] the population of tumor cells as a whole will grow. These interpretations could 
be tested experimentally. 

4. For a successful fight against cancer cells, the host body sought to have mechanisms 
that maintains certain optimal interval relations between the activity of specific 
and nonspecific resistance subsystems. In particular, despite the different origins 
of CTL and NK, a certain conjugation should exist between the time of delay in the 
development of CTL and the cytotoxic activity of the NK, as follows from the data 
obtained. It can thus be assumed that maintaining certain interval proportions be- 
tween relatively autonomous immunity subsystems is essential for an immune homeostasis. 
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MATHEMATICAL MODEL OF LONG-TERM PREDICTION OF FLUCTUATIONS OF 

THE IMMUNOLOGICAL CHARACTERISTICS OF THE BLOOD AND A COMPUTER 

PROGRAM IMPLEMENTING IT 

E. N. Chirkova, L. S. Suslov, UDC 61:578.087.1+612.017.1+612.014.4+523.7+577.49 
and V. V. Nemov 

The biological rhythms of processes in living organisms and correlations of these bio- 
rhythms with heliogeophysical rhythms have been studied intensely in the past few years by 
biologists and physicians. The lack of a mathematical approach for separating from back- 
ground noise reliable parameters of hierarchies of rhythms in the dynamics of indicators has 
stood in the way of revealing steady patterns in fluctuations of man's immunological status 
[i, 2]. 

The present study pursues two goals; 

- to construct a mathematical model for isolating a hierarchy of reliable rhythms with 
previously unknown periods and phases proceeding from a limited number of sample values 
in the dynamic series of immunological indicators; and 

- to define the natural parameters of monthly heliorhythms and biorhythms of immunologi- 
cal indicators and evaluate their frequency and phase correlations so as to be able to 
use the patterns identified for long-term forecasting of variation trendsof immuno- 
logical indicators in the blood of healthy male subjects. 

In a mathematical approach to these problems with standard procedures used to discover 
hidden periodicities, three constraints prevent the application of the familiar methods to 
studies of biological rhythms: i) spectral methods require the availability of a large data 
file, while in a practical biological study only a limited number of measurements can be taken 
for each indicator; 2) with spectral methods, the true period and phase of the oscillations 
of the indicators studied are difficult to evaluate; this is contrary to the needs of bio' 
rhythmology, because frequency and phase carry information about the specifics of a living 
organism and time correlations of life-sustaining metabolic processes; and 3) because of the 
ongoing adjustment of the rhythms of various characteristics to changing external and inter~ 
nal factors affecting the functioning of a living organism, it becomes necessary to estimate 
the drift of periods about their mean values and to consider that a hierarchy of the rhythms 
of an indicator may contain periods that are not exact multiples of one another. Several 
mathematical techniques have been used to overcome these constraints of spectral analysis. 

I. In order to reveal the hierarchies of the biorhythms of different frequencies within 
a limited data file obtained by sampling with a constant time interval, the familiar method 
of analysis of a periodogram of the initial series is combined [3] with a procedure estimating 
the probability that what is identified by analysis as a harmonic component is in fact "white 
noise." We consider a model 

X t ~ m t ~ S t ,  

where x t is the observed time series; m t is a period function of the form 
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