
The Data Genera l  MRDOS operat ing s y s t e m  is more  flexible and allows (as a u se r  choice) both actual  
and v i r tua l  loading [3]. 

I t  is seen  f r o m  the above analys is  that pseudoloading is needed only when condition (1) is not sa t i s f ied  
and when the t ime p a r a m e t e r s  of pe r iphe ra l  devices  exceed the DMA channel capabi l i t ies .  

If  condition (1) is obeyed,  an over lay  module can  be loaded into m e m o r y  at  any t ime in the course  of 
opera t ion  of data logging and s tor ing  p r o c e s s e s ,  provided the re la t ions  (6) and (9) a r e  observed.  

Applicat ion of the above re la t ions  made it poss ible  to use over lay  subst i tut ions as an efficient  method 
of m e m o r y  control  in a f a s t  data p rocess ing  s y s t e m  based on an ETALON min icomputer .  
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P r e s e n t - d a y  opt imizat ion theory  and prac t ice  a re  based  on the c l a s s i ca l  s t a t ement  of the opt imizat ion 
p rob lem,  whereby  we a i m  to d i scover ,  in a p reass igned ,  fixed, admiss ib le  domain P,  the point (or se t  of 
points) p a t  which a given s c a l a r  t a rge t  function f(p) takes i ts  ex t r ema l  value. 

There  a r e  many economic planning and s t ruc tu r a l  design problems for  which such a s t a t ement  is un-  
s a t i s f ac to ry  in at  l eas t  two r e s p e c t s .  F i r s t ,  the t a rge t  function f{x) is a vec tor  and not a s c a l a r  function, and 
m o r e o v e r ,  is not reducible  in p rac t i ce  to a s c a l a r  f o r m  by any a p r io r i  p rocedure  (such as weighting the dif- 
f e ren t  components  of the initial  vec tor  function). Second, the admiss ib le  domain  P may change during the op- 
t imiza t ion  p rocess ;  and indeed, the e s sence  of the p rocess  may often lie p rec i se ly  in purposeful  va r ia t ion  of 
the admiss ib le  domain. 

Since the feas ible  types of va r i a t ion  of the domain P a r e  usually specif ied by a s y s t e m  model ,  i t  s e e m s  
natural  to speak  here  of a s y s t e m w i s e  approach  to opt imizat ion  prob lems .  With this new approach ,  the con-  
s t ra in t s  specifying the admiss ib le  domain in the p a r a m e t e r  space  a r e  usually va r i ed  as a r e su l t  of a sequence 
of solut ions,  chosen f r o m  a d i sc re te  se t  of feas ible  solutions.  This se t  of feas ib le  solutions is not usual ly fully 
defined a t  the s t a r t  of the opt imizat ion  p r o c e s s ,  and its definit ion is comple ted  in the course  of a dialog with 
people (planners or des igners)  who a re  in posses s ion  of only par t ia l ly  fo rmal ized  devices  for  genera t ing new 
solut ions.  

Let  us desc r ibe  a typical  fo rmal ized  s t a t emen t  of the sy s t emwise  opt imizat ion problem.  Since the under -  
lying idea is more  eas i ly  g rasped  when open to graphica l  i l lus t ra t ion,  we shal l  cons ider  the two-c r i t e r i on  case ,  
Also,  we shal l  a s s u m e  that the re levan t  solut ion is uniquely defined by choosing the values  of these c r i t e r i a .  In 
other  words ,  the solution is sought d i rec t ly  in the space  K of opt imizat ion c r i t e r i a  (call them xl and x2, see  
Fig. 1). 

The p rocess  of solut ion s t a r t s  with choosing in the space  K a point A 0 with coordinates, a 0 and b0, r e p r e -  
senting a des i rab le  solution of the problem.  We next cons t ruc t  the initial  cons t ra in ts  F~ ~ (xl, x2) -> 0 , . . . ,  
F{n~ x 2) -> 0, specifying the initial admiss ib le  domain  P0. We can  check d i rec t ly  whether  or  not the point A 0 
belongs to domain P0. If  it does,  we can in pr inciple  use the o rd inary  (classical)  opt imizat ion p rocedure ,  e i ther  
with r e s p e c t  to one of the c r i t e r i a  xl ,  x2, or  with r e s p e c t  to some  combinat ion of them. But with the sy s t emwise  
approach ,  we usual ly  employ  an en t i re ly  different  method: in accordance  with the model M of highest  level ,  
control l ing the choice of c r i t e r i a ,  the point A 0 is withdrawn f r o m  the admiss ib le  domain Pi,  as indicated in Fig. 1. 

Trans la ted  f r o m  Kibernet ika ,  No. 5, pp. 89-90,  Sep t ember -Oc tobe r ,  1980. Original a r t i c le  submit ted 
July  12, 1980. 
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Fig. 1 

After  this,  we isolate the constra ints  which a re  not sat isf ied at point A 0 (in our present  case ,  these a re  
F (~ and F4(~ Turning to models M 3 and M4, generat ing these cons t ra in ts ,  we t ry  out in the dialog mode the 
solutions which vary  the corresponding constra ints  in the necessa ry  d i rec t ion  (provided that such var ia t ion  is 
possible).  By a necessa ry  d i rec t ion  we mean here  one which reduces  the absolute value of the negative dis-  
crepancies  F~ ~ (a0, b 0) [in our present  case ,  F~ ~ (a0, b 0) and F~ ~ (a0, b0)]. 

It has to be borne in mind that the constra ints  Fi a re  often interconnected,  so that var ia t ion of one in-  
volves var ia t ion of ce r ta in  others .  The control  of the choice of solutions for var ia t ion  of the const ra ints  is 
determined here  by the minimizat ion of some penalty functiqn g0(a0, b0). As this function we usually choose the 
maximum absolute value of the negative d iscrepancies  Xi" F~ O (a0, b0) (where k i a r e  positive weights). If there  
a re  no such d iscrepancies ,  we put by definition g0(a0, b 0) = 0. 

As a r e su l t  of the control  there  appears  a se r i e s  of solutions R 1 , . . . ,  Rm,  leading to reduct ion of the 
value of the penalty function; a f te r  the m- th  solution, we denote this la t ter  by gm(a0, b0). On varying the con- 
s t ra in t s ,  each of the accepted solutions leads to a corresponding var ia t ion  of the admissible  domain. In Fig. 1 
we show two such variat ions.  The f i r s t  var ies  the constraints  F.(~ and F~ (~ by replacing them, respec t ive ly ,  

o a 0 
by constraints  F (1) and F (1~ The second var ia t ion  affects only the one cons t ra in t  F ( ) ,  replacing it by con- 

i 3 2 ~ 4 
s t ra in t  F~ ). The domain P2 obtained af te r  these var ia t ions  is bounded by the lines F[ ~ F~ 1), F 0) ,  and F 0) ,  
while the corresponding value of the penalty function is equal to g2 (ao, bo). Notice that it is not possible to make 
a rapid choice of final admissible  domain because the sequence of domains Po, P1, �9 �9 �9 cannot be o rdered  with 
r e spec t  to inclusion. Moreover ,  rapid per fo rmance  of the work is prevented by the vast  labor of generat ing 
new cons t ra in ts ,  inasmuch as a g rea t  deal of superfluous work is needed in the way of varying inessent ia l  con-  
s t ra in ts .  

If, as is the case  in Fig. 1, g2(a0, b 0) ~" 0, and there  a re  no solutions leading to fur ther  reduct ion of the 
penalty function, a r e t u rn  is made to the highest model M, controll ing the choice of des i rable  solution A(a, b) 
of the problem. By means of a se r ies  of success ive  decisions D 1, D 2, . . . ,  D k on var ia t ion  of the initial solu-  
tion A0(a0, b0), the la t ter  is replaced success ive ly  by Al(a 1, bl), . . . ,  Ak(a k, bk), till  the las t  point Ak(ak, b k) 
is in the admissible  domain (k = 1 i n F i g .  1). The decisions on var ia t ion  a re  chosen f rom the admiss ible  se t  of 
decisions with the a im of minimizing the penalty function. This process  c losely  r e sembles  the c lass ica l  opti-  
mizat ion p rocess ,  except  for  the fact  that the steps are  not a rb i t r a r i l y  chosen but a re  fixed in conformity  with 
the solutions admitted by model M. 

Finally,  a f te r  point Ak has hit the last  admiss ible  domain Pro, we can use a supplementary optimization 
procedure  with r e spec t  to some combination of c r i t e r i a  x 1 and x 2 within the admissible  domain. The only dif- 
fe rence  f rom the cIass ica l  procedure  is that the choice of optimization steps is not a rb i t r a ry ,  but is control led 
by the model M of highest level.  If fur ther  improvement  of the chosen c r i t e r i on  is prevented by ce r t a in  con-  
s t ra ints  which a re  nonetheless  amenable to fu r the r  var ia t ions in the requ i red  direct ion,  then the optimization 
p rocess  can be continued by including in it  success ive  decisions on such var ia t ions .  

It is not as unusual as might at  f i r s t  sight appear  for  the solution of the problem to be uniquely de t e r -  
mined by a choice of the values of all the optimization c r i t e r i a .  This happens e.g. ,  in economic-planning prob-  
l ems ,  where  the (vector) c r i t e r i on  is the pure output of the different  types of production,  while the solution of 
the problem is the total output (see [1]). In cases  where de terminat ion  of the solution is not unique, the space 
in which the solution is sought may have other  coordinates  apar t  f r o m  those corresponding to the optimizat ion 
c r i t e r i a .  The optimization process  descr ibed  above is then more  complicated,  inasmuch as the points Ai(ai, bi) 
a r e  rep laced  by hyperplanes.  The definition of the penalty function is then likewise more  complicated:  we can 
then define it, e .g. ,  as the distance f rom a chosen hyperplane to the next admiss ible  domain,  in a space with 
given compress ions  (expressions) along the axes corresponding to the optimizat ion c r i t e r i a .  

In the most  general  case ,  instead of hyperplanes there  may appear  point sets  of a r b i t r a r y  type. State-  
ments are  possible in which the values of the c r i t e r i a  a re  not uniquely defined on these se t s ,  while to dis t in-  
guish more  or less desi rable  solutions in these se t s ,  appropria te  weight functions a re  specif ied (by means of 
the model M of highest level). But there  is another  important  feature of sys temwise  optimization,  apar t  f rom 
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the presence of several  c r i t e r i a  and the possibil i ty of varying the admissible  domain, which is retained what- 
ever the type of approach, namely,  the interact ion of the models of the different  levels.  In the case of econom- 
ic-planning problems,  the solutions are  obtained in these models by control lers  of different  levels ,  while in 
the case of s t ruc tura l  design problems they are  obtained by designers  operating on different  parts of the over-  
all  design. 

The author has developed a concrete  optimization scheme based on the above principles; i t  embraces  the 
so-cal led "Displan" sys tems (see [1]). 
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In this ar t ic le  a numerical  method is developed to solve the general  problem of mathematical  p rogram-  
ruing: 

with the constraints  

rain fo (x) (1) 

where the functions fv(x), 
agrees  with the plan of the I inearizat ion method given in [1]. 

We note that the problem of Eqs. (1) and (2) is equivalent to the problem 

[~ (x) ~< 0, i = 1 . . . . .  m, (2) 

v = 0, 1 , . . . ,  m sat isfy a local Lipschitz condition. The general  plan of the method 

with the condition 

minf(x) (3) 

h(x)~O, 

where h (x) = max [~ (x). Therefore in what follows we will consider the problem of Eqs. (3) and (4). 

The method of solving Eqs. (3) and (4) is defined by the relationships 

x~+l _- x ~ + pks ~, 

where sk is the solution of the quadratic programming problem 

rain (z~, s) + 21-- II s II ~ 

with the additional constra int  (Zh k, s) + h(xk) _< 0 if the condition h(x k) -> 0 is fulfilled. 

Here x ~ zl,  and z~ are  a rb i t r a ry  initial approximations: 

z~+ ~ = z~ + a~ (o, (x~, k) - z~), 

q + '  = z ~ +  a~ (oh (x' ,  k)--z~),  

n 

% (xL k) = ~ . . . . . . . .  

(4) 

(5) 

(6) 

Translated f rom Kibernetika, No. 5, pp. 91-94, September-October,  1980. Original ar t ic le  submitted 
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