The Data General MRDOS operating system is more flexible and aliows (as a user choice) both actual
and virtual loading [3].

It is seen from the above analysis that pseudoloading is needed only when condition (1) is not satisfied
and when the time parameters of peripheral devices exceed the DMA channel capabilities.

If condition (1) is obeyed, an overlay module can be loaded into memory at any time in the course of
operation of data logging and storing processes, provided the relations (6) and (9) are observed.

Application of the above relations made it possible to use overlay substitutions as an efficient method
of memory control ina fast data processing system based on an ETALON minicomputer,

LITERATURE CITED

1. S. Mednick and J. Donovan, Operating Systems [Russian translation], Mir, Moscow (1978), pp. 239-241.

2. G. 1. Kornienko and O. N. Sheverda, "Control of resources in processing the results of natural ex-
periments," Kibernetika, No. 5, 41 (1978).

3. L. L. Mytus, "Real-time operating systems used in automatic control systems of technological pro-
cesses," Programmirovanie, No, 6, 44 (1977).

SYSTEMWISE OPTIMIZATION

V. M. Glushkov ' UDC 001,57:62~52

Present-day optimization theory and practice are basedonthe classical statement of the optimization
problem, whereby we aim to discover, in a preassigned, fixed, admissible domain P, the point (or set of
points) p at which a given scalar target function f(p) takes its extremal value,

There are many economic planning and structural design problems for which such a statement is un-
satisfactory in at least two respects. First, the target function f{x) is a vector and not a scalar function, and
moreover, is not reducible in practice to a scalar form by any a priori procedure (such as weighting the dif-
ferent components of the initial vector function). Second, the admissible domain P may change during the op-
timization process; and indeed, the essence of the process may often lie precisely in purposeful variation of
the admissible domain,

Since the feasible types of variation of the domain P are usually specified by a system model, it seems
patural to speak here of a systemwise approach to optimization problems. With this new approach, the con-
straints specifying the admissible domain in the parameter space are usually varied as a result of a sequence
of solutions, chosen from a discrete set of feasible solutions. This set of feasible solutions is not usually fully
defined at the start of the optimization process, and ifs definition is completed in the course of a dialog with
people (planners or designers) who are in possession of only partially formalized devices for generating new
solutions,

Let us describe a typical formalized statement of the systemwise optimization problem. Since the under-
lying idea is more easily grasped when open to graphical illustration, we shall consider the two-criterion case,
Also, we shall assume that the relevant solution is uniquely defined by choosing the values of these criteria. In
other words, the solution is sought directly in the space K of optimization criteria (call them x{ and x,, see
Fig. 1).

The process of solution starts with choosing in the space K a point A, with coordinates a, and b,, repre-
sentmg a desirable solution of the problem. We next construct the initial constraints F( ) X1, X9) = 0, ’
F(o (x4, X») = 0, specifying the initial admissible domain P,. We can check directly whether or not the pomtA0
belongs to domain P,. If it does, we can in principle use the ordinary (classical) optimization procedure, either
with respect to one of the criteria x, x5, or with respect to some combination of them. But with the systemwise
approach, we usually employ an entirely different method: in accordance with the model M of highest level,
controlling the choice of criteria, the point A, is withdrawn from the admissible domain P, as indicated in Fig. 1.

Translated from Kibernetika, No. 5, pp. 89-90, September-October, 1980, Original article submitted
July 12, 1980.
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After this, we isolate the constraints which are not satisfied at point A, (in our present case, these are
F3(°) and Ff‘” ). Turning to models M; and M,, generating these constraints, we try out in the dialog mode the
solutions which vary the corresponding constraints in the necessary direction (provided that such variation is
possible), By a necessary direction we mean here one which reduces the absolute value of the negative dis-
crepancies Fi(o) (@ by [in our present case, Fa‘(O) (ay, by and Flgo) (ag, bl

It has to be borne in mind that the constraints Fj are often interconnected, so that variation of one in-
volves variation of certain others. The control of the choice of solutions for variation of the constraints is
determined here by the minimization of some penalty function gy(a,, by). As this function we usually choose the
maximum absolute value of the negative discrepancies A;- Fi0 (ayy by (where Aj are positive weights). If there
are no such discrepancies, we put by definition ggy(ay, by = 0.

As a result of the control there appears a series of solutions Ry, . . ., Ry, leading to reduction of the
value of the penalty function; after the m-th solution, we denote this latter by gm(ay, by). On varying the con-
straints, each of the accepted solutions leads to a corresponding variation of the admissible domain, In Fig.1
we show two such variations, The first varies the constraints F3(°) and F2(°), by replacing them, respectively,
by constraints F® and 7V . The second variation affects only the one constraint F40 , replacing it by con-
straint Ff . The domain P, obtained after these variations is bounded by the lines Fi(O) s Fz(“, F's(j)’ and Ff),
while the corresponding value of the penalty function is equal to g,(a,, by). Notice that it is not possible to make
a rapid choice of final admissible domain because the sequence of domains Py, Py, . . . cannot be ordered with
respect to inclusion., Moreover, rapid performance of the work is prevented by the vast labor of generating
new constraints, inasmuch as a great deal of superfluous work is needed in the way of varying inessential con-
straints,

If, as is the case in Fig. 1, gy(ay, bg) = 0, and there are no solutions leading to further reduction of the
penalty function, a return is made to the highest model M, confrolling the choice of desirable solution A (a, b)
of the problem, By means of a series of successive decisions Dy, Dy, . . ., Dy on variation of the initial solu-
tion Ay(ay, by}, the latter is replaced successively by Aq(ay, by), . . ., Aglak, bi), till the last point Ax(ak, bi)
is in the admissible domain (k =1 in Fig. 1). The decisions on variation are chosen from the admissible set of
decisions with the aim of minimizing the penalty function. This process closely resembles the classical opti-
mization process, except for the fact that the steps are not arbitrarily chosen but are fixed in conformity with
the solutions admitted by model M.,

Finally, after point A has hit the last admissible domain Py, we can use a supplementary optimization
procedure with respect to some combination of criteria x; and x, within the admissible domain. The only dif-
ference from the classical procedure is that the choice of optimization steps is not arbitrary, but is controlled
by the model M of highest level. If further improvement of the chosen criterion is prevented by certain con-
straints which are nonetheless amenable to further variations in the required direction, then the optimization
process can be continued by including in it successive decisions on such variations,

It is not as unusual as might at first sight appear for the solution of the problem to be uniquely deter-
mined by a choice of the values of all the optimization criteria. This happens e.g., in economic~-planning prob-
lems, where the (vector) criterion is the pure output of the different types of production, while the solution of
the problem is the total output (see [1]). In cases where determination of the solution is not unique, the space
in which the solution is sought may have other coordinates apart from those corresponding to the optimization
criteria. The optimization process described above is then more complicated, inasmuch as the points Aj(aj, bj)
are replaced by hyperplanes. The definition of the penalty function is then likewise more complicated: we can
then define it, e.g., as the distance from a chosen hyperplane to the next admissible domain, in a space with
given compressions (expressions) along the axes corresponding to the optimization criferia,

In the most general case, instead of hyperplanes there may appear point sets of arbitrary type, State-
ments are possible in which the values of the criteria are not uniquely defined on these sets, while to distin-
guish more or less desirable solutions in these sets, appropriate weight functions are specified (by means of
the model M of highest level). But there is another important feature of systemwise optimization, apart from
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the presence of several criteria and the possibility of varying the admissible domain, which is retained what-
ever the type of approach, namely, the interaction of the models of the different levels. In the case of econom~
ic-planning problems, the solutions are obtained in these models by controllers of different levels, while in
the case of structural design problems they are obtained by designers operating on different parts of the over-
all design,

The author has developed a concrete optimization scheme based on the above principles; it embraces the
so-called "Displan" systems (see [1]).
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MINIMIZING METHOD FOR FUNCTIONS THAT SATISFY
THE LIPSCHITZ CONDITION

A, M. Gupal UDC 519.47

In this article a numerical method is developed to solve the general problem of mathematical program-
ming:

min f, (x) @)
with the constraints
fi(0)<<0, i=1,...,m, @)

where the functions fyx), v=0,1,..., m satisfy a local Lipschitz condition, The general plan of the method
agrees with the plan of the linearization method given in [1].

We note that the problem of Egs. (1) and (2) is equivalent to the problem
min f (x) 3)
with the condition
h(x) <0, @

where #4(x) =  max fi(x). Therefore in what follows we will consider the problem of Eqs. (3) and (4).
sm

The method of solving Egs. (3) and (4) is defined by the relationships
it = ot ®)
where sK is the solution of the quadratic programming problem
: 1
min (&, 8) + 5~ || s |P ©
with the additional constraint (zﬁ, s) + h&K) = 0 if the condition h(xk) = 0 is fulfilled.
Here x°, zg, and z{ are arbitrary initial approximations:

=24+ 0, (8 (x*, k) — 28),

gt =zt + o, (8, (x4, B) —2p),

Gf(x“,k)=7;h—2[f(;’=. U TIPS SR SR o~ ST SPSI) Y

=1

Translated from Kibernetika, No. 5, pp. 91-94, September-October, 1980, Original article submitted
February 22, 1979.
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