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A Riemannian metric g on a manifold M 4k is said to be quaternionic if its holonomy group 
is reduced to Sp (I) × Sp (k) and is said to be hyper-K~hler if this group is reduced to Sp (k) 
[I]. The last condition is equivalent to the condition that on M there exists a family of 
complex structures that is parametrized by the points of the projective line CP i (with certain 
natural conditions), with respect to each of which the metric is KNhler. Therefore, it is 
natural to percieve the hyper-KNhlerness as the quaternionic Kghlerness. 

For k = I (dimM = 4) the notion of a hyper-K~hler metric transforms into the notion of a 
right-planar metric: g is the autodual solution of the (vacuum) Einstein equation. The con- 
struction of explicit examples of hyper-KNhler metrics is a differential problem even for k = 
I. A few examples are known for k > 1. Hitchin, Rocek, etc. have announced a general method 
for the construction of examples that is based on the fact that under natural restrictions 
the hyper-KShlerness is preserved under factorization with respect to the invariant action 
of a compact Lie group. Here we propose another method for the construction of hyper-Kahler 
metrics that generalizes the method of [2-4] for the construction of the right-planar metrics. 
As there, we conclude the hyper-K~hlerian structures in a more general class of geometric 
structures and obtain hyper-Kahler metrics, restricting these more general structures to suit- 
able submanifolds. 

I. Bundles of 2-Forms and Hyper-K~hler Metrics. The description, given in [2], of the 
right-planar metrics in the language of the quadratic bundles of 2-forms is generalized recti- 
linearly to the case k > I. As in [2], at first we "complexify" the problem and consider a 
nondegenerate holomorphic metric g on the complex manifold M ~k. The notion of the hyper- 
K~hlerness is carried over to the complex case tautologically. With each quaternionic metric 
we associate a family of the holomorphic l-forms ~jA, j = I, 2,...,2k, A = 0, I, with respect 
to which the following quadratic bundle of 2-forms is constructed: 

k 

F (t) = i ~  Fl  (t), F l (t) : ~2/-1 (t) A ~2l (t), ~ i  (t) = ~jo + t ~ j l '  t ~ C. ( 1 ) 
/=1 

The corresponding (to the bundle) metric has the form 
k 

g = ~1 gl '  gl = tP2l-l, oq)2/, t - -  q)2l, 0~2/-1,1, (2)  
l = l  

where the forms are multiplied symmetrically. The representability of the bundle F(t) in the 
form (I) is equivalent to the condition that its (k + 1)-th outer power is equal to zero iden- 
tically with respect to t. The holonomy group of g is realized as the gauge group of the 
bundle F(t). The group Sp (I) = S1 (2, C) corresponds to the projective change of the para- 
meter t and Sp (k) corresponds to the linear substitutions ~j (t) , under which the representa- 
tion (I) is preserved. 

In the language of the form bundles, the condition of hyper-Kghlerness acquires the very 

simple form 

d f  (t) = O, ( 3 )  

i.e., F(t) are closed for all t. It follows from (3) that the system 

~ j ( t ) = O ,  ] = l  . . . . .  2l, (4)  

is completely integrable, i.e., the condition of the hyper-K~hlerness is an extension of the 
condition for the consistency of the system of linear equations (4), containing the spectral 
parameter t rationally (cf. [3]). 
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Following Penrose [5], we naturally call the integral surfaces (4) the s-surfaces and 
their manifold T the twistor manifold (cf. [I]); dimT = 2k + I. To the points M on T there 
corresponds a 4k-parametric family of rational curves with normal bundle ~(I)@... @~(I) (2k 
terms). All the data are easily rephrased in the language of twistors. 

2. Construction of a Family of Hyper-K~hler Metrics. Let us generalize one of the con- 
structions of [4] to the case k > I. Let T = CP I x ~k, ~2k be a simplicial space (over C) 

with the form J(dx)= ~ dz~_~@~=~; and t be an affine parameter on CP ~. We fix p and let N be 
~=i 

the manifold of the rational curves in T of the form 

• j ~ u ~ ( t ) ~ u ~ - ~ + . . . + ~ t  ~, / ~  . . . . .  2k. (5 )  

This is the family of the sections of the vector bundle ~(p) @... $ @(p) (2k terms) on CP~o 

We have dimN = 2k(p + I) and let {uj~} be a coordinate system on N. Let us consider on N the 
bundle of the 2-forms 

G (t) = ~ (du (t)) = ~ d~_~ (t) A du~ (t) (6 )  
l = l  

of degree 2(p + I) in t. It satisfies all the conditions on F(t), excluding the power in t. 
This is a representative of the class of the structures tha~ generalize hyper-Kghler struc- 
tures. We restrict G(t) to certain 4k-dimensional manifolds in N. 

We fix 2p- 2 values t = t~,...,tep_e and 2p -- 2 Lagrangian (with respect to J) manifolds 
F~,...,Fep-2 in X ek. Let 'M r~ denote the submanifold of the curves (5) such that 

u ( t j ) . ~  F#, ] :  i . . . . .  2 p - - 2 .  (7 )  

THEOREM I. The quadratic bundle of the 2-forms 

2~- -2  

(0 = ~ (t)I~r/1-[ ( t -  9 
# 

( s )  F 
#=~ 

on M F has the structure (I), satisfies Eq. (3), and therefore induces a (complex) hyper- 
Kghler metric on M F. 

Indeed, the (k + 1)-th outer power of F(t), as also of G(t), is equal to zero; the closed- 
ness of F(t) follows from the closedness of G(t); and G(tj)IM F ~ 0 since Fj are Lagrangian. 

We get a family of the hyper-KNhler matrics that depend on several functions of k variables. 

3. Examples. The explicit computation of F(t) according to Theorem I and the further 
computation .of ~ are complicated with the growth of p on account of the difficulty in the 
choice of an effective parametrization on MF. We give the best-possible formulas for p = 2, 
k = 2. 

Let xl, xe, x~, x~ be coordinates on X; u~i, j = I, 2, 3, 4 and i = O, I, 2, be coordi- 
nates on N; and xj = uj(t) = ujo + uj~t + uj2 t~ . We fix t~ = 0 and t2 ~. Let the Lagrangian 
manifold FI be locally given by the conditions ~ = ~(~,~) and z~=~(~,~), and ~2 be given by 
the conditions xe = %(x~, x~) and x~ = ~(x~, x~). We will denote expressions of the form 
~(xl, x~)/~xj by ~j for brevity. The conditions for the Lagrangianness mean that 

'P~--¢i=O, ~ - - ~ i = 0 .  (9) 
The submanifold M F is given by the equation 

u~ = ~ ( ~ ,  u~o), u~o = ~ (u~o, ~o) ,  u~  = ~ (u~, ~2) ,  u~  = ~ ( ~ ,  u~2). ( 1 O) 

We choose u~0, u~0, u~2, u~2; uj~, j = I, 2, 3, 4 as coordinates on M r (dimM r = 8) and re- 
strict the bundle of the form G(t) = dh,(t) Adu~(t)+du~(t)A,#n~(t) of degree 4 to M F. 

According to Theorem I, the terms of degrees 4 and 0 in t disappear during the restric- 
tion. After division by t, we get the desired quadratic bundle of 2-forms F(t). After this, 
it is still necessary to reduce F(t) to the form (I), to find the I-form ~#A, and to form g 
by (3). We will not give the form of F(t), which is easily computed directly, but at once 
give the formulas for ~#A- We introduce the intermediate notation 

= - - % )  - - 
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where the omitted variables correspond to (10). We have 

~ o  = ~ o .  ~ = ~ + ( ~ -  ~ )  (o, - ( ~  - ,~)  o~. 

~20 : A-1~2, ~21 = A-I [(~ -- ~) d~12 + (~ -- ~) d~a2], 

~o = ~ o .  ~ = ~ + ( ~  - ~) ~ -  ( ~ -  ~) ~,, 
~o  = z - ~ , .  ~,~ = ~-~ ~ (~  - ~ )  ~ + ( ~ -  ~ )  ~ .  

In the constructed metrics, it is easy to lass to r~al forms. Under the assumption that F2 
is obtained frq~ ..F~ by the involution x ~ x, we can restrict g to the real eight-dimensional 
manifold uje = uj0, j = I, 3; Reuj~ = 0, j = I, 2, 3, 4. 

I • 

2. 
3. 
4. 
5. 
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NARASIMHAN--SESHADRI CONNECTION AND K~HLER STRUCTURE OF THE SPACE OF 

MODULI OF HOLOMORPHIC VECTOR BUNDLES OVER RIEMANN SURFACES 

P. G. Zograf and Lo A. Takhtadzhyan UDC 513.8 

I. Many spaces of moduli connected with Riemann surfaces have a natural Kghler manifold 
structure; well-known examples are TeichmHller space, the Jacobi variety, and the space of 
modules of stable vector bundles (matrix analog of the Jacobian). For TeichmHller space the 
symplectic form of the K~hler metric mentioned (the Weyl--Petersson metric) is the "~-deriva- 
tive" of the field of projective connections defining the Fuchsian uniformization of the 
corresponding Riemann surfaces (cf. [|-3]). This "principle," expressing the natural sym- 
plectic structure on the space of moduli in terms of a preferred connection in the bundle, 
turns out to be sufficiently general. In the present ~e we illustrate it with the example 
of the space of moduli of flat stable vector bundles ove. a compact Riemann surface. 

2. Let X be a compact Riemann surface of genus g > I. By a theorem of Narasimhan-- 
Seshadri [4] the space N = N(n, 0) of moduli of stable vector bundle~s of rank n and degree 
0 over X is isomorphic with the space of classes of equivalent irreducible representations 
of the fundamental group HI(X) on the unitary group U(n). This space N is a complex manifold 
of dimension n2(g- I) + I over C. The tangent space ToN to N at the point corresponding to 
the (irreducible) representation p: ~l(X) ÷ U(n) can be identified naturally with the Dolbeault 
cohomology group H°,l(X, EndEp), where EndEo is the bundle of endomorphisms of the n-dimen- 
sional complex bundle EO, induced by the representation ~ (cf. [5]). The cotangent space 
TEN at this same point is isomorphic with the group H I, 0 (X, End EO), and the natural pairing 

ToN® TIN-*C is given by the integral -- 1 tr(~/~q), where ~//~,~(X, EndE0) , ~If~, ~(X,EndEo) 
x 

(elements of the Dolbeault groups are considered to be harmonic forms), and tr means the 
matrix trace. On N there is defined the Hermitian metric 

f <~, ~> = - -  ~ tr(~ A ~¢), ~, ~ H  °,~ (X, EndE0) , 
X 

where  t d e n o t e s  t h e  t r a n s p o s e .  The ( 1 ,  1 ) - f o r m  ~ = - - ( 1 / 2 )  I m < ,  > c o r r e s p o n d i n g  t o  t h i s  
m e t r i c  i s  c l o s e d  [6]  and  d e f i n e s  t h e  K ~ h l e r  s t r u c t u r e  m e n t i o n e d  on t h e  s p a c e  of  m o d u l i  N. 

3 .  I n  e a c h  s t a b l e  v e c t o r  b u n d l e  E of  d e g r e e  0 o v e r  X t h e r e  e x i s t s  a u n i q u e  f l a t  u n i t a r y  
c o n n e c t i o n  A E, c o m p a t i b l e  w i t h  t h e  c o m p l e x  s t r u c t u r e ,  t h e  N a r a s i m h a n - - S e s h a d r i  c o n n e c t i o n  [4 ;  
7 ] .  T h i s  c o n n e c t i o n  p l a y s  t h e  same r o l e  i n  r e l a t i o n  t o  t h e  f o r m  ~ on N as  t h e  F u c h s i a n  
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