THEOREM, (i) Tad splits up into the direct sum of representations p =% (with multiplicities).

(ii) The multiplicity of the occurrence of p=¢ in Tad js equal to the maximal multiplicity of weight
inp.

(iii) We may choose g,-invariant subspaces v,,p=% in A such that:

a) the restriction of T2d to V, is equivalent to p;

b) for any e p: = %, the restriction of Tad to VpIVp R {the space generated by products ab, a = V,, b= V,)
is equivalent to p; ®@ py.

5. We comment on the last statement of the theorem. Let V and V' be two finite-dimensional g,-invariant
subspaces in A, and let 7 and 7' be the restrictions of T2d to V and V', Since Tad(X) for X =4, is a differen- -
tiation in the algebra A, VV' is a g,-invariant subspace, and the restriction of T2d to VV' is the factor-repre-
sentation 7 O 7'. Statement (iii) of the theorem means that the subspaces V, may be chosen such that the re-
striction of T2d to Vp1V is equivalent to p; ® p,, i.e., there is ho cancellation. Statement (ii) means (in view
of Steinberg's formula on the decomposition of the tensor product [4]), that each representation p =% appears
in T2d with the minimal multiplicity for this.

6. For an arbitrary semisimple Lie algebra 3, we naturally call its representation T of differentiations
in some associative algebra Aa "multiplicative model," if the analogs of statements (i)-(iii) of the theorem
are satisfied. Such a model was constructed by Biederharn and Louck [5] for 3= 3l (R). It clearly exists for
any simple Lie algebra, and in general, is not unique.
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BERNSIDE'S PROBLEM ON PERIODIC GROUPS

R. I. Grigorchuk UDC 519.443

Despite the progress which has been made in the solution of Bernside's problem on periodic groups [1],
there is an undoubted interest in simple examples of infinite finitely generated groups, each element of which
has finite order. This interest has recently grown. It turns out that such groups are connected with the solu-
tion of a whole series of problems in functional analysis, amongst which we note the problem arising to von
Neuman, on invariant means [2].

In this article we shall construct examples of (and essentially state a method of constructing) groups in
which each element has finite order of the form pN, where p is a prime number. We note that the group G
(with which we shall be concerned later) is defined as a group of transformations of the interval [0, 1], pre-
serving the Lebesgue measure. Therefore, we shall define all the transformations to within a set of measure
zero. Henceforward, it will be convenient fo use the following notation. The letter I over an interval A of the
numerical axis will denote the identity transformation of the interval A, and the letter P over the interval A=
[@, B] will denote "permutation® of the halves of this interval, i.e., Px =x + B—a)/2 if a <x < (@ + B) /2,
Px=x— (B—a)/2 if (@ + B)/2 <x < B. Denote by G the group generated by the transformations a, b, ¢, and
d, whose definitions are given in Fig. 1 (over the second, third, and fourth copies of the interval [0, 1] there
are "written" the infinite sequences PPIPPL . ., PIPPIP. . ., and IPPIPP. . .). We note that the generators
a, b, c, and d satisfy the following relations:

Q% = b2 = ¢ = g2 = ¢; be=cb, bd=db, ed=dc; bc=d, ed=1b, ad=¢, (1)

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 14, No. 1,
pp. 53-54, January-March, 1980. Original article submitted June 18, 1979.
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where e is the unit element of the group G.

THEOREM. The group G has the following properties: it is 1) infinite, 2) periodic, and 3) cannot be
given by a finite set of defining relations.

Proof. LetW = f,. . .fp be a word in the symbols a, b, ¢, d. Denote by 94(W), 0 (W), 3c(W), 9gW)
the number of times each symbol appears in the word W, and by 8 (W) we denote the length of W. If the word
W represents the element g in G and is the shortest among such words, then we denote by 9(g) the length ofthis
shortest word. In those places when we are talking about a concrete representatwe W of the element g, we
shall assume that 3,(g) = 8,W), 9p(E = dp(W), etc.

1) Denote by H the subgroup of G consisting of those transformations which leave the halves of the inter-
val {0, 1] invariant. The word W = {;. . . f;, defines an element of H if and only if 8,(W) = 0 (mod2). Therefore,
the elements b, ¢, d, aba, aca, and ada generate H. Denote by aa, ba, ca, da the transformations of the
interval A which are defined analogously to the transformations a, b, ¢, d for the interval [0, 1]. It is easily
seen that

blio, i1 =00, a1 Plps11= Sy ®lio, i) = Cpo,yr P lpp 1 = gy
i, =000 Sl =%ppar @l =4y 9 lpm = Opy, 10
Bl =T o=t @,y =bp,pr  *4lu0=Tpp

@)

where S| denotes the restriction of the transformation S to the interval A, It follows from relations (2) that
the group H is isomorphic to the subgroup of the group G X G generated by the elements (a, ¢}, (, d), (e, b},
¢, @, d, a), (b, e), and therefore admits a homomorphism to the group G for which (g, ¢) —~ a4, (a, d) —~a,
e, b) ~e, (d, a) —~d, (b, e —b, (¢, a) —c. Thus, we have proved that G is infinite,

2) Denote by ¢ the isomorphism of H and the subgroup of G X G, generated by the elements (4, c), (g, d),
(e, b, (c, a), (d, @), (b, e), where ¢({b) = (a, ¢), ¢lc) = (a, @, Qo(d) = (e, b), @(aba) = (c, a}, @laca) = (4, a),
¢(ada) = (b, €). By relations (1), an arbitrary element ¢ = ¢ can be represented by a word in the symbols a,
b, ¢, d, in which there are no two symbols standing next to each other in the set {b, ¢, d}. We call a word
satisfying this condition, reduced. We prove that for any ¢ = ¢ there exists a natural number N such that gzN
e. The proof is by induction on 3(g). If 8(g) = 1, then from relations (1) we have g’ = e. Suppose that period-
icity is proved for elements ¢ « ¢, whose length is not greater than k., We prove that elements of length k + 1
also have bounded order. Let9(g) =k + 1andg=1{;. .. fk+i, where f; = {a, 0, ¢, d}, i = 1-(k+1). Theword
f;. . . fg+q is reduced, and we may assume that at least one of the symbols f;, fi+; is different from q, and
also that at least one of the symbols f;, fx+4 does not belong to the set {b, ¢, d}, for otherwise g would be
conjugate to an element of length less thank + 1. If ¢=# and ¢ (s) = (g1, 8) =6 X G, thend(g) = 1/2(k + 1),
d(gy) = 1/2(k + 1). By the hypothes1s the elements g; and g, have finite orders. Therefore, the element g
also has finite order.

Suppose now that 8,(g) = 1 (mod2) and 84(g) = 0. In this case, s2= H . Since ¢(d) = (e, b), ¢(ada) = (b, €)
and the symbol d appears in the word f;. . . fi.1;, representing the element g, then 8(g) = k, 8(gr) = k, where
€ g,) = 9", and we may use the induction hypothesis.

Let 9,(@) = 1 (mod2), 93(g) =0, 9,() = O, go(gz) = (g7, gy). We have the following alternative: either
a(g) =k+1, d4(g) = 0 (see [2]), or 3(g) =< k. An analogous statement holds for gp. Thus we either arrive
at the previous case, or we may use the induction hypothesis.

Let 0, = 1 (mod2), d3(g) = 0, 8, = 0, Bp(e) = 0, ¢’ = (g}, gr). We have the following alternative
either 8(@gy) =k + 1, d,(g) = 0 (see [2]), or d(g) = k. An analogous statement holds for g,., and we either ar-
rive at the previous case, or we may use the induction hypothesis. Thus, we have proved that G is periodic.
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3) Suppose that the group G has a representation G = (a4, b, ¢, dIRj = e, i = 1-n) with a finite set of de-
fining relations. We call the quantity Z8 (Rj) the length of the corresponding representation. Among all such
representations, we choose one with minimal length. The representation of H (as a subgroup), constructed
using the minimal representation of G, has lesser length than the original representation of G. Therefore,
the factor-representation of G, obtained from the representation of H by applying the homomorphism described
in 1), has lesser length than the original minimal representation of G. This contradiction shows that the group
G cannot be defined by a finite set of defining relations. The theorem is proved.

Despite the fact that the group G was defined as a group of transformations on a space with a measure,
it may be defined in purely algebraic terms. In particular, there exists a simple algorithm, allowing us to
answer the following question for any word W in the generators of the group G: does W represent the unit ele-
ment of G, or not? We also note that G is finitely approximable and has exponential growth., We give another
example. Let ¢ be the transformation of the square [0, 1] X [0, 1], consisting of the cyclic permutation of ifs
quadrants, and let the transformation n be described as in Fig. 2 (S denotes the cyclic permutation of the
quadrants of the square over which it is written). Then £ = 5 = e and the group generated by the transforma-
tions £ and n is an infinite periodic group.

The author is deeply grateful to A. M. Stepin, with whose close collaboration these examples were
created. T am also indebted to S. I. Adyan, A. A. Kirillov, and A. Yu. Ol'shanskii for their useful discussions.
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VARIATIONAL PRINCIPLE FOR EQUATIONS INTEGRABLE
BY THE INVERSE PROBLEM METHOD

V. E. Zakharov and A. V. Mikhailov UDC 517.43

We consider (cf. [1]) the system of nonlinear equations representing the conditions for compatibility of
two linear differential equations for a square N X N nonsingular matrix function ¥(, 1, A)

‘Pg = U3, m MY, ‘Fﬂ = V(E, T M. (1)

Here U and V are rational functions of the parameter A with distinct simple poles:

Ny N,
3 U, En . v, G
v=vo+ Y 2 ot v=ret+ )] et @)

n=1 n=l
The compatibility conditions for Eqs. (1) have the form

UOTI - VOE = [U,, VOL (3)
N, N,
v T
Unn=[”n"’o+2,,, o ] V"§=[Vn, Uu+2 k. ] @)
= " k k= k

It follows from (3) that there exists a nonsingular matrix g(¢, #) such that

Up=gtg™, Vo=gg™ 5)

We introduce the notation
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