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THEOREM. (i) Tad splits up into the d i rec t  sum of representa t ions  p ~ ~ (with multiplicities). 

(ii) The multiplicity of the occur rence  of p E ~ in Tad is equal to the maximal multiplicity of weight 

(iii) We may choose ~0-invariant subspaces vp, p ~ ~ in A such that: 

a) the r e s t r i c t ion  of Tad to Vp is equivalent to p; 

b) for any p,, p~ ~ ~ ,  the r e s t r i c t ion  of T ad to VplVp2 (the space generated by products ab, a ~ Vp,, b E Vp,) 
is equivalent to Pl ® P2. 

5. We comment  on the last  s ta tement  of the theorem. Let V and V' be two fini te-dimensional  g0-invariant 
subspaces in A, and let T and ~' be the res t r ic t ions  of Tad to V and V'. Since Tad(x) for x ~ g0 is a differen-  
tiation in the a lgebra  A, VV' is a go-invariant subspace,  and the r e s t r i c t ion  of Tad to VV' is ' the  f a c t o r - r e p r e -  
sentation 1- © ~'. Statement (iii) of the theorem means that the subspaces Vp may be chosen such that the r e -  
s t r ic t ion  of Tad to VplV ~ is equivalent to Pl ® P2, i .e. ,  there is ho cancellation. Statement (ii) means (in view 
of Steinberg 's  formula  oh the decomposi t ion of the tensor  product [4]), that each representa t ion  p e $ appears  
in Tad with the minimal multiplicity for this. 

6. For  an a rb i t r a ry  semis imple  Lie algebra ] ,  we naturally call  its representa t ion  T of differentiations 
in some associat ive a lgebra  X a "multiplicative model," if the analogs of s tatements  (i)-(iii) of the theorem 
are  satisfied. Such a model was constructed by Biederharn  and Louck [5] for "~ = g, (n). It c lear ly  exists for 
any simple Lie a lgebra ,  and in general ,  is not unique. 
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B E R N S I D E ' S  P R O B L E M  ON P E R I O D I C  G R O U P S  

R.  I .  G r i g o r e h u k  UDC 519.443 

Despite the p rogress  which has been made in the solution of Berns ide ' s  problem on periodic groups [1], 
there is an undoubted interes t  in simple examples of infinite finitely generated groups,  each element of which 
has finite order .  This in teres t  has recent ly  grown. It turns out that such groups are  connected with the solu-  
tion of a whole se r ies  of problems in functional analysis ,  amongst  which we note the problem ar is ing to yon 
Neuman, on invariant means [2]. 

In this ar t ic le  we shall cons t ruc t  examples of (and essential ly state a method of constructing) groups in 
which each element  has finite order  of the fo rm pN, where p is a prime number. We note that the group G 
(with which we shall be concerned later) is defined as a group of t ransformat ions  of the interval [0, 1], p re -  
serving the Lebesgue measure .  Therefore ,  we shall define all the t ransformat ions  to within a set  of measure  
zero.  Henceforward,  it will be convenient to use the following notation. The let ter  I over an interval A of the 
numerical  axis will denote the identity t ransformat ion  of the interval A, and the let ter  P over the intervalA= 
[a,  fl] will denote "permutation" of the halves of this interval ,  i .e. ,  Px = x + (fl - a ) / 2  if a < x < (a + fl)/2,  
Px = x - (fl - a ) / 2  if (a + ~)/2 < x < ft. Denote by G the group generated by the t ransformat ions  a, b, c, and 
d, whose definitions are  given in Fig. 1 Cover the second, third, and fourth copies of the interval [0, 1] there 
are  "written" the infinite sequences P P I P P I . . . ,  P I P P I P . . . ,  and I P P I P P . . .  ). We note that the genera tors  
a, b, c, and d satisfy the following relat ions:  

a"- ~ b 2 = c 2 ~ -  d 2 = e; b c  = c b ,  b d  ~ d b ,  c d  = dc;  b c  ~ d ,  c d  = b ,  a d  ~ -  c ,  (1) 

Moscow State University.  Translated f rom Funktsional 'nyi Analiz i Ego Pri lozheniya,  Vol. 14, No. 1, 
pp. 53-54, January -March ,  1980. Original ar t ic le  submitted June 18, 1979. 
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w h e r e  e is the uni t  e l e m e n t  of  the g roup  G. 

THEOREM. The g r o u p  G has  the fol lowing p r o p e r t i e s :  i t  is 1) infini te ,  2) pe r iod ic ,  and 3) cannot  be 
g iven  by a finite s e t  of  defining r e l a t ions .  

P roof .  Le t  W = f l .  • • fn be a w o r d  in the s y m b o l s  a, b,  e ,  d. Denote by ~a(W), Ob(W), 3c(W), 8d(W) 
the number  of  t imes  e a c h  s y m b o l  a p p e a r s  in the w o r d  W,  and by ~ (W) we denote  the length  of  W. If  the w o r d  
W r e p r e s e n t s  the e l e m e n t  g in G and is the s h o r t e s t  a m o n g  such  w o r d s ,  then we denote  by  S(g) the length o f th i s  
s h o r t e s t  word .  In  those  p laces  when  we  a r e  ta lking about  a c o n c r e t e  r e p r e s e n t a t i v e  W of the e l e men t  g,  we 
sha l l  a s s u m e  tha t  ~a(g) = aa(W),  ~b(g) = ~)b(W), e tc .  

1) Denote  by H the subgroup  of  G cons i s t ing  of  those  t r a n s f o r m a t i o n s  which  leave  the ha lves  of  the i n t e r -  
va l  [0, 1] invar iant .  The w o r d  W = f l .  • • fn def ines  an  e l emen t  of  H if  and  only if  ~a(W) = 0 (mod2) .  T h e r e f o r e ,  
the e l emen t s  b,  c ,  d,  aba, aca, and ada gene ra t e  H. Denote by a A, bh ,  c A, d A the t r a n s f o r m a t i o n s  of  the 
in te rva l  A which  a r e  defined ana logous ly  to the t r a n s f o r m a t i o n s  a, b, c ,  d fo r  the in t e rva l  [0, 1]. I t  is eas i ly  
s e e n  that  

b J[0, ~/2] = a[0,+/~]' b JP/2,1] = c[ ' /~,l];  aba [[0,~],] ~ e[o,V,] '  aba ][~]y,1] = a[ , / , ,1] ,  (2)  

c ][0,'].+] = a[o,V,] '  c J[~/,,l] = dp] , ,1] ;  aca [[0,Vd ~ d[0 , ' / ,P  aca I[,/~,.rl] = a[ , / , ,1] ,  

,d l[0,z/~] = T[0,V~]'  d l [ , h , ] ] =  b[,/s,1]; "ada J[0,'/s] ~ b[o,V~]' ada ][zh,1] = T[ah,  ~]' 

w h e r e  SI A denotes  the r e s t r i c t i o n  of  the t r a n s f o r m a t i o n  S to the in te rva l  A. I t  follows f r o m  re l a t ions  (2) that  
the g roup  H is i s o m o r p h i c  to the subgroup  of  the g roup  G x G g e n e r a t e d  by the e l emen t s  (a, c), (a, d), (e, b}, 
(c, a), (d, a), (b, e),  and t h e r e f o r e  admi t s  a h o m o m o r p h i s m  to the g roup  G for  wh ich  (a, c) - -  a, (a, d) - -  a, 
(e, b) -"  e,  (d, a) - -  d, (b, e) --* b, (c, a) - -  c. Thus ,  we  have p roved  that  G is infinite.  

2) Denote by ~ the i s o m o r p h i s m  of H and the subgroup  of G x G, gene ra t ed  by the e l ement s  (a, c),  (a, d), 
(e, b), (c, a ) ,  (d, a), (b, e), w h e r e  ~(b) = (a, c),  ~(c) = (a, d), ~o(d) = (e, b), ~(aba} = (c, a), ~(aca) = (d, a), 
q~(ada) = (b, e). By r e l a t ions  (1), an  a r b i t r a r y  e l emen t  g ~ G c a n  be r e p r e s e n t e d  by a w o r d  in the symb o l s  a,  
b, c ,  d, i n w h i c h  the re  a r e  no two s ym bo l s  s tanding  next to each  o ther  in the se t  {b,  c ,  d}. We ca l l  a w o r d  N 
sa t i s fy ing  this condi t ion,  reduced .  We prove  that  fo r  any g ~ ~ the re  ex is t s  a na tura l  number  N such  that  g2 = 
e. The p roo f  is by induct ion on O(gL If  O(g) = 1, then f r o m  re l a t ions  (1) we have g2 = e. Suppose that  pe r iod -  
ie i ty  is p r o v e d  for  e l emen t s  g ~ a ,  whose  length is not  g r e a t e r  than k. We prove  that  e l emen t s  o f l e n g t h  k + 1 
a l s o  have bounded o r d e r .  Le t  a(g} = k + 1 and g = f t .  • - fk+l, w h e r e  h ~ {a, b, c, d}, i = 1-(k+ 1). T h e w o r d  
f l .  • • fk+t is r e d u c e d ,  and we may  a s s u m e  that  a t  l eas t  one of the symbo l s  fl, fk+l is d i f fe ren t  f r o m  a, and 
a l s o  that  at  l eas t  one of  the symbo l s  ft, fk+l does not belong to the s e t  {b,  c ,  d}, fo r  o the rwi se  g would be 
conjuga te  to an  e l emen t  of  length l e s s  than k + 1. I f  ~ ~ H and ~ (g) = (g~, gr) ~ G × G, then ~(gl) -< 1 / 2 ( k  + 1), 
a (g  r) -< 1 / 2 ( k  + 1). By the hypothes i s ,  the e l emen t s  g l  and g r  have finite o r d e r s .  T h e r e f o r e ,  the e l emen t  g 
a l s o  h a s  finite o rde r .  

Suppose now that  aa(g) = 1 (mod2) and 3d(g) ~ 0. In  this c a s e ,  g~ ~ H .  Since ~(d) = (e, b), ~(ada) : {b, e) 
and the symbo l  d appea r s  in the w o r d  f l .  • • fk+l, r e p r e s e n t i n g  the e l emen t  g,  then a(g l) - k, 0(gr) -< k, w h e r e  
(gl, g r  ) = ~ ) '  and we  may  use  the induct ion hypothes is .  

Le t  3a(g) = 1 (mod2) ,  8d(g) = 0, Oc(g) ~ 0, ~o(g 2) = (g/, gr) .  We have the fol lowing a l t e rna t ive :  e i the r  
0(g l) = k + 1, ad(g/) ~ 0 (see [2]), o r  0(g/) - k. An  analogous  s t a t e m e n t  holds for  gr .  Thus we e i the r  a r r i v e  
at  the prev ious  c a s e ,  o r  we m ay  use  the induct ion hypothes is .  

Let  aa(g) = 1 (mod2) ,  3d(g) = 0, Oc{g) = 0, 8b(g) ~ 0, p(g2) = (gl, gr) .  We have the fol lowing a l t e rna t ive  
e i the r  a(g l) = k + 1, ~c(g/) ~ 0 (see [2]), o r  ~(gl) -< k. An  analogous  s t a t e m e n t  holds fo r  g r ,  and we e i ther  a r -  
r ive  at the p rev ious  c a s e ,  o r  we m ay  use  the induct ion hypothes i s .  Thus ,  we have p r o v e d  that  G is per iodic .  
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3) Suppose that the group G has a r ep r e sen t a t i on  G : (a ,  b, c,  d lR i : e, i : l - n )  with a finite se t  of de-  
fining re la t ions .  We cal l  the quanti ty r.O (Ri) the length of the cor responding  represen ta t ion .  Among all  such 
r ep re sen t a t i ons ,  we choose one with min imal  length. The r e p r e s e n t a t i o n  of H (as a subgroup) ,  cons t ruc ted  
using the minimal  r ep r e sen t a t i on  of G, has l e s s e r  length than the or iginal  r ep r e sen t a t i on  of G. The re fo re ,  
the f a c t o r - r e p r e s e n t a t i o n  of G, obtained f r o m  the r e p r e s e n t a t i o n  of H by applying the h o m o m o r p h i s m  desc r ibed  
in 1), has l e s s e r  length than the or iginal  min imal  r e p r e s e n t a t i o n  of G. This cont radic t ion  shows that the group 
G cannot be defined by a finite se t  of defining re la t ions .  The t h e o r e m  is proved.  

Despi te  the fact  that the group G was defined as a group of t r ans fo rma t ions  on a space  with a m e a s u r e ,  
it may be defined in purely a lgebra ic  t e r m s .  In pa r t i cu la r ,  there  exis ts  a s imple  a lgor i thm,  allowing us to 
answer  the following quest ion for  any word  W in the gene ra to r s  of the group G: does W r e p r e s e n t  the unit e l e -  
ment  of G, or  not? We a lso  note that  G is f initely approx imable  and has exponential  growth. We give another  
example .  Let  ~ be the t r a n s f o r m a t i o n  of the square  [0, 1] x [0, 1], consis t ing of the cycl ic  permuta t ion  of its 
quadrants ,  and le t  the t r a n s f o r m a t i o n  77 be desc r ibed  as in Fig. 2 (S denotes the cyclic  pe rmuta t ion  of the 
quadrants  of the square  over  which it is wri t ten) .  Then ~4 = 7/4 = e and the group genera ted  by the t r a n s f o r m a -  
tions ~ and 77 is an  infinite per iodic  group. 

The author is deeply gra teful  to A. M. Stepin, with whose c lose  co l labora t ion  these examples  we re  
c rea ted .  I a m  a lso  indebted to S. I. Adyan, A. A. Kir i l lov,  and A. Yu. Ol ' shanski i  for  thei r  useful  d iscuss ions .  
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:BY T H E  I N V E R S E  P R O B L E M  M E T H O D  

V. E .  Z a k h a r o v  a n d  A.  V. M i k h a i l o v  UDC 517.43 

We consider  (el. [1]) the s y s t e m  of nonlinear equations r ep resen t ing  the conditions for  compat ib i l i ty  of 
two l inear  di f ferent ia l  equations for  a square  N × N nonsingular  mat r ix  function *(~, V, h) 

• ~ = u(¢, n, x) ~', ~ =  v(L n, x)~. 

Here  U and V a r e  ra t ional  functions of the p a r a m e t e r  ~ with dis t inct  s imple  poles: 

iV, 
N~ Un(~,rl) V ~V°~- Z Vn(~'l]) 

U" = U o -4- ~ -- a'-------~ ' Z -- b n 

The compat ibi l i ty  conditions for  Eqs.  (1) have the f o r m  

U o ~ -  Vo~ = [uo, Vo], 
N~ N, 

UnTI~IUn, Vo_~Z V~ [flc 1¢:1 an--bk']' Vn2:[ Vn' U°+Zk_l bn--% "]" 

I t  follows f r o m  (3) that there  exis ts  a nonsingular  mat r ix  g(~, ~) such that 

Uo = g~g-a, Vo = Qg-1.  

We introduce the notation 

0 __ Uo" 

(1) 

(2) 

(3) 

(4) 

(5) 

L. D. Landau Inst i tute of Theore t ica l  Phys ics .  T rans la t ed  f r o m  Funkts ional 'nyi  Analiz i Ego Pr i lozhen-  
iya,  Vol. 14, No. 1, J a n u a r y - M a r c h ,  1980. Original a r t i c le  submit ted  October  3, 1978. 
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