INVARIANT CONVEX CONES AND ORDERINGS IN
LIE GROUPS

E. B. Vinberg UDC 519.46

In this article we find a criterion for the existence of an invariant convex cone in the space of an irre-
ducible linear representation of a connected Lie group. The presence of an invariant convex cone in the tan-
gent Lie algebra of the Lie group G is a necessary, but not sufficient, condition for the existence of a con-
tinuous invariant ordering in the group G (see the definition in Paragraph 3 of Sec. 1). In this article we find
a criterion for the existence of a continuous invariant ordering in a connected simple Lie group.

At the end of the article we give a list of problems.

The facts used in the article about the structure of simple real Lie groups may be found, e.g., in [4, 3].

1. Formulation of the Results

1. In Theorems 1-3 the following notation is fixed: V is a finite-dimensional real vector space, G C
GL(V) is a connected irreducible semisimple linear Lie group, K is a maximal compact subgroup of G, T is
a maximal connected triangular subgroup, and P = N(T) is 2 minimal parabolic subgroup.

To avoid constant repetition, we agree to understand by a convex cone in the space V (if it is not other-
wise stipulated) a closed convex cone different from {0} and v.

THEOREM 1. There exists a convex cone in the space V, invariant with respect to G, if and only if any
of the following equivalent conditions is satisfied:

1) in the space V there exists a vector different from zero which is invariant with respect to K;
2) in the space V, there exists a ray (with origin at zero) which is invariant with respect to P,

1t is known that property 1) means that the space V may be equivariantly embedded in the space R[G/ K]
of polynomial functions on the symmetric space G/ K. The equivalence of 1) and 2) allows us to obtain very
simply (see Paragraph 6 of Sec. 2) the well-known description of "representations of class 1," which consists
of the fact that these are irreducible representations, whose leading weights are real and even {5].

If conditions 1) and 2) are satisfied, then in the space V there exist a unique, to within proportion, non-
zero vector vy, which is invariant with respect to K, and a unique, to within proportion, nonzero vector v,
which is an eigenvector for T (leading vector). In this case, the group G is absolutely irreducible as a linear
group.

For any set M (T V, we set
ConM = {Sewvi =M, ¢; R}

THEOREM 2. If the conditions of Theorem 1 are satisfied, then in the space V there exists a unique,
to within multiplication by 1), mirimal invariant convex cone
Cain (V) = Con Gup = Con Gug. )]
Clearly, if C is an invariant convex cone in the space V, then
C* = =V':w, V> >0 Vv = C)
is an invariant convex cone in the conjugate space V'.

THEOREM 3. If the conditions of Theorem 1 are satisfied, then in the space V there exists a unique,
to within multiplication by (—1), maximal invariant convex cone
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Cmax (V) = (Cmin (V'))*. (2)
If v~ f; is an equivariant embedding of V in R[G /K], then

Cmax (V) ={veV:f({@) >0 Vz = G/K}. 3)

Example. Let V be the space of real forms of degree m in n variables, and let G be the image of the
group GLp(R) in its natural linear representation in the space V. An invariant convex cone in the space V
exists if and only if m is even. Then Cpyax (V) is the set of positive semidefinite forms, and Cyjn(V) is the
set of forms which may be represented as a sum of m~th degree linear forms.

2. Theorems 1-3 may be applied to the adjoint representation Ad of a connected noncommutative simple
Lie group G. Denote by K the maximal subgroup of G for which the group Ad K is compact. It is known that the
dimension of the center Z (K) of K is equal to 0 or 1.

Let g and ¥ denote the tangent Lie algebras of the groups G and K, respectively, and let g =¥ + m be
the Cartan decomposition of the algebra g.

THEOREM 4. There exists a convex cone in the algebra g which is invariant with respect to Ad G, if and
only if - :

dim Z (K) = 1. @)
If condition (4) is satisfied, then in the space m there exists a complex structure, which is invariant with
respect to Ad K. It may be defined by the formula
Iy = ke, ¥l (y =m), (5)
where k; is a suitable element of the center § (¥) of the algebra £

THEOREM 5. Let condition (4) be satisfied. The interior of the cone Cy.x (g) consists of all elements
of the algebra g, which are conjugate to elements of the set
= {z = & I adyz >0} )

It is easily shown (see Paragraph 5 of Sec. 3) that Cpax () = Cnin (g) only in the case when the group
G is locally isomorphic to Spn(R). In this case, the elements of the algebra ¢ may be interpreted in a natural
way as quadratic forms in R1, and the unique invariant cone in ¢ consists of all positive semidefinite forms.

3. The existence of an invariant cone in the Lie algebra ¢ is connected, although nof in a unique way,
with the existence of an invariant continuous ordering in the Lie group G.

An invariant ordering in the group G is a (partial) ordering which is invariant with respect to left and
right shifts. An invariant ordering is defined uniquely by the set P = {g & G: g >> ¢}. The set P is a semigroup,
which is invariant with respect to inner automorphisms; moreover,

PP ={e). (7
Conversely, for any invariant semigroup P — G, satisfying condition (7), there exists an invariant ordering in
Gsuchthat P = {g =G: g >¢}.

An ordering for which P = {e} is called trivial. Henceforward we shall consider only nontrivial order-
ings.

An invariant ordering in the Lie group G is called continuous, if the semigroup P is closed and is topo-
logically generated by any neighborhood of zero in it.

With each continuous invariant ordering in the Lie group G, there is associated an invariant strictly con-
vex cone C(P) in the tangent Lie algebra g, consisting of all the vectors which are tangential to a curve lying in
P. Moreover, exp C (P) C P.

THEOREM 6. Let G be a connected simple Lie group. There exists a continuous invariant ordering in
the group G if and only if its center Z(G) is infinite.

We note that by this theorem, a continuous invariant ordering may exist only in those connected simple
Lie groups which do not admit an exact linear representation.

2. Proofs of Theorems 1-3

1. LEMMA. Any connected triangular group T of automorphisms of the (closed) convex cone C C V has
an eigenvector in C.
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Proof. This is by induction on dim T. First consider the case dimT = 1. Let PV be a projective space
associated with V, and let p be the canonical mapping from vV \ {0} onto PV. By the lemma in [1], any trajec~
tory of the group T in the space PV has a limit, which is clearly a fixed point for T. Taking the trajectory
of the point pv, v & C, we obtain the fixed point pve, vy & €. The vector v, is an eigenvector for T.

If dimT > 1, then we take a connected normal subgroup T; of T of codimension 1. By the induction hypo-
thesis, the group T, has an eigenvector in C. This means that there exists a character y: T; — R" such that
the weighted subspace

Vi=peV:gw=x@v Ve T}

has nonzero intersection with C. The subspace V; is invariant with respect to T, and v, N ¢ is an invariant
convex cone in it. Substituting V for V;, we reduce the proof to the case when V| = V, i.e., all the operators in
T, are scalar. In this case T = T; x T,, where T, is a one-parameter group, and the statement of the lemma
is true, by the above-proved facts.

2. In the notation of Paragrabh 1 of Sec. 1, suppose that in the space V there exists a convex cone C
which is invariant with respect to G. The cone C is automatically strictly convex, i.e., C } (-—C) = {0}. In
fact, C [ (—C) is an invariant subspace different from vV, and since G is irreducible, it must be zero.

Any compact group of automorphisms of a strictly convex cone has a fixed point inside it (see, e.g., [2]).
Therefore, in the space V there exists a nonzero vector which is invariant with respect to K.

Moreover, by the lemma in Paragraph 1, the group T has an eigenvector in C. Let V, be a weighted
subspace of the group T containing this vector. The subgroup P = N(T), which is connected in the Zariski
topology, preserves the subspace V,. It is known that

P=TL, @®

where L is a compact group. There exists a nonzero vector v in the cone V;NC which is invariant with re-
spect to L. Clearly, the ray R*v, is invariant with respect to the group P.

Thus, in each invariant convex cone € (— ¥V there exists a nonzero vector, which is invariant with re-
spect to K, and a ray which is invariant with respect to P.

3. Conversely, let ygKbea nonzero vector which is invariant with respect to K. By Iwasawa's decompo-
sition

the orbit of the vector vig withrespect to the group G coincides with its orbit with respect to T. There exists
a subspace U of codimension 1, which is invariant with respect to T. Since the group T is connected, it pre-
serves each of its (closed) semispaces U*, U~, bounded by the subspace U. For the sake of argument, let
vke=U*; then also Gug C U*. Therefore, C = ConGvg # V. Clearly, the cone C is invariant with respect to G.

Analogously, let the ray R*vp be invariant with respect to P. There exists an element g € G, such that

G = (gTg™y) P. (10)

If U is a subspace of codimension 1, invariant with respect to T, and if g~wp &= U”, then it follows from (10)
that Gvp C gU*, and therefore ConGvp # V.

Thus Theorem 1 is completely proved.

4. The vector vp, which is an eigenvector for the parabolic subgroup P, is its leading vector. Since the
group G is irreducible, all the leading vectors are proportional, and it follows from the results of Paragraphs
2 and 3 that the cone ConGvp is the unique, to within multiplication by (~1), minimal invariant convex cone in
the space V.

We note that in fact the cone ConGvp is closed. In fact, since G = KP, then ConGvp = Con Kvp.

5. The vector vk, which is invariant with respect to K, cannot lie in any subspace U of codimension 1,
which is invariant with respect to T. In fact, conversely we would have Gyx = Tvx U, which is impossible,
as G is irreducible.

Hence it follows that the dimension of the space VK of vectors which are fixed with respect to K is not
greater than 1,



Suppose that VK = 0. Then there exists a subspace of codimension 1, which is invariant with respect to
K, and we prove analogously to the above that any weighted subspace of the group T is one-dimensional, Since
any weighted subspace of the group T is invariant with respect to the parabolic subgroup P, a one-dimensional
weighted subspace is a subspace spanned by the leading vector. Therefore, the leading vector is the unique,
to within proportion, vector in the space V which is an eigenvector for the group T.

The statements of Theorem 2 follow from the results of Paragraphs 2-5.

6. Let B be a Borel subgroup of the group Gg containing T, and let v, be the leading vector of the space
V¢ with respect to B.

Reformulating the equivalence of conditions 1) and 2) of Theorem 1, bearing in mind the results of Para-
graph 5, we may say that VI_< # 0 if and only if the space Vg is irreducible, and its leading vector v, is invari-
ant with respect to the compact group L in the decomposition (8). (In this case, the vector v, is proportional
to a real vector, since it belongs to the unique one~-dimensional weighted subspace of the group P.) We find a
condition on the leading weight, under which the vector v, is invariant with respect to L.

Let Dy be the Cartan subgroup of the group T. Its closure in the Zariski topology is the maximal decom-
posable (diagonable) torus D in the group G, where

D =D, % F, a1

where F = {g = D: g2 =¢} is a finite Abelian group. Moreover, P = '_I‘Lo, where T = TF is the closure of T in
the Zariski topology, and L, is a connected compact subgroup, commuting with D. We may say that

L =FL,. : (12)
Let S be some maximal torus in the group G, containing D, Then
S = DS, (13)

where SI™ is the maximal torus in the group L,. Assuming that § C B, we denote by A the leading weight of
the Go-module V¢ with respect to S¢ and B. The leading vector v, is invariant with respect to L if and only if

Algyy =1 and Alp =1. (14)

The first of these conditions denotes the reality of the weﬁght A (more precisely, the reality of its values
on S), and the second, its evenness in the group of characters of the torus D.

7. We prove Theorem 3. The proof of its first part is clearly contained in formula (2). Moreover, by
Theorem 2, Cypin(V') = ConGvKl , Where VK is anonzero vector inthe space V, which is invariant with respect
to K. Hence,

Cosx (V) ={veV: (v, gtk) >0 Vg=G).

Bearmg in mind that the equivariant embedding of the space V in R[G/K] is defined by the formula f; (gK) =
(v, gvK), we obtain formula (3).

3. Proofs of Theorems 4 and 5

1. In the propositions of Paragraph 2 of Sec. 2, AdK, as is known, has no fixed vectors in the space m,
Therefore the set of elements of the algebra ¢, which are invariant with respect to the group AdK, coincides
with the center of the algebra ¥, and Theorem 4 follows from Theorem 1, applied to the group AdG.

2. We will now suppose that the algebra g satisfies the conditions of Theorem 4.

Any invariant convex cone C C g contains k, or —k,. Supposing that ¢ = k,, we prove that any element
of the interior C° of the cone C is conjugate to an element of the set ¥ (see Theorem 5).

Let & (o. Write x in the form x = Xim + Xre; where Xjmq is a semisimple element with purely imaginary
eigenvalues, and xye is an element commuting with it with real eigenvalues. The element X, is conjugate to
an element of f. Substituting x for the conjugate element, we see that =, =&

Since the centralizer § (zin) of the element xj, contains the Cartan subalgebra of the algebra ¥, which is
also a Cartan subalgebra of the algebra g, then ifs center lies in f and therefore consits of elements with purely
imaginary eigenvalues. Therefore, the element x,¢ belongs to the commutator 3 (zim) of the algebra § (zim).

Suppose that xye # 0. If Xye is a semisimple element, there exists a nonzero element ¥  § (zim)' » such
that [zre, yl = ay (e = R*). Thenfor any:= R ,
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(Adjexp e =r—atye C,
which is impossible, since the cone C is strictly convex. If Xre is not a semisimple element, then it may be
replaced by a close semisimple element of the algebra § (zim)’, also with real eigenvalues, still satisfying the
condition z & C° and we obtain a contradiction by the above method. Thus xpe = 0 and z = #in = ¥-

Since k, = C, z + ak, = C* for any a = 0. If the operator /~-'adwz is not positive definite, then for some
a = 0 the operator I 'adn (z -+ aky) = I"'adwz - ae (¢ is the identity operator)} is singular, i.e., there exists a
nonzero element 2 Em such that [x + aky, z] = 0. Taking z sufficiently small, we havez + ak + z & C°, which
contradicts what has been proved above, since the eigenvalues of the element z are real. Thus z & ¥, which
is what was required.

3. By Theorem 2, the cone Cy, () is generated by the orbit of the leading root vector of the algebra g.
We give a method of constructing the elements of the algebra ¢, which are conjugate to the leading root vector.

Consider the representation k — Adwk of the group K in the space m, given the complex structure by
formula (5), and denote by p its rational continuation to the group K. Let z, be the leading vector for the
representation p. Then for a suitable normalization of z,, the element z; + [Izy, z,] is conjugate to the lead-
ing root vector.

To prove this, consider the Z-graduation of the algebra gc, defined by the element ki,
gc =61+ g+ 8, g = {zE gc: ko, 2l = piz}.

Clearly, g0 =Ff¢, ¢_ + g = mg, where 82 =61 (the bar denotes complex conjugation in the algebra 8c). The
mapping x +~ Rex establishes an isomorphism of Kg-modules g: and .

Let H be the maximal torus of the group G lying in K. Let B be a Borel subgroup of the group G¢ con-
taining the Borel subgroup of the group K¢, containing H. Finally, let (e, h, f) be a standard basis of the three-
dimensional root subalgebra, corresponding to the leading root of the algebra gc with respect to Hc and B,
Since h = —h, we may normalize e so that f = e.

It is easily seen that ik 4 e - f & ¢ is nilpotent, and therefore is conjugate to e.

Clearly, e is the leading vector for the representation of the group K¢ in the space g: with respect to
the Borel subgroup B (| Kc. Therefore, zy=Ree = 1/2(e + D) is the leading vector for the representation p of
the group K¢ in the space m.

Moreover, we have

1

Izg=Reie=—42(e — /),  zo 20 = —5-le, fl = ~-ih,

so that z, + [Izy, zy) = 1/2(h + e + f), and hence the required statement follows.

4. Fix an invariant scalar multiplication in the algebra g, which is positive definite on ¢ and negative
definite on m. Using this, we establish an isomorphism between the space g and its conjugate space. By Theo-
rem 3, we then have Cp.x (8) = (Cmin (8))*, where the conjugate cone is understood in the sense of scalar multi-
plication in g.

By Paragraph 3, the cone Cyn () is generated by the orbit of the element e, = z, + [Iz,, z;]. Since the
ray Rte, is invariant with respect to the parabolic subgroup conjugate to P, then Ge, = R*Ke,, and therefore

(Cuax (8)° = {z € ¢ (Ad B)z, &) >0, Vk = K}. (15)
To complete the proof of Theorem 5, we need to verify that ¥ C (Cpax (8)°.
Let z %5 then
(x, e0) = (&, [ zg, 20]) = — ([, 2o}, [zo) = —(I7* [z, 2, 29) > 0.

(We recall that scalar multiplication is negative definite in m.) Since the set #* is invariant with respect to
AdK, then ({Ad k)z, e;) >> 0 Vk & K. By (15) this means that 2 & (Cuax ())°, which is what was required.

5. Using Theorem 5, it is easy to calculate, for all possible algebras g,the intersection of the cone
Cax (g) with the Cartan subalgebra § of the algebra f, Clearly,

Crtn (8) N 5 C (Crmax (8) N H)¥,



and if the cone Cmax (8) ) § does not contain its conjugate cone in §, then Ci, (g) = Cmax (8). The same is true
for all cases, except when g is the Lie algebra of the group Spn®).

4, Proof of Theorem 6

1. For any sequence (gp) converging to one of elements of the Lie group G, the limit
z =lim n (g, —¢), (16)

calculated by coordinates, does not depend on the choice of the system of coordinates, if it is integrated as an
element of the tangent Lie algebra g. In particular, writing equation (16) in exponential coordinates, we obtain

exp z = lim gy. 1amn

Let P be the defining semigroup of a continuous invariant ordering in the Lie group G. Denote by C(P)
the set of all limits of the form (16) for sequences (gp) lying in P. It follows from (17) that

exp C(P) C P. 18)
By multiplying out sequences, we prove that C(P) is an additive semigroup, and by going to subsequences
of the form (gk,), we prove that C(P) sustains multiplication by —,%—(kEZ“) and thus by any positive rational

numbers. It foliows from (18), and from the fact that P is closed, thatexptz = p forz = C(P) andany t= 0.
Hence in turn it follows that C(P) sustains multiplication by any positive numbers, and thus is a convex cone.

These results show, in particular, that the cone C(P) may be defined as the set of vectors tangential to
one-parameter semigroups lying in P, Therefore, since P is closed it follows that C(P) is closed, and from
property (7) we obtain the strict convexity of C(P).

Clearly the cbne C(P) is invariant with respect to AdG.

We finally show that C(P) = {0} It follows from the definition of continuous ordering that there exists a
sequence in P \ {e} converging to e. Choose a subsequence (gy) of it such that the unit vector (gn—e)/lgn—
el, calculated in some exponential system of coordinates, has a limit, and such that | g, — el <1/n% Then for
suitable natural numbers kp we have

and hence,

2. We prove the "necessity" in Theorem 6. Inthe group G, let there exist a continuous invariant order-
ing, and let P be its defining semigroup. Then C(P) is an invariant convex cone in the tangent Lie algbera ¢
and by Theorem 4, dimZ (K) = 1.

The connected component Z (K)? of the group Z(K) is a one-parameter group with direction vector k.
Multiplying k, by —1 if necessary, we may assume that &, = C (P); then exp th, = P. for all t = 0. Hence it
follows that the one-parameter group Z (K)? is not periodic; for otherwise, P ] P~! = {e}. Since the group
Z (K)/Z (@) = Z (AdyK) is compact, it follows from the noncompactness of Z (K) that Z (G) is infinite.

3. Suppose now that C is an invariant convex cone in the algebra g.

Moving the cone C by left shifts, we obtain a left-invariant "field of cones™ {gC} on the group G. It fol-
lows from the invariance of the cone C that this field of cones is also right-invariant.

LEMMA. Under the inversion x —x~! the field of cones {gC} goes to the field of opposite cones {—gC}.

Proof. We may represent inversion as the composition of a left shift on g, inversion,andthena right
shift on g. Under these transformations, the cone g~I1C goes successively to C, —C and —gC.

4. The pointwise-differentiable curve g(t) on the group G is called admissible, if g'lt) =g (1)C V.

Denote by P the set of all elements g & G, for which there exists an admissible curve joining e and g,
and denote its closure by P. Clearly, P;and P are invariant semigroups, and P, is generated (and P is topo-
logically generated) by a neighborhood of one in it.



We call the differentiable function ¢ on the group G increasing, if it is nonconstant and
dgp>0o0n g€ VgeaG. (19)

The set of increasing functions is invariant with respect to left and right shifts. Moreover, it follows from
the lemma of Paragraph 3 that for any increasing function ¢, the function p&) = —p&™!) is also increasing,

An increasing function increases in the normal sense of the word {possibly not strictly) along any admis~
sible curve. Therefore, if ¢ is an increasing function,

P >0 > VesP. 20)
LEMMA. If there exists an increasing function ¢, then P P~ = {e}.

Proof. By shifting the function ¢, we may obtain deg¢ = 0. Moreover, using inner automorphisms we may
obtain increasing functions ¢y, .. ., ¢y from ¢, which form a system of coordinates in some neighborhood O(e)
of one. We shall assume for the sake of argument that ¢;(e) = 0 for all i and that O(e) in the coordinates Plyeess
¢p is a sphere of radius 1 with center at the origin of coordinates, .

It follows from (20) that ¢; (¢) =0 Vg & P ) P-1. Therefore, (P () P") O (¢) = {e}. Let.BC O (&
be a concentric closed sphere with radius r <1 (in the coordinates ¢;, . . ., ¢p). Any admissible curve starting
at ¢ and finishing outside B intersects the boundary of B; therefore, at its end g satisfies the inequality Zy;
(®? = r’. By continuity, this inequality also holds at all points g & P (N (G — B). Hence it follows that (P
Py N (G — B) = ¢. The lemma is proved.

5. Let the group G satisfy the condition of Theorem 6, i.e., the center Z (Q) is infinite,
Denote by T the maximal connected subgroup of G for which the group Ad,7 is triangular. Then
G=KT, 21)
and the mapping (k, u) =~ ku is a diffeomorphism from K X T onto G.
If the group G is simply connected, then
K =K' X Z(G), (22)
where K' is a simply-connected semisimple compact Lie group, and
Z (K)® = {exp tky} ~ R. 23)

The center of the group G lies in K and is the direct product of a finite group lying in K' and the infinite cyclic
group.

In the general case, the group G is obtained by simply connected factorization by a finite central sub-
group. Therefore the decomposition (22) and the isomorphism (23) also hold, with the difference that the group
K' is not necessarily simply connected.

Define a differentiable function ¢ on G by the condition
g=rklexpg(ku k=K', ucsT). (24)

In the following paragraphs we shall prove that ¢ is an increasing function with respect to the cones
C = Cnin (g). By the lemma in Paragraph 4, it follows that the semigroup P constructed as in Paragraph 4 de-
fines a continuous invariant ordering on the group G. This will complete the proof of Theorem 6.

6. The function ¢ is right-invariant with respect to T and left-invariant with respect to K', and under a
left shift by an element of Z (K)® a constant is added to it. Therefore, its differential dy is right~invariant with
respect to T, and left-invariant with respect to K.

We need to prove that
dg®>0 on  gCmn(g) @25)
for all g =G. In view of the above invariance pfoperties of dy, it is sufficient to verify 25) for g = e.

The space g splits up into a direct sum of subspaces: g = ¢’ + 5(® -+ ¢, where ¥ and t are tangent Lie
algebras of the groups K' and T, respectively. Clearly, de¢ = 0 on ¢ -+ t and deo(ky = 1.

We will prove in Paragraph 11 that the cone Cyy, (g), containing k,, lies completely on one side of the
hyperplane ¥ + t. Hence it will follow that ¢ is an increasing function.



In Paragraphs 7-10 we will find an expression for the element k, in terms of the real root decomposition
of the algebra g.

7. LEMMA. Let 7: SLy(R) — GL(V) be an irreducible (n + 1)~-dimensional representation. There exists
a nonzero vector v in the space V which is invariant with respect to 7(8Q,), if and only if n is even, and in this

case the vector v is the sum of eigenvectors of the operator dr

1 0
-1/ whose eigenvalues are congruent to n
modulo 4.

0

Proof, The representation 7 is isomorphic to the natural representation 7, of the group SL,([R) in the
space of binary forms of degree n. The degree of the sum of the squares, which only exists for even n, is a
unique (to within proportion) binary form, which is invariant with respect to SO,. It splits up into a sum of
monomials, in which both indices are even, and thus the difference in indices is congruent to n modulo 4. It

remains to note that each monomial is an eigenvector of the operator dr, (1) _g , and the eigenvalue is equal to

the difference of the indices.

8. Let b be the Cartan subalgebra of the algebra t, which is invariant with respect to the Cartan involu-
tion o of the algebra g. Denote by A the system of roots of the algebra ¢ with respect to b, and by g« the root
subspace corresponding to the root @. Then

g=0+1+ X ga (26)
acsA
' =_b+a§A+ga, (27)

where [ is the centralizer of b in #, and A, is a system of positive roots (with respect to a suitable ordering
of the space b’). The algebra 1 is the tangent Lie algebra of the maximal compact subgroup L of the group
P = N(T) [see formula (8) and Paragraph 6 of Sec. 1].

Since o|y= -1, then 0gs = g for any a & A.

If v, is the leading root of the system A, then the vectors in the space ¢v. are eigenvectors for the group
T. The results of Sec. 2 (formulated in Paragraph 1 of Sec. 1) show that

1) the space 8v is one-dimensional, and its basis vector e; is the leading root vector of the algebra ¢
(with respect to the Cartan subalgebra containing b);

2) the vector e, is invariant with respect to L;
3) for suitable orientation e, & Cyy, (g).

9. Denote by W the Weil group of the algebra ¢ with respect to 3, and by I" the subsystem of the system
of roots A, formed by the roots of maximal length. For each ¥y &T', there exists an element w = ¥, such that
¥ = wy,. As a transformation of the space p, the element w is induced by some element w of the normalizer
Nx (b) of the algebra b in the group K. Set e, = (Adw)e,. It follows from statement 2) of Paragraph 8 that ey
does not depend on the arbitrariness of the choice of w and w, and that

(761, = e_?. (28)

There exist homomorphisms f,: §L, (R) - G (y =T, satisfying the conditions

dfv(g 3)=“’V’ dfv(_()i g>=ce-w dfv((i) _01)‘=hveb (¢>0). @9)

We norm the vector ¢, so that ¢ = L.
LEMMA. a) A is a system of roots of type BCp or Cp;
b) T is a system of roots of type nA;
¢)dim g, =1 forallyeT;

d) ko= _;-Z ey +1,, where [, lies in the center of the algebra I.
vel
Proof. In view of the equivalence of roots of maximal length, c) follows from statement 1) of Paragraph

8. Moreover, it is easily seen that from all the irreducible systems of roots, only in systems of type BCy or
Cp, do the roots of maximal length form a subsystem of type nA;, so that a) follows from b).



We prove b) and d), Let
ko= N aey+ D eatdotl, (30)
. yer acsAN\T

where oy &R, e E ga 4 E D, Ly E 1, Since ey = Cpin (g) for any y =T and (ey, e-y) = %[e\, +e_y|©>0, then
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Moreover, it follows from the invariance of k; with respect to Nk (b) that all the ay are equal to each other.
Thus ary =a>0 forall veT.

Since e, + e, =, then f, (S0,) C K and therefore the element k, is invariant with respect to f,y(SOz);

Split the space g into the direct sum of irreducible invariant subspaces with respect to the representa~
tion 7y = Ad © £, of the group SLy®R). This can be done so that the terms in the decomposition are invariant
with respect to ad b; under this condition, we call them y-components, Clearly, the projections of the element
k, onto the y-components are invariant with respect to Ty(SOg).

For any v, 7 & T the element e, is either the leading or the lowest vector of the y-component of dimen-
sion y'(h,) + 1. Since the projection of ky onto this component is different from zero, then by the lemma in
Paragraph 7, the number y'(h.y) is even. Thus, all the elements of the Cartan matrix of the root system [ are
even. Hence it follows that I’ is a system of type nA,.

For any o < A \ T there exists y=T suchthata,a -y A, but « — v, @ + 2y & A. The space ga +
8a4y is then the sum of two-dimensional y-components. By the lemma in Paragraph 7, the projections of the
element k; onto these components are equalto zero. Therefore, eq = 0 for all a =T \_A.

The elements k, (y &T,) form a basis of the space b. Set dy= EF cyhy (¢ & R); then afe, + e_q) + cyhy
vels

is the projection of the element k, onto the three-dimensional y-component <67’ h,, e_y). By the lemma in
Paragraph 7, we obtain ¢, = 0. Thus d, = 0.

The element J,=ky—a D) e, lies in the center of 1, since kj and ¢, (y =T) commute with ! [see state-
ver
ment 2) of Paragraph 8].

Finally, bearing in mind that [e)', ey] = 0 for y* = —v, from the condition [k, [k, h,y]] = Izhy =—h, we
have a =1/2. The lemma is proved.

10, LEMMA, ) & Cpax (9).
Proof. We have

Iaduly + - I72dn 2 ey = Iad ko = &.
yel

We prove that [™adulo and —;-I‘lade‘_| ey are orthogonal projectors. It will then follow by Theorem 5 that
=

»
I+ -5 E , ey ECmax (8) for A > 0, and the statement of the lemma will then be obtained by taking the limit as
er

A0,
SetT', =T N A,; then

_ 0 1
1;‘81; v;'-d.f‘v(_i O)Eai

where a= b+ vzr oy is a subalgebra of type nA;. It is easily seen that the representation ad, of the algebra a
= —

has irreducible components of only the following types: 1) the adjoint representation of one of the simple terms;
2) the tensor product of the simplest (two-dimensional) representations of two simple terms; and 3) the trivial
representation.

Therefore, the characteristic numbers of the operator ad > e, are #2i,0. Thus the characteristic num-
yer

bers of the operator g= -;—I‘l admzey may only be 1 or 0; however, —1 is excluded since | e, = Cpin(g) and
ver vel



by Theorem 5, the operator q is positive definite. Thus q is a projector, which is what was required.
We note that in the majority of cases the algebra [ is semisimple and [, = 0.

11. To complete the proof of Theorem 6, it remains to show that the cone Cuin (g) lies completely on one
side of the hyperplane ¥ 4 t (see Paragraph 6). )

We find a vector orthogonal to ¥’ 4 t. To do this, we represent k, as the sum of the vectors
e 2; athEb+L 1= Y p—e)sm
vely rely
The vector u is orthogonal to ¥ + t, and moreover (u, ky) = (ky, kp) > 0.
By the lemma in Paragraph 10, u & Cy,x (g), Since (u, x) = 0 for all z & Cuy, (g). Thus all the elements

of the cone Cnia(g) lie on one side of the hyperplane ¥ + t, which is what was required.

5. Problems

1. Is it true that in the space of an irreducible representation of a connected Lie group, there may only
exist a finite number of invariant convex cones?

2. Find all the connected irreducible linear Lie groups for which an invariant convex cone exists and is
unique to within multiplication by —1.

3. Find a necessary and sufficient condition for the existence of an invariant strictly convex cone in the
space of an irreducible representation of a connected semisimple Lie group.

4. Describe all the invariant convex cones C in a simple Lie algebra in terms of the intersection with the
Cartan subalgebra § of a maximal compact subalgebra. Is it true that C* ,§ = (C ) §) *?

5. Let P be the defining semigroup of an irreducible invariant ordering in the connected Lie group G, and
let C(P) be the corresponding convex cone in the tangent Lie algebra (see Paragraph 1 of Sec. 4). Is it true that

a) the mapping exp: C(P) — P is open at zero;
b) the semigroup P is generated (in the algebraic sense) by any neighborhood of unity in it?

The same questions may be asked for an arbitrary closed semigroup P CC @, topologically generated by
any neighborhood of unity in it. "

6. Is it true that for any invariant strictly convex cone C in the tangent Lie algebra of a simply connected
Lie group G, there exists a continuous invariant ordering in G, whose defining semigroup P satisfies the con-
dition C(P) = C?

7. We define in a natural way the idea of a continuous invariant ordering in the homogeneous space of a
Lie group. It would be interesting to describe all the connected homogeneous spaces with irreducible connected
isotropy group, which admit a continuous invariant ordering (a generalization of Theorem 6).
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