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In this a r t i c l e  we find a c r i t e r i o n  for the ex i s tence  of an invar ian t  convex cone in the space  of an i r r e -  
ducible l i nea r  r e p r e s e n t a t i o n  of a connected Lie group. The p re sence  of an invar ian t  convex cone in the tan-  
gent Lie a l g e b r a  of the Lie group G is a n e c e s s a r y ,  but not suff ic ient ,  condi t ion for the ex i s tence  of a con-  
t inuous invar ian t  o r d e r i n g  in the group G (see the defini t ion in P a r a g r a p h  3 of Sec. 1). In this a r t i c l e  we find 
a c r i t e r i o n  for the ex i s tence  of a continuous invar ian t  o rde r ing  in a connected s imp le  Lie group. 

At the end of the a r t i c l e  we give a l i s t  of p rob lems .  

The facts  used in the a r t i c l e  about the s t ruc tu r e  of s imple  r e a l  Lie groups may be found, e .g . ,  in [4, 3]. 

1. F o r m u l a t i o n  o f  t h e  R e s u l t s  

1. In Theo rems  1-3 the following notat ion is fixed: V is a f in i t e -d imens iona l  r e a l  vec to r  space ,  G C 
GL(V) is a connected i r r e d u c i b l e  s e m i s i m p l e  l i nea r  Lie group,  K is a maximal  compac t  subgroup of G, T is 
a max imal  connected t r i angu l a r  subgroup,  and P = N(T) is  a min imal  parabo l ic  subgroup.  

To avoid constant  r epe t i t ion ,  we a g r e e  to unders tand by a convex cone in the space  V (if i t  is not o the r -  
wise  s t ipulated)  a c losed  convex cone d i f ferent  f rom {0~ and V. 

THEOREM 1. There  ex is t s  a convex cone in the space  V, invar ian t  with r e s p e c t  to G, if and only if any 
of the following equivalent  condit ions is s a t i s f i ed :  

1) in the space  V there  ex is t s  a vec tor  d i f ferent  f rom z e r o  which is invar ian t  with r e s p e c t  to K; 

2) in the space  V, there  ex i s t s  a ray  (with or ig in  at  zero)  which is invar ian t  with r e s p e c t  to P. 

It is known that  p rope r ty  1) means  that the space  V may be equ ivar ian t ly  embedded in the space  R I G / K ]  
of polynomial  functions on the s y m m e t r i c  space  G / K .  The equivalence of 1) and 2) al lows us to obtain very  
s imp ly  (see P a r a g r a p h  6 of Sec. 2) the wel l -known d e s c r i p t i o n  of " r e p r e s e n t a t i o n s  of c l a s s  1, ~ which cons i s t s  
of the fact  that  these a r e  i r r e d u c i b l e  r e p r e s e n t a t i o n s ,  whose leading weights  a r e  r ea l  and even [5]. 

If condit ions 1) and 2) a r e  s a t i s f i ed ,  then in the space  V there  ex i s t  a unique, to within propor t ion ,  non- 
z e r o  vec tor  VK, which is invar ian t  with r e s p e c t  to K, and a unique, to within propor t ion ,  nonzero  vec to r  VT, 
which is an e igenvec tor  f o r  T (leading vector) .  In this ca se ,  the group G is abso lu te ly  i r r e d u c i b l e  as a l inea r  
group. 

Fo r  any se t  M C V, we set  

C o n M =  {~civ~: v~ ~ M, ci E R+}. 

THEOREM 2. If the condit ions of T h e o r e m  1 a r e  s a t i s f i ed ,  then in the space  V there  exis t s  a unique, 
to within mul t ip l i ca t ion  by (- 1), min imal  invar ian t  convex cone 

C,~tn (11) = Con Gut = Con Gvg. (1) 

C l e a r l y ,  i f  C is an invar ian t  convex cone in the space  V, then 

C * - - - - { v ' ~ V ' : ( v ,  v ' ) ~ 0 V v E C }  

is an invar ian t  convex cone in the conjugate space  V' .  

.THEOREM 3. If the condit ions of Theorem 1 a r e  s a t i s f i ed ,  then in the space  V there  ex is t s  a unique, 
to within mul t ip l ica t ion  by (-  1), maximal  invar ian t  convex cone 
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cm~, (10 = (c~. (v'))*. (2) 

If v*-" fv is an equivariant embedding of V in R[G/K], then 

c,~a. (11) = {v ~ v: h (*) > 0 v, ~ G/K}. (3) 

Example. Let V be the space of real forms of degree m in n variables, and let G be the image of the 
group GLn(R) in its natural l inear representa t ion in the space  V. An invariant convex cone in the space V 
exists if and only if m is even. Then Cmax(V) is the set  of positive semidefinlte fo rms ,  and Cmin(V} is the 
set  of forms which may be represented as a sum of m-th  degree l inear forms.  

2. Theorems 1-3 may be applied to the adjoint representa t ion  Ad of a connected noncommutative simple 
Lie group G. Denote by K the maximal subgroup of G for which the group Ad K is compact.  It is known that the 
dimension of the center  Z (K) of K is equal to 0 or  1. 

Let g and ~ denote the tangent Lie algebras of the groups G andK,  respect ively ,  and l e t  $ = ~ + m be 
the Caf tan  decomposit ion of the algebra $. 

THEOREM 4, There exists a convex cone in the a lgebra  6 which is invariant  with respec t  to Ad G, if and 
only if ": 

dim Z (K) = t .  (4) 

If condition (4) is satisfiied, then in the space m there exists a complex s t ruc ture ,  which is invariant with 
respec t  to Ad K. It  may be defined by the formula 

Iy = tko, y] (y ~ m), (5) 

where k 0 is a suitable element of the center  8 (~) of the algebra L 

THEOREM 5, Let condition (4) be satisfied. The inter ior  of the cone C=az (g) consis ts  of all elements 
of the a lgeb ra  g, which are  conjugate to elements of the set  

~+ = {x E ~: I-* admx > 0 } .  (6) 

It is easi ly shown (see Paragraph  5 of See. 3) that Cmax ($) = Cmin (g) only in the case when the group 
G is locally isomorphic to SPn~) .  In this case ,  the elements of the a lgebra  g may be interpreted in a natural 
way as quadratic forms in R n, and the unique invariant  cone in g consists  of all positive semidefinite forms.  

3. The existence of an invariant cone in the Lie a lgebra  $ is connected, although not in a unique way, 
with the existence of an invariant continuous order ing in the Lie group G. 

An invariant order ing in the group G is a (partial) order ing which is invariant with respec t  to left and 
right shifts. An invariant order ing is defined uniquely by the set  P = {g ~ G: g ~ e}. The set  P is a semigroup,  
which is invariant with respec t  to inner automorphisms;  moreover ,  

P n P-~ • {e). (7) 

Conversely,  for any invariant semigroup p C G, satisfying condition (7), there exists an invariaut  ordering in 
G s u c h t h a t  P = { g ~ G : g ~ e } .  

An ordering for which P = {e~ is called trivial.  Henceforward we shall consider  only nontrivial o rde r -  

ings. 

An invariant order ing in the Lie group G is called continuous, if the semigroup P is closed and is topo- 
logically generated by any neighborhood of ze ro  in it. 

With each continuous invariant ordering in the Lie group G, there is associated an invariant s t r ic t ly  con- 
vex cone C (P) in the tangent Lie algebra g, consist ing of all the vectors  which a re  tangential to a curve lying in 
P. Moreover ,  exp C (P) C P. 

THEOREM 6. Let G be a connected simple Lie group. There exists a continuous invariant order ing in 
the group G if and only if its center  Z (G) is infinite. 

We note that by this theorem, a continuous invariant order ing may exist only in those connected simple 
Lie groups which do not admit an exact l inear representat ion.  

2 .  P r o o f s  o f  T h e o r e m s  1 - 3  

1. LEMMA. Any connected tr iangular group T of automorphisms of the (closed) convex COMe C C V has 
an eigenveetor in C. 



Proof .  This is by induction on d im T. F i r s t  cons ide r  the case  d im T = 1. Let  PV be a p ro jec t ive  space 
a s s o c i a t e d  with V, and le t  p be the canonical  mapping f rom V \ {0} onto PV. By the l c m m a  in [1], any t r a j e c -  
tory  of the group T in the space  PV has a l imi t ,  which is c l e a r l y  a fixed point for T. Taking the t r a j e c t o r y  
of the point pv, v ~ C, we obtain the fixed point pro, vo ~ C. The vec to r  v 0 is an e igenvec tor  for T. 

If d i m T  > 1, t h e n w e  take a connected normal  subgroup T 1 of T of cod imens ion  1. By the induction hypo- 
t hes i s ,  the group T 1 has an e igenvec tor  in C. This means that there  ex is t s  a c h a r a c t e r  ×: T 1 - - R  + such that 
the weighted subspace  

V l = { v E V : g v - - - - X ( g )  v V g E r l }  

has nonzero i n t e r s e c t i o n  with C. The subspace  V1 is invar ian t  with r e s p e c t  to T, and V, n C is an invar ian t  
convex cone in it. Subst i tut ing V for V1, we reduce  the proof  to the case  when V1 = V, i . e . ,  a l l  the ope ra to r s  in 
T 1 a r e  s c a l a r .  In this case  T = T 1 x T2, where  T 2 is a o n e - p a r a m e t e r  group,  and the s t a t emen t  of the l e m m a  
is t rue ,  by the above -p roved  facts .  

2. In the notat ion of P a r a g r a p h  1 of Sec. 1, suppose that in the space  V there  ex is t s  a convex cone C 
which is invar ian t  with r e s p e c t  to G. The cone C is au tomat ica l ly  s t r i c t l y  convex,  i . e . ,  C N (--C) = { 0 } .  In 
fact ,  C n (--C) is an invar ian t  subspace  d i f ferent  f rom V, and s ince  G is  i r r e d u c i b l e ,  i t  must  be ze ro .  

Any compac t  group of au tomorph i sms  of a s t r i c t l y  convex cone has a fixed point inside i t  (see, e .g , ,  [2]). 
The re fo re ,  in the space  V there  ex i s t s  a nonzero vec to r  which is invar ian t  with r e s p e c t  to K. 

Moreove r ,  by the l e m m a  in P a r a g r a p h  1, the group T has an e igenvec tor  in C. Let  V1 be a weighted 
subspace  of the group T containing this vec tor .  The subgroup P = N(T), which is connected in the Z a r i s k i  
topology, p r e s e r v e s  the subspace  V 1. I t  is known that  

P = TL, (8) 

where  L is a compac t  group. There  ex is t s  a nonzero vec tor  v 0 in the cone, ViA  C which is invar ian t  with r e -  
spec t  to L. C l e a r l y ,  the r ay  R+v0 is invar ian t  with r e s p e c t  to the group P. 

Thus,  in each  invar ian t  convex cone C C V there  ex is t s  a nonzero vec to r ,  which is invar ian t  with r e -  
spec t  to K, and a ray  which is invar ian t  with r e s p e c t  to P. 

3. Converse ly ,  le t  v K b e a  nonzero  vec to r  which is invar ian t  with r e s p e c t  to K. By Iwasawa ' s  decompo-  
s i t ion  

v = T K  (9) 

the o rb i t  of the vec tor  VKWithrespeot  to the group G coincides  with i ts o rb i t  with r e s p e c t  to T. There exis t s  
a subspace  U of eod imens ion  1, which is invar ian t  with r e s p e c t  to T. Since the group T is connected,  it  p r e -  
s e r v e s  each of i ts (closed) s e m i s p a c e s  U +, U- ,  bounded by the subspace  U. Fo r  the sake of a rgument ,  le t  
ug~U+; then a l so  GVK C U +. There fo re ,  C = ConGv K • V. C l e a r l y ;  the cone C is invar ian t  with r e s p e c t  to G. 

Analogously ,  le t  the ray  R+vp be invar ian t  with r e s p e c t  to P. There  exis t s  an e lement  g E G, such that 

G = (gTg -~) P. (10) 

If U is a subspace  of cod imens ion  1, invar ian t  with r e s p e c t  to T, and if g-lvp ~ U +, then it follows f rom (10) 
that  Gyp C gU ÷, and the re fo re  ConGvp  ;~ V. 

Thus T h e o r e m  1 is comple te ly  proved.  

4. The vec to r  v p ,  which is an e igenvee tor  for  the parabol ic  subgroup P ,  is  i ts  leading vector .  Since the 
group G is i r r e d u c i b l e ,  a l l  the leading vec to rs  a r e  p ropor t iona l ,  and it follows f rom the r e s u l t s  of P a r a g r a p h s  
2 and 3 that the cone ConGvp  is the unique, to within mul t ip l ica t ion  by ( -1) ,  min imal  invar ian t  convex cone in 
the space  V. 

We note that in fact  the cone ConGvp  is c losed.  In fact ,  s ince  G = KP, then ConGvp  = ConKvp.  

5. The vec to r  VK, which is invar ian t  with r e s p e c t  to K, cannot l ie in any subspace  U of eodimens ion  1, 
which is invar ian t  with r e s p e c t  to T. In fact ,  conver se ly  we would have Gv~- -= Tug C U, which is imposs ib l e ,  
as G is i r r educ ib l e .  

Hence it follows that  the d imens ion  of the space V K of vec to rs  which a r e  fixed with r e s p e c t  to K is not 
g r e a t e r  than 1. 



Suppose that V K ~ 0. Then there exists a subspace of codimension 1, which is invariant with respec t  to 
K, and we prove analogously to the above that any weighted subspace of the group T is one-dimensional.  Since 
any weighted subspace of the group T is invariant with respec t  to the parabolic subgroup P, a one-dimensional  
weighted subspace is a subspaee spanned by the leading vector .  Therefore ,  the leading vector  is the unique, 
to within proportion, vector  in the space V which is an eigenvector for the group T. 

The statements of Theorem 2 follow f rom the resul ts  of Paragraphs  2-5. 

6. Let B be a Borel subgroup of the group G C containing T, and let v 0 be the leading vector  of the space 
V C with respec t  to B. 

Reformulat ing the equivalence of conditions 1) and 2) of Theorem 1, bearing in mind the resul ts  of P a r a -  
graph 5, we may say that V K ;~ 0 if and only if the space V C is i r reducible ,  and its leading vector  v 0 is invari-  
ant with respec t  to the compact  group L in the decomposit ion (8). (In this case ,  the vector  v 0 is proportional 
to a real  vector ,  since it belongs to the unique one-dimensional  weighted subspace of the group P.) We find a 
condition on the leading weight, under which the vector v 0 is invariant with respec t  to L. 

Let D o be the Cartan subgroup of the group T. Its c losure  in the Zar isk i  topology is the maximal decom- 
posable (diagonable) torus D in the group G, where 

D = D o'× F, (11) 

where F = {g ~ D: g2 = e} is a finite Abelian group. Moreover ,  P = ~TL0, where ~? = TF is the c losure  of T in 
the Zar is ld  topology, and L 0 is a connected compact  subgroup, commuting with D. We may say that 

L = F L  o. (12) 

Let S be some maximal torus in the group G, containing D. Then 

S = DS tin, (13) 

where S im is the maximal torus in the group L 0. Assuming that S ~ B, we denote by A the leading weight of 
the Gc-module  VC with respec t  to SC and B. The leading vector  v 0 is invariant with respec t  to L if and only if 

AJ st= = I and AI F = I. (14) 

The f i rs t  of these conditions denotes the reali ty of the weight A (more precise ly ,  the real i ty  of its values 
on S), and the second,  its evenness in the group of charac te rs  of the torus D. 

7. We prove Theorem 3. The proof of its f i rs t  part  is c lear ly  contained in formula (2). Moreover ,  by 
Theorem 2, Cmin(V') = C0nGv~, where v~  is a nonzero vector  lnthe spaoe V, which is invariant with respec t  
to K. Hence, 

Cm~ (D = {v ~ V: (V, ~k> > 0 Vg ~ G}. 

Bearing in mind that the equivariant embedding of the space V in R[G/K]  is defined by the formula fv(gK) = 
V, ! gvK), we obtain formula  (3). 

3 .  P r o o f s  o f  T h e o r e m s  4 a n d  5 

1. In the propositions of Paragraph  2 of See. 2, AdK,  as is known, has no fixed vectors  in the space m. 
Therefore  the set  of elements of the a lgebra  ~, which are  invariant with respec t  to the group Ad K, coincides 
with the center  of the algebra ~, and Theorem 4 follows f rom Theorem 1, applied to the group Ad G. 

2. We will now suppose that the a lgebra  g satisfies the conditions of Theorem 4. 

Any invariant convex cone C C ~ contains k 0 or  - k  0. Supposing that C ~ k0, we prove that any element 
of the inter ior  C O of the cone C is conjugate to an element of the set  ~+ (see Theorem 5). 

Let a ~  Co. Write x in the f o r m x  = Xim + Xre, where Xim is a semisimple  element with purely imaginary 
eigenvalues, and Xre is an element commuting with it with real  eigenvalues. The element Xim is conjugate to 
an element of L Substituting x for the conjugate element,  we see that Xim ~ ~. 

Since the cent ra l izer  t (X~m) of the element Xim contains the Cartan subalgebra of the a lgebra  ~, which is 
also a Car tan subalgebra of the algebra ~, then its center  lies in ~ and therefore  consits of elements with purely 
imaginary eigenvalues. Therefore ,  the element Xre belongs to the commutator  ~ (X~m)' of the algebra ~ (xim). 

Suppose that Xre ~ 0. If Xre is a semisimple element, there exists a nonzero element y ~ ~ (Xim)', such 
that [x~e, y] ~ ay (a ~ R*). Then for any t ~ R , 
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(Adexpty)  x = x - - a t y ~ C ,  

which  is imposs ib l e ,  s ince  the cone C is s t r i c t l y  convex.  If  Xre is not a s e m i s i m p l e  e l emen t ,  then it may  be 
r e p l a c e d  by a c lose  s e m i s i m p l e  e l em en t  of the a l g e b r a  ~ (xim)', a l so  wi th  r e a l  e igenva lues ,  s t i l l  sa t i s fy ing  the 
condi t ion  x ~ C o, and we obta in  a con t r ad i c t i on  by the above method.  Thus Xre = 0 and x ---- X~m ~ ~. 

Since k o ~ C, x + ako ~ C o for  any a > 0. If  the o p e r a t o r  I-~ad,~x is not posi t ive  defini te ,  then for  s o m e  
a -> 0 the o p e r a t o r  I-~adr, (x -4- ako) -~ I-~admx -b as (e is the ident i ty  opera to r )  is s i n g u l a r ,  i .e . ,  the re  ex is t s  a 
nonze ro  e l emen t  z ~ m such  that  Ix + ak0, z] = 0. Taking z suf f ic ient ly  s m a l l ,  we h a v e x  ~ ako + z ~ C °, which  
con t r ad i c t s  wha t  has been  p roved  above ,  s ince  the e igenvalues  of  the e l emen t  z a r e  rea l .  Thus x ~ f÷, which  
is what  was  r equ i r ed .  

3. By T h e o r e m  2, the cone C~ ,  (9) is gene ra t ed  by the o rb i t  of  the leading roo t  vec to r  of the a lg eb ra  g. 
We give a method of c o n s t r u c t i n g  the e l emen t s  of  the a l g e b r a  ~, which  a r e  conjugate  to the leading r o o t  vec to r .  

Cons ide r  the r e p r e s e n t a t i o n  k ~ Admk of the g roup  K in the space  ra, g iven  the complex  s t r u c t u r e  by 
f o r m u l a  (5), and denote by p its r a t iona l  cont inua t ion  to the g roup  KC. Le t  z 0 be the leading  v e c t o r  for  the 
r e p r e s e n t a t i o n  p. Then  for  a su i tab le  n o r m a l i z a t i o n  of  z0, the e l emen t  z 0 + [Iz0, z0] is conjugate  to the l ead-  
ing r o o t  vec to r .  

To prove  th is ,  c o n s i d e r  the Z - g r a d u a t i o n  of the a l g e b r a  ~c, defined by the e l e men t  k0, 

~c = ~-~ + 90 + g~, ~p = {x  ~ 9c: [k0, x] ---- p~x}.  

Clea r ly ,  90 ---- Fc, ~_~ + 9, = mc, w h e r e  9-~ = ~ (the ba r  denotes  complex  conjuga t ion  in the a lgeb ra  9c). The 
mapping  x ~-" R e x  e s t ab l i shes  an  i s o m o r p h i s m  of K c - m o d u l e s  9~ and ra. 

Le t  H be the m ax im a l  to rus  of  the g roup  G lying in K. Le t  B be a Bore l  subgroup  of the group G C con-  
ta ining the Bore l  subgroup  of the g roup  KC, conta in ing  H. F ina l ly ,  le t  (e, h, f) be a s t anda rd  bas is  of the t h r e e -  
d imens iona l  roo t  s uba lgeb ra ,  c o r r e s p o n d i n g  to the leading  roo t  of the a lgeb ra  gc wi th  r e s p e c t  to HC and B. 
Since h = - h ,  we m ay  n o r m a l i z e  e so  that  f = e. 

It  is ea s i ly  s e e n  that  ih Jr e ~ f ~ ~ is ni lpotent ,  and t h e r e f o r e  is conjugate  to e. 

C lea r ly ,  e is the leading v e c t o r  for  the r e p r e s e n t a t i o n  of the g roup  K C in the space  9~ with r e s p e c t  to 
the Bore l  subgroup  B n Kc. T h e r e f o r e ,  z 0 = Re e = 1/2(e + f) is the leading v e c t o r  for  the r e p r e s e n t a t i o n  p of 
the g roup  K C in the space  m. 

M o r e o v e r ,  we have 

IZo = Be ie = -~--(e - - / ) ,  [Izo, Zo] = -~- [e, 11 = - E -  ih, 

so  that  z 0 + [Iz0, z0] = 1/2(ih + e + f), and hence  the r equ i r ed  s t a t e m e n t  fol lows.  

4. Fix an  inva r i an t  s c a l a r  mul t ip l ica t ion  in the a lgeb ra  It, which  is posi t ive  definite on [ and negat ive 
defini te  on m.  Using this ,  we e s t ab l i sh  an  i s o m o r p h i s m  between the space  g and its conjuga te  space .  By T h e o -  
r e m  3, we then have Cm~x ($) -----(Cain(g))*, whe re  the conjugate  cone is unde r s tood  in the s ense  of s c a l a r  mu l t i -  
p l ica t ion  in g. 

By P a r a g r a p h  3, the cone Cmia (ti) is gene ra ted  by the orb i t  of the e l emen t  e 0 = z 0 + [Iz0, z0]. Since the 
r a y  R+e0 is inva r i an t  wi th  r e s p e c t  to the parabol ic  subgroup conjugate  to P ,  then Ge 0 = R+Ke0, and t h e r e f o r e  

(Cma x (~i)) 0 = {X ~ 9: ((Ad k)x, Co) ~ 0, Vk ~ K}. (15) 

To comple te  the p roof  of T h e o r e m  5, we need to ve r i fy  that  ~÷ C (Craax (9)) 0. 

Let  x E ~+; then 

(x, eo) = (x,[ lzo,  zo]) : - - ( [ x ,  zo], Izo) ~ - - - ( 1  - l I x , z o ] , z o ) ~ O .  

(We r eca l l  that  s c a l a r  mul t ip l ica t ion  is negative definite in m .) Since the se t  [÷ is invar ian t  wi th  r e s p e c t  to 
Ad K, then ((Ad k)x, co) ~ 0 Vk  ~ K.  By (15) this means  that  x ~ (Cmax (8)) °, which  is what  was  r equ i red .  

5. Using T h e o r e m  5, it is ea sy  to ca lcu la te ,  for  al l  poss ib le  a lgebras  I t , the  i n t e r s e c t i o n  of the cone 
Cmax (9) with the C a r t a n  suba lgeb ra  1) of the a l g e b r a  [. C l ea r ly ,  

c~i,, (9) N ~ c (Cmax (8) N ~)*, 



and if the cone Cmax (g) N ~ does not contain its conjugate cone in 0, then C~a~ (g) ~ Cmax (~). The same is true 
for all cases ,  except when g is the Lie algebra of the group Spn(R). 

4 .  P r o o f  o f  T h e o r e m  6 

1. For  any sequence (gn) converging to one of  elements of the Lie group G, the l imit  

x = lira n (g,, --  e), (16) 

calculated by coordinates ,  does not depend on the choice of the sys t em of coordinates ,  if it is integrated as an 
element of the tangent Lie a lgebra  6. In par t icular ,  wri t ing equation (16) in exponential coordinates ,  we obtain 

exp x = lira g~. (17) 

Let P be the defining semigroup of a continuous invariant order ing in the Lie group G. Denote by C(P) 
the set  of all l imits of the form (16) for sequences (gn) lying in P. It follows f rom (17) that 

exp C (P) C P. (18) 

By multiplying out sequences,  we prove that C(P) is an additive semigroup,  and by going to subsequences 

of the form (gkn), we prove that C(P) sustains multiplication by + ( k ~ Z  ÷) and thus by any positive rational 

numbers.  It follows f rom (18), and f rom the fact that P is closed,  that exp tx ~ p fo rx  ~ C (P) and any t >_ 0. 
Hence in turn it follows that C(P) sustains multiplication by any positive numbers ,  and thus is a convex cone. 

These resul ts  show, in par t icular ,  that the cone C(P) may be defined as the set  of vectors  tangential to 
one -pa ramete r  semigroups lying in P. Therefore ,  since P is closed it follows that C(P) is closed, and f rom 
proper ty  (7) we obtain the s t r i c t  convexity of C (P}. 

Clearly the cone C(P) is invariant with respec t  to AdG. 

We finally show that C(P) ~ {0}. It follows f rom the definition of continuous order ing that there exists a 
sequence in p \ {e) converging to e. Choose a subsequence (gn) of it such that the unit vec tor  (gn - e ) / I  gn - 
el, calculated in some exponential sys t em of coordinates ,  has a l imit,  and such that I g n - el < 1 / n  2. Then for 
suitable natural numbers kn we have 

and hence, 

lira n (gn --  e) = lira =/= O. 

2. We prove the "necessi ty"  in Theorem 6. In the group G, let there exist a continuous invariant o r d e r -  
ing, and let P be its defining semigroup.  Then C(P) is an invariant  convex cone in the tangent Lie algbera g 
and by Theorem 4, dimZ(K) = 1. 

The connected component Z (K) ° of the group Z (K) is a one-paramete r  group with direct ion vector  k 0. 
Multiplying k0 by - 1 if necessary ,  we may assume that k0 ~ C (P); then exp tko ~ P for all t -> 0. Hence it 
follows that the one-paramete r  group Z (K) ° is not periodic; for otherwise,  P N p-1 :p {e}: Since the group 
Z (K)/Z (G) = Z (Ad s K) is compact,  it follows f rom the noncompactncss of Z (K) that Z (G) is infinite. 

3. Suppose now that C is an invariant  convex cone in the algebra g. 

Moving the cone C by left shifts,  we obtain a lef t- invariant  "field of cones" {gC} on the group G. It fol- 
lows f rom the invariance of the cone C that this field of cones is a lso r ight- invariant .  

LEMMA. Under the inve r s ionx  ~--x -1 the field of cones {gC~ goes to the field of opposite cones { -gC} .  

Proof.  We may represent  inversion as the composit ion of a left shift on g, inversion, and thena r igh t  
shift on g. Under these t ransformat ions ,  the cone g-lC goes success ive ly  to C, - C  and - g C .  

4. The pointwise-differentiable curve g(t) on the group G is called admissible ,  ff gi(t) ~ g (t)C Vt. 

Denote by P0 the set of all elements g ~ G, for which there exists an admissible curve joining e and g, 
and denote its c losure  by P. Clearly,  P0and P are  invariant semigroups ,  and P0 is generated (and P is topo- 
logically generated) by m neighborhood of one in it. 



We call the differentiable function ~ on the group G increasing,  if it is nonconstant and 

dg~ ~ 0 on gC Vg ~ G. (19) 

The set  of increas ing functions is invariant  with respec t  to left and r ight  shifts. Moreover ,  it follows f rom 
the l emma of Pa rag raph  3 that for any increas ing function ~, the function ~(x) = -~ (x  -1) is also increasing.  

An increas ing function increases  in the normal sense of the word (possibly not strictly) along any admis -  
sible curve.  Therefore ,  if ~ is an increas ing function, 

c p ( g ) ~ c p ( e ) ~ ( g - i )  V g ~ P .  (20) 

LEMlVlA. If there exists an increasing function ~, then P N p-1 = {e}. 

Proof.  By shifting the function ~, we may obtain deq~ ~ 0. Moreover ,  using inner automorphisms we may 
obtain increasing functions q~l, • • • ,  ~n f rom ~, which fo rm a sy s t em of coordinates in some neighborhood O(e) 
of one. We shall assume for the sake of a rgument  that q~i(e) = 0 for all i and that O(e) in the coordinates ~1 , . - . ,  
~n is a sphere of radius 1 with center  at  the origin of coordinates .  

It follows f rom (20) that ~i (g) : 0 Vg E P N p-1. Therefore ,  (P n p-l) n 0 (e) ~-~ {e}. Let.B C 0 (e) 
be a concentr ic  c losed sphere  with radius r < 1 (in the coordinates ~ , . . . ,  ~n). Any admissible  curve star t ing 
at e and finishing outside B intersects  the boundary of B; therefore ,  at its end g sat isf ies  the inequality F.~i 
(g)2 _> r 2. By continuity, this inequality a lso holds at all points g ~ P n (G --  B). Hence it follows that (P n 
P-l) N (G - B) : ¢.  The lemma is proved. 

5. Let the group G sat isfy the condition of Theorem 6, i .e. ,  the center  Z (G) is infinite. 

Denote by T the maximal connected subgroup of G for which the group AdsT is t r iangular .  Then 

a =  Kr ,  (21) 

and the mapping (k, u) ~- ku is a diffeomorphism f rom K × T onto G. 

If the group G is s imply connected, then 

K----K' x Z(G) °, (22) 

where K' is a s imply-connected  semis imple  compact  Lie group, and 

Z (K) ° = {exp tko} ~-~ R. (23) 

The center  of the group G lies in K and is the d i rec t  product of a finite group lying in K' and the infinite cycl ic  
group. 

In the general  case ,  the group G is obtained by simply connected factor izat ion by a finite central  sub- 
group. Therefore  the decomposit ion (22) and the i somorphism (23) also hold, with the difference that the group 
K' is not necessa r i ly  s imply  connected. 

Define a differentiable function q on G by the condition 

g = k (exp ¢p (g)k0)u (k E K', u ~ T). (24) 

In the following paragraphs we shall prove that ~ is an increas ing function with respec t  to the cones 
C = Cm~n (~). By the lemma in Paragraph  4, it follows that the semigroup P constructed as in Pa ragraph  4 de- 
fines a continuous invariant  order ing on the group G. This will complete the proof of Theorem 6. 

6. The function ~ is r ight - invar iant  with respec t  to T and lef t - invariant  with r e spec t  to K v, and under a 
left shift by an element of Z (K) ° a constant is added to it. Therefore ,  its differential d~ is r ight- invar iant  with 
respec t  to T, and lef t - invariant  with respec t  to K. 

We need to prove that 

dgq)>O on gCmin(~) (25) 

for all g ~ G. In view of the above invariance propert ies  of d@, it is sufficient to verify (25) for g = e. 

The space g splits up into a di rect  sum of subspaces:  g = ~' + ~ ($) + t, where ~' and t a re  tangent Lie 
a lgebras  of the groups K' and T, respect ively.  Clearly,  de@ = 0 on ~' + t and de@(k 0) = 1. 

We will prove in Pa ragraph  11 that the cone Cm~n (~), containing k0, lies completely on one side of the 
hyperplane ~' + t. Hence it will follow that @ is an increasing function. 
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In Paragraphs  7-10 we will find an express ion for the element k 0 in t e rms  of the real  root  decomposit ion 
of the a lgebra  g. 

7 .  LEMMA. Let T: SL2(R) ~ GL(V) be an irreducible (n + D-dimensional  representat ion.  There exists 
a nonzero vector  v in the space V which is invariant with respec t  to T(SO2), if and only if n is even, and in this 

case the vector  v is the sum of eigenvectors of the opera tor  dr , whose eigenvalues are  congruent to n 
modulo 4. 0 - 1 

Proof.  The representa t ion  T is isomorphic  to the natural representa t ion r n of the group SL2(R) in the 
space of binary forms of degree n. The degree of the sum of the squares ,  which only exists for even n, is a 
unique (to within proportion) binary form,  which is invariant  with respec t  to SO 2. It  splits up into a sum of 
monomials ,  in which both indices are  even, and thus the difference in indices is congruent  to n modulo 4. It 

remains  to note that each monomial is an eigenvector of the opera tor  dr  n _ , and the eigenvalue is equal to 
the difference of the indices. 

8. Let b be the Caftan subalgebra of the a lgebra  t, which is invariant  with respec t  to the Car tan  involu- 
tion a of the a lgebra  ~. Denote by A the sys t em of roots of the algebra 9 with respec t  to b,  and by 9= the root  
subspaee corresponding to the root  c~. Then 

9----b-~I~ ~ 9=, (26) 
~ A  

I := b +  ~ 9=, (27) 

where ~ is the cent ra l izer  of b in E, and A+ is a syste m of positive roots  (with respec t  to a suitable order ing 
of the space b'}. The a lgebra  ~ is the tangent Lie algebra of the maximal compact  subgroup L of the group 
P = N(T) [see formula (8) and Paragraph  6 of See. 1]. 

Since a ] b =  -- l ,  then ag= = 9-= for any a E A. 

If  To is the leading root  of the sys t em A, then the vectors  in the space 9~, a re  eigenvectors  for the group 
T. The resul ts  of See. 2 (formulated in Paragraph  1 of Sec. 1) show that 

1) the space g~o is one-dimensional ,  and its basis vector  e 0 is the leading root  vector  of the algebra 9 
(with respec t  to the Cartan subalgebra containing b); 

2) the vector  e 0 is invariant  with respec t  to L; 

3) for suitable orientat ion eo ~ Cmi~ (9)- 

9. Denote by W the Well group of the algebra g with respec t  to b, and by r the subsys tem of the sys tem 
of roots A, formed by the roots of maximal length. For  each 7 ~ r ,  there exists an element w @ W, such that 
7 - wT0. As a t ransformat ion  of the space b ,  the element w is induced by some element w of the ao rma l i ze r  
Ng (b) of the a lgebra  b in the group K. Set e T = (Adw)e 0. It follows f rom statement  2) of Pa rag raph  8 that e T 
does not depend on the a rb i t ra r iness  of the choice of w and w, and that 

oe~ = e_~. (28) 

There exist  homomorphisms /~: SL2 (R).--~ G (7 ~ F), satisfying the conditions 

t 0 I O i ) , = h v ~ b  (c>0) .  (29) d.fv(O0 o)=cev, d / v ( 2  i o)=Ce-'~, dfv(O 
We norm the vector  e 0 so that c = 1. 

LEMMA. a) A is a sys t em of roots of type BCn or Cn; 

b) F is a sys tem of roots of type nAt; 

e) dim 9v = i for all 7 ~ F; 

d) k0 = -~- F ,  ev -~ 10, where l 0 lies in the center  of the algebra t. 
. " ~ F  

Proof. In view of the equivalence of roots of maximal length, e) follows f rom statement  1) of Paragraph  
8. Moreover ,  it is easi ly seen that f rom all the irreducible sys tems  of roots ,  only in sys tems of type BCn or 
Cn do the roots of maximal length form a subsys tem of Wpe hA1, so that a) follows f rom b). 



We prove b) and d). Let 

ko= Y~a~v÷ Y, e~+do+lo ,  

where a v ~ B , e ~ 8 ~ ,  do~b, lo~I.  Since e~Cmin(f;) forany ¥~Fand(e~,e_~)=-~-[e~÷i e_v]~>O, then 

(~o,,_~) > 0 VV ~ r. a~ ---- (%. ~_~) 

(30) 

Moreover ,  it follows f rom the invariance of k 0 with respec t  to NK (b) that all the a T are  equal to each other. 
Thus a ~ = a  > 0 f o r a l l ~ F .  

Since e~ + e_ v E ~, then /~ (SO~) C K and therefore  the element k 0 is invariant with respec t  to fT(so2L 

Split the space ~ into the direct  sum of i rreducible invariant  subspaces with respec t  to the r ep resen ta -  
tion r.y = Ad o f.y of the group SL20R). This can be done so that the te rms  in the decomposit ion a re  invariant 
with respec t  to ad b; under this condition, we call them ~-components.  Clearly,  the projections of the element 
k o onto the "~-components are  invariant with respec t  to T~/(SO2). 

For  any ~, .~' ~ r the element e,/, is ei ther  the leading or the lowest vector  of the ~-component  of dimen- 
sion ~' (h.~) + 1. Since the projection of k 0 onto this component is different f rom zero ,  then by the lemma in 
Pa rag raph  7, the number ~'(h~/) is even. Thus, all the elements of the Car tan  matrix of the root  sys t em F a re  
even. Hence it follows that F is a sys t em of type nA t. 

For  any c c ~ A \ F t h e r e e x i s t s  ~ F  such that~c, c c + ~ A ,  but ~ - - ~ ,  ~ + 2 ? ~ h .  The space g ~ ÷  
0~+~ is then the sum of two-dimensional ~-components.  By the l emma in Paragraph  7, the projections of the 
element k 0 onto theseeornponents  a r e e q u a l t o  zero .  Therefore ,  ea  = 0 for all a ~ F \ h. 

The elements h~ (~ ~ r+) fo rm a basis of the space b. Set do = ~ c~/zv (c~ ~ R); then a(e~/+ e_~) + cTh ~ 
~ F +  

is the projection of the element k 0 onto the three-dimensional  ~-component <e~, h~, e_~). By the lemma in 
Paragraph  7, we obtain c T = 0. Thus d o = 0. 

The element l0 = k0-- a ~ e~ lies in the center  of t ,  since k 0 and e~ (,~ ~ r) commute with ~ [see s ta te -  

ment 2) of Pa ragraph  8]. 

Finally, bearing in mind that [eT, , e?] = 0 for ~' ~ - T ,  f rom the condition [k0, [k0, hT] ] = I2h~ = -h~/we  
have a = 1 /2 .  The lemma is proved. 

10, LEMMA~ l0 ~ Cmax (~). 

Proof.  We have 

/-~adml0 -{- + I-Xadm ~-~, e v = I-~adr~k0 ---- e. 

We prove that I-ladm/o and + I - l a d ~  ~ ev are  orthogonal projectors .  It will then follow by Theorem 5 that 
VGF 

÷ 2 ~.~ ev ~ Cmax (~) for k > 0, and the s ta tement  of the l emma will then be obtained by taking the limit as l0 

~ 0 .  

Set r÷ = r n A+; then 

i 

where a ----- b ÷ ~ 0~ is a subalgebra of type nA 1. It is easily seen that the representa t ion ad s of the a lgebra  a 

has i rreducible components of only the following types: 1) the adjoint representat ion of one of the simple t e rms;  
2) the tensor product of the s implest  (two-dimensior~l) representat ions of two simple terms;  and 3) the tr ivial  
representat ion.  

Therefore ,  the charac te r i s t ic  numbers of the operator  ad ~ e v are  ~2i,0. Thus the charac te r i s t i c  num- 

operator  q= ~I-ladm~_jev may only be ±1 or 0; h o w e v e r , - 1  is excluded since ~, e~_  C~,,(g) and bers  o f  the 



by T h e o r e m  5, the opera to r  q is posi t ive definite. Thus q is a p ro jec to r ,  which is what  was required.  

We note that in the major i ty  of cases  the a lgebra  [ is s e m i s i m p l e  and l 0 = 0. 

11. To comple te  the proof  of T h e o r e m  6, it r ema ins  to show that the cone Cm/a(g ) l ies  complete ly  on one 
side of the hyperplane $' + t (see P a r a g r a p h  6). 

We find a vec tor  orthogonal to F' + t. To do this ,  we r e p r e s e n t  k 0 as the sum of the vec to r s  

u,-- ev+lo~[t ,  t l+r ,  z ~ (e_v-- ev) ~ m .  
- /~ r+  

The vec to r  u is orthogonal to [' + t, and m o r e o v e r  (u, k 0) = (k0, k 0) > O. 

By the l e m m a  in P a r a g r a p h  10, u ~ C ~  (g), s ince (u, x) _> 0 for  all  x ~ C~,n (g). Thus al l  the e lements  
of the cone C ~ ( ~ )  lie on one side of the hyperplane ~' + t, which is what was required.  

5. P r o b l e m s  

1. Is i t  t rue  that in the space  of an i r reducib le  r ep r e sen t a t i on  of a connected Lie group,  there  may only 
ex is t  a finite number  of invariant  convex cones ? 

2. Find all  the connected i r reduc ib le  l inear  Lie groups for  which an invar iant  convex cone exis ts  and is 
unique to within mult ipl icat ion by - 1 .  

3. Find a n e c e s s a r y  and sufficient  condition f o r  the exis tence of an invar iant  s t r i c t ly  convex cone in the 
space  of an i r reduc ib le  r ep re sen ta t i on  of a connected s e m i s i m p l e  Lie group. 

4. Descr ibe  all  the invar iant  convex cones C in a s imple  Lie a lgebra  in t e r m s  of the in te rsec t ion  with the 
Car tan  suha lgebra  9 of a maximal  compact  subalgebra .  Is i t  t rue  that C* N. ~ = (C (7 9) *? 

5. Let  P be the defining semigroup  of an i r reduc ib le  invar iant  o rder ing  in the connected Lie group G, and 
let  C (P) be the cor responding  convex cone in the tangent Lie a lgebra  (see P a r a g r a p h  1 of See. 4). Is  it t rue that 

a) the mapping exp: C(P) - -  P is open at  zero;  

b) the semigroup  P is genera ted  (in the a lgebra ic  sense)  by any neighborhood of unity in i t?  

The s a m e  quest ions  may be asked for  an a r b i t r a r y  closed semigroup  P C G, topologically genera ted  by 
any neighborhood of unity in it. 

6. Is it t rue that for  any invar iant  s t r i c t ly  convex cone C in the tangent Lie a lgebra  of a s imply  connected 
Lie group G, there  exis ts  a continuous invar iant  order ing  in G, whose defining semigroup  P sa t i s f ies  the con- 
dition C(P) = C? 

7. We define in a natural way the idea of a continuous invariant ordering in the homogeneous space of a 
Lie group. It  would be in te res t ing  to desc r ibe  al l  the connected homogeneous spaces  with i r reduc ib le  connected 
i so t ropy  group, which admi t  a continuous invar iant  order ing  (a genera l iza t ion  of T h e o r e m  6). 
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