HILL'S OPERATOR WITH FINITELY MANY GAPS

A. R. Its and V. B. Matveev

The goal of this paper is to give an effective description of those periodic potentials q(x + T) = q(x), for which the number of gaps in the spectrum of Hill's operator $H = -D_X^2 + q(x)$, $x \in R^1$ is finite. Here and below D_t denotes differentiation with respect to t. Our interest in this problem was stimulated by an article of S. P. Novikov [1], who showed that such potentials, when taken as initial data in the Cauchy problem for the Kurteweg-de Vries (KV) equation, could be interpreted as periodic analogs of N-soliton solutions, and that furthermore, stationary periodic and almost-periodic solutions of the generalized KV-equations turned out to be potentials with a finite number of gaps.

We consider the differential equation

$$L\psi = 4\lambda D_x \psi, \quad L = -D_x^3 + 2(qD_x + D_x q). \tag{1}$$

THEOREM 1. In order that the operator H have precisely n nondegenerate gaps, it is necessary and sufficient that Eq. (1) have a solution of the form

$$\psi_n(x,\lambda) = (\lambda - \lambda_1(x))(\lambda - \lambda_2(x))\dots(\lambda - \lambda_n(x)), \tag{2}$$

where all $\lambda_i(x)$ are non-constant, and $\lambda_i(x + T) = \lambda_i(x)$. The largest value of the function $\lambda_i(x)$ coincides with the right endpoint of the i-th gap, its smallest value with the left endpoint. The set of solutions of Eq. (1) coincides with the set of products $f_1(x) f_2(x)$, where f_1 and f_2 are arbitrary solutions of the equation $Hf = \lambda f$.

We remark that the functions $\lambda_i(x)$ are eigenvalues of the following Sturm-Liouville problem: $D_{\tau}^2y + q(x + \tau)y = \lambda y$, y(0) = y(T) = 0.

Let $\Omega_k(x)$ be the coefficient of λ^{n-k} in the polynomial ψ_n . By substituting this polynomial into (1) and collecting coefficients of powers of λ , one easily gets the following relations:

$$\Omega_{n}(x) = 4^{-k} \left[\prod_{i=1}^{k} (I_{i}L) \right] 1, \quad k = 1, \dots, n; \quad L \left[\prod_{i=1}^{n} (I_{i}L) \right] 1 = 0,$$
 (3)

where the I_i are integration operators on the interval (c_i, x) , and the c_i are constants. The second equation in (3) can be thought of as a differential equation for q(x).

Suppose the gaps in the spectrum of H are given by (α_i, β_i) , $\beta_{i-1} < \alpha_i < \beta_i$, $i = 1, 2, \ldots, n$; β_0 denotes the lower bound of the spectrum of H. We define solutions of Hill's equation by the conditions $\varphi(x, \lambda)$, $\vartheta(x, \lambda)$. The notations $\varphi(0, \lambda) = 0$, $\varphi_X(0, \lambda) = 1$, $\vartheta(0, \lambda) = 1$, $\vartheta_X(0, \lambda) = 0$ will be used for the values of the functions $\varphi(\lambda)$, $\vartheta(\lambda)$, $\varphi^i(\lambda)$, $\vartheta^i(\lambda)$ and their derivatives with respect to x, evaluated at x = T. We set $F(\lambda) = (\vartheta(\lambda) + \varphi'(\lambda))$ /2, $m_{1,2}(\lambda) = \varphi^{-1}(\lambda) [(\varphi'(\lambda) - \vartheta(\lambda))/2 \pm \sqrt{F^2(\lambda) - 1}]$. The solutions $\psi_{1,2}(x, \lambda) = \vartheta(x, \lambda) + m_{1,2}\varphi(x, \lambda)$ are linearly independent, if $F^2(\lambda) - 1 \neq 0$, and can be represented in the form $[2] \psi_{1,2}(x) = \exp\{\pm x \ln(F(\lambda) + \sqrt{F^2(\lambda) - 1})\}\chi_{1,2}(x, \lambda)$, where $\chi_{1,2}$ are periodic functions of $x: \chi_{1,2}(x + T, \lambda) = \chi_{1,2}(x, \lambda)$.

From Theorem 1 and the uniqueness (up to a constant factor) of the periodic solution of Eq. (1), we obtain the following representation for $\psi_1(x, \lambda)\psi_2(x, \lambda)$:

$$\psi_1(x, \lambda) \psi_2(x, \lambda) = \prod (\lambda - \lambda_i(x))/(\lambda - \lambda_i(0)). \tag{4}$$

It can furthermore be shown that for the potential q(x) under consideration, one has

Leningrad State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 9, No. 1, pp. 69-70, January-March, 1975. Original article submitted May 20, 1974.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

$$m_{1,2}(\lambda) = [Q(\lambda) \pm i \sqrt{P(\lambda)}] / \prod (\lambda - \lambda_i(0)),$$

where $Q(\lambda) = D_x \psi_n(x, \lambda)|_{x=0}/2$, $P(\lambda) = (\lambda - \beta_0)(\lambda - \alpha_1)(\lambda - \beta_1)\dots(\lambda - \beta_n)$. Denote by σ the hyperelliptic surface of the function $\sqrt{P(\lambda)}$, thought of as a two-sheeted covering surface of the λ -plane. Then $\psi_{1,2}(x, \lambda)$ can be realized as different branches of a function which is analytic and single-valued on σ , namely $\psi(x, \lambda) = \theta(x, \lambda) + \varphi(x, \lambda)[Q(\lambda) + i\sqrt{P(\lambda)}]/\prod (\lambda - \lambda_i(0))$. By (4), $\psi(x, \lambda)$ as function on σ has n simple zeros at $\lambda_i(x)$ and n simple poles at $\lambda_i(0)$. For $\lambda \to \infty$, we have $\psi(x, \lambda) \sim \exp(ix \sqrt{\lambda})$.

According to standard procedure, we choose canonical cuts (a_i, b_i) on σ . By adopting arguments due to N. I. Akhieser [3], one can now show that for the determination of the functions $\lambda_i(x)$ it suffices to solve a Jacobi inversion problem:

$$\sum_{k=1}^{n} \int_{-\infty}^{\lambda_{k}(x)} dU_{\nu}(\lambda) \equiv \frac{xG_{\nu}}{\pi} + \sum_{k=1}^{n} \int_{-\infty}^{\lambda_{k}(0)} dU_{\nu}(\lambda), \quad G_{i} = -\int_{-\alpha_{i}}^{\beta_{i}} d\omega(\lambda), \quad \nu = 1, 2, \dots, n.$$
 (5)

where $dU_{\nu}(\lambda)$ is a basis for the normed Abelian differentials of the first kind, $d\omega(\lambda)$ is an Abelian differential of the second kind with zero A-periods and a second-order pole at infinity. The integrals in (5) are taken along the sheet containing the corresponding $\lambda_i(x)$ and $\lambda_i(0)$. Define vectors e, l, $g \in C^n$ by the formulas

$$e_{i}(\lambda) = \int_{-\infty}^{\lambda} dU_{i}(\lambda), \quad l_{i} = -\frac{G_{i}}{\pi}, \quad g_{i} = -\sum_{k=1}^{n} \int_{-\infty}^{\lambda_{k}(0)} dU_{i}(\lambda) + \frac{i}{2} = \frac{1}{2} \sum_{k=1}^{n} B_{ki},$$
 (6)

where $B = \|B_{ik}\|$ is the matrix of B-periods of the differentials $dU_i(\lambda)$. With the matrix B one associates the well-known Riemann θ -function, $\theta(v) = \sup \exp \{\pi i (Bk, k) + 2\pi i(k, v)\}$, where the sum is extended over all integer n-tuples $k = \{k_1, \ldots, k_n\}$, $v \in \mathbb{C}^n$, a $(k, v) = k_1v_1 + k_2v_2 + \ldots + k_nv_n$.

By using É. I. Zverovich's algorithm [4] for the solution of the Jacobi inversion problem, one easily finds a representation for the sum of the functions $\lambda_i(x)$:

$$\sum_{k=1}^{n} \lambda_{k}(x) = \sum_{k=1}^{n} \int_{\alpha_{k}} \lambda dU_{k}(\lambda) - \operatorname{res}_{\lambda=\infty} \{\lambda d\theta (e + xl - g)\}.$$
 (7)

The left side of (7) differs only by a constant from -q(x)/2.* This follows from formula (3) for k = 1. Calculation of the residues on the right side of (7) leads one to the remarkable formula

$$q(x) = -2D_x^2 \ln \theta (xl + g) + C,$$
 (8)

where C is a constant expressible through α_i and β_i .

The authors wish to thank V. S. Buslaev and L. D. Faddeev for their interest and helpful discussions.

After finishing this work, we became aware of a paper by B. A. Dubrovin, the basic result of which is the statement that the solution of KV starting from an n-gap initial value has the form q(x, t) = R(xl + tv + r), where R is a rational function of θ -functions, and the vectors l, v, $r \in C^n$ are independent of x and t. If this result is combined with formula (8), one gets the following representation of the solution q(x, t) of KV with initial condition (8):

$$q(x, t) = -2D_x^2 \ln \theta (xl + tv + g) + C.$$

LITERATURE CITED

- 1. S. P. Novikov, Funktsional. Analiz. i Ego Prilozhen., 8, No. 3, 54-66 (1974).
- 2. E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Oxford Univ. Press.
- 3. N. I. Akhiézer, Dokl. Akad. Nauk SSSR, 141, No. 2, 263-266 (1961).
- 4. É. L. Zverovich, Uspekhi Mat. Nauk, 26, No. 1 113-180 (1971).
- 5. A. R. Its and V. B. Matveev, Teor. i Matem. Fiz., 23, No. 1 (1975).
- 6. H. Hochstadt, Arch. Rat. Mech. Anal., 19, 353-362 (1965).

^{*}This particular fact is not new, having first been noted by Hochstadt [6]; a simpler proof can be based on the Gel'fand-Levitan trace formulas [5].