THE NONCOMMUTATIVE MARKOVIAN PROPERTY

L. Accardi

The notion of the (d)-Markovian property was introduced for a discrete random field by R. L. Dobru-
shin [1], E. Nelson [2] gave the formulation of the Markovian properties for the continuous case and
showed that this concept plays a significant role in the theory of Bose fields. The attempt at expanding the
Nelson method to the case of Fermi fields naturally leads to the problem of defining the noncommutative
Markovian property.

On the other hand, in connection with the results obtained by H, Araki [3] applying to quantum lattice
systems, Ya, G. Sinai noted ([4], appendix to the Russian edition) that an investigation of such systems
leads to the problem of defining the concept of a "noncommutative Markov chain" (i.e., to the problem of
defining the class of states on the algebra of quasilocal observables on 2 one-dimensional quantum system
which would form the analog of conventional Markov chains),

The present paper advances a general definition of the noncommutative Markovian property and
shows that the structure and properties of the corresponding states in the uniformly hyperfxmte case have
noteworthy analogies with conventional Markov chains.

A relationship is established between noncommutative Markovian states and Gibbsian states con-
structed by H. Araki [3].

The author thanks Ya. G. Sinai for his fruitful discussion of the present paper.

§1. General Definitions

Definition 1. Let d(B) &€ B C A be C*-algebras. The quasiconditional expectation with respect to the
triplet d(B) € B C A is called a linear mapping E : A — B with the following properties:

1V E@ =20,ifa€A,a=0;2)E(@a) - cE@ Yee=dB,Vac 4, YNEEC)I<|c'| Vere=d(B),
where (+)' is the commutant of A,

For example, if P: A — B is the conditional expectation (see [5]) and H € d(B)', I|H|| =1, then E(a) =
P(H*aH) determines the quasiconditional expectation with respect to the triplet d(B) C B < A,

Definition 2. Let d(B) & B C A be the same as they are above, and let E be the quasiconditional ex-
pectation with respect to this trlplet It is said that E has the (d)-Markovian property if E(d(B)' N A) &
d(B)' N B, .

The quasiconditional expectation given in the example of Definition 1 has the (d)-Markovian property.t

Let {4.}«=s be a filtering family of C*-algebras, and let d: & — § be a mapping such that d (e) <
‘a, e < B =>d(a)<d(p). Itis said that the family {E,,}.<s of quasiconditional expectations relative to the
triplets A4y < A: C A has the (d)-Markovian property if each Ej, has this property (i.e., if Eg,
(Auay N 4p) = Ayay [} Ag, @ < B (the commutant is understood in relation to 4 = C*-l_Lm A, which is the

C*-inductive limit of the family {4, }ees)).

$It may be proved that each quasiconditional expectation has the (d)-Markovian property.
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Definition 3. Let {4,},es and d be the same as they are above. The state  on 4 = C*-lim 4, is

c‘alled (d)-Markovian if there exists a family {Es.} of quasiconditional expectations relative to the triplets
A4e) S Aq © Ay which is such that ¢ (ag) = ¢ (g4 (ap) Vage= 44, a < B.

Remark 1, If ¢ is a (d)-Markovian state and {E;,} is the corresponding family of quasiconditional
expectations, then

Eﬂ,a (a) = ag (mod 9) Vo, E 44, a < ﬁ
The latter equation should be understood in the sense that
P (EB, o {8a)) = @ (ay) Ve € Agy o < B.

We shall continue to hold to this agreement further on, Specifically, if {Ea.} is another family of quasi-
conditional expectations satisfying the conditions of Definition 3, then Eg, , = E;, (mod ¢). Therefore, the
(d)-Markovian state defines the corresponding family of quasiconditional expectations uniquely. Moreover,

EY.u = Eﬁ,u °E'l. B(mOd qJ), a‘<ﬁ'<v~

Remark 2, The property of being a (d)~-Markovian state depends essentially on the family of local
algebras {4, },cyg . Further on the dependence will be assumed in the general case.

Let S be a topological space and ¥ a family of closed subsets of S such that
I) the union of all sets in & is equal to S;
ID if F = §, then S—F and OF (the boundary of F) belong to 5 .

The family of local algebras on S is the family of C*-algebras {4r}reg which is such that § satis-
fies I), II), and

) FC G= Ar = A; (isotonicity),
IV) AR = Ag-F (duality).

(For the open subset U C S, Ay is defined as a C*-algebra generated by all Ax, F = &, contained in
U, while the commutant is understood in relationto 4 = € * - lim Ar.) The context of the local algebras is

natural for formulation of the noncommutative Markovian property.
Definition 4, The Markovian state ¢ on A = C*-lim Ar is a (d)-Markovian state in which the mapping
of d is defined as d(F) = ¥ (the interior of F), F = &.

If ¢ is a Markovian state and {Eg r}rcc is the corresponding family of quasiconditional expectations
relative to the triplet 43 © Ar = A¢ , then the Markovian state can be expressed by the relationship

Eor(Agp N AT Ag s N Ar FSG, F, 6EF.

In the general case the relationship 4g p ) Ar = Asr does not hold. Therefore, the relationship Eg,r (4g ;N
Ag) C Asr, FC G, F, G=$, will be called "the strong Markovian property." Assume now that {4p}re® is
such that if F C G, then AG is generated by Ax and AGg-F. Inthis case we shall write AG = AF V AG-F

and say that the family {Af} is factorizable. Moreover, let EG,F be a conditional expectation; then it can
easily be seen that for G = §, Eg,r = EF is a strong Markovian property equivalent to the relationship
EF(Ag-F) C AsF. In the commutative case the family of local algebras is factorizable (see [6]) and the re-
lationship given, as can easily be shown, coincides with the Markovian property in the Nelson formulation,

it being true that the (d)-~Markovian property generalizes the analogous concept formulated by Dobrushin [1].

§2, The Uniformly Hyperfinite Case

Let A = C*-lim Mp,n;, where M[y,n] is a factor of the type Ipn, Pn € N, while all My ] are assumed
. —b

to have one and the same unity, For m = n we place Mm,n = Miom-nn [} Mion). I @ is a state on A, then

we use ¢[,n] to denote the constriction of ¢ on M[y,n] and ¢y the constriction of ¢ on Mfn,n] = Mp (which is
~-factor). The Markovian state will be a (d)-Markovian state, where the funct';on d is defined as d: [0,

n} — [0, n—1]. The Markovian property for the quasiconditional expectation Eni,n : Mione) = Mion) i8 €x-

pressed thus: Eny,n (Mians)) © Mn . The family {M, n)t is factorizable, and the Markovian property coin-

cides with the strong Markovian property.



THEOREM 1. Let ¢ be a Markovian state on A. Then ¢ defines the pair {(crn); 900} such that the fol-
lowing hold: (i) ¢, is a state on My; (ii) o, : Ma — £ (M,.,, M,) is a linear operator such that the mapping
@ Gnes & Min, nig) = Op (@) lapyl & M, iS pp-j-positive in the sense of [7] with a norm not exceeding 1,

(% (Mr41, My) is the space of linear operators from Mpyy into Mn.) (iii) Let by € Mj, oj(bj)* be conjugate
with respect to oj(bj), 0 =i =n, for each n € N. Then the equation

Ppo, nd (B0 - -+ b)) =[5, (By)" - .. <50 (Bo)” @0l @)

completely defines the projective family (go[o,n]). Conversely, each such pair defines a unique Markovian
state on A,

Proof. Let ¢ be a Markovian state. Then there exists a family {En,n—1} of quasiconditional expecta-
tions relative to the triplets Mio,n-2) & Mon—1] & Mion}, which has the Markovian property, and ¢ is com-
pletely defined by the inductive relationships

10,1 (2(0,m) = Ppo, n-1] (Bn, n-1(@po,m))  Vapo,n € Myon)- @

Since {M[o,n]} is factorizable, the quasiconditional expectation Ep p-y is defined by its values on Mp-4,n).
Let op, be defined by the equation

On (bn) [bna] = Eniy, 0 (b bnyy)y b My, buyy € Mo 3

Then the first statement in (ii) and (iii) derive, respectively, from the Markovian property and from Eq. (2).
From factorizability it follows that M, ,.,; = Rp,_, (M., we))T and Mo, oy = Ry, | (M,); therefore, positive-
ness of Epyy p is equivalent to pp-j-positiveness of the mapping a,-a,4; & My, n+1] = O (an) [a,.ﬂ] eM,,
and this proves (ii),

Assume conversely that {(op); <p0} is a pair satisfying (i}, (ii), (iii). The family (go[o’n]) is projected
and defines a unique state ¢ on A, Let E,.. o : My, ne1; — My, »; be a linear mapping that is defined by
means of {3) and the equation

En+1, n (b[o, n-1]" b[n, 51?1}) = b[o, n-1]" En+1, n (b[n, n+1])a b[o, n-1] & M[o, n-i]

The concepts presented above prove that Epyy p is a quasiconditional expectation and that the Markovian
property derives from (ii). The quasiconditional expectation Ep, iy, i8 defined by a composition for m =
n; the state ¢ satisfies the relationship (2) and is consequently Markovian, The theorem has been proved.

Remark 1, The fact that Eq. (1) defines a projective family of states may be expressed by the equa-

tion
_ op (by) [1] = b, (mod ¢). 4)
Remark 2. In the commutative case, (1) takes the form
Prong (Bo- « -« bp) =1 Prbye' Pacsbnoy - - o - Pobyewal, an

where tPk is a transposed stochastic matrix; w, is a stochastic vector; bk is a diagonal matrix, and w, ()=
;Z mu;, wy = (wy), u = (u;). If bk are projectors, then the right side of (1') yields the expression for joint
probabilities in a conventional nonuniform Markovian chain,

Assume now that Zp = op (1) for each n € N, The sequence (Zp) is called a sequence of transitional
matrices for the Markovian state ¢. The following concept justifies this name,

COROLLARY 1. The operator Z, e £ (M,., M,) is defined by the matrix (ETg), 1< i 7 < ¢ns
1< a, B < gnyy. Whose coefficients satisfy the relationships

_\';:)ari = gg‘.),’iz' )
An4l
2 E‘g;}.)aa = §;; (mod g). (6)

a=s}

Proof, From the property (ii) in Theorem 1 it follows that Zp is positive and therefore transforms
Hermite operators into Hermite operators, which proves (5). The relationship (6) is a particular case of
Eq. (4). .

T M, (4) is a matrix algebra of order n x n having coefficients in A,



Using Wn to denote the density matrix of ¢y, we derive the relationship Wp4y = WpZp, from (1); this
relationship represents the analog of the well-known relationship vp+y = vnPp (Pn is a stochastic matrix;
vp is a stochastic vector) for a conventional Markov chain, One may write the equation

W,=WZ(s 1), st n

in a more general way, where Z(s; s) = 1, Z (s; s + 1) = Zg, and Z(s; t) satisfy the noncommutative Chap-
man—Kolmogorov equation Z(r; t) = Z(r; s) + Z(s; t), r =s =t. It may be proved that Theorem 1 also
holds for continuous parameters of these equations; then applying reasoning which is analogous to the rea-
soning used in the commutative case, we derive the noncommutative direct Kolmogorov equation (d/dt)W(t)=
W(t)S(t), where the operator B — BS(t) transforms Hermite operators into Hermite operators with a zero
trace for each t, A simple example of an operator of this form is B — i [B, H(t)] = i(BH(t) —H(t) B), where
H(t) = H{t)*. Substituting this operator into the noncommutative direct Kolmogorov equation, we obtain
(d/dt) W(t) = i[W(t); H({t)] (i.e., we obtain the Schrddinger equation for the density matrix). Conversely,
starting from the Schridinger equation, we obtain the semigroup K(s, t) of matrices whose coefficients
satisfy the relationships (5) and (6) which define a noncommutative stochastic matrix,

§3. The Uniform Case

Unlike the commutative case, the Markovian state is not defined by just the initial distribution ¢, and
the sequence (Zy) of transition matrices; it is necessary to know the sequence (op). In this section it is
proved that nevertheless, the ergodic behavior of ¢ depends solely on the transition matrices, Preserving
the notation in the preceding section, let us consider the case when Mp ~ M does not depend on n. In this
case Az@ M , where M 'is a fixed Iq-factor. We use Jn to denote the insertion of M into the n-th factors

and products, The shift operator T in A is an algebra endomorphism, which is defined by the property
ToJy = Jpyy (k> 0). It is said that ¢ is stationary if ¢ - T= ¢, let ¢ = {(on); ‘Po} be a Markovian state,
We shall consider linear operators o, : M — £ (M) which are such that £,.,. , (J (¢,) Jnsy(@na)) =
= Jn [on (an) [anﬂ”'

LEMMA 1. Let ¢ = {(on); ‘Po} be a Markovian state on A, and let Zp = on(1) for each n. Then ¢ is
stationary if and only if 1) Z,0, = @, , 2) 6, == g, (mod @), ¥n & N.

Proof, The sufficiency is obvious, If ¢ is stationary, then for each b € M the equation
@ (1 (8) = [0y (B)* Zopol (1) = [og (0)* 9ol (1) = @4 (D)
holds, whence Z: ®y = @y 0y = 0y (mod @), The properties 1) and 2) derive from this by induction,

Thus, the stationary Markovian state is defined by the pair {o; ¢,}, where a(1)* ¢, = ¢,. Since we
shall consider Markovian states for different initial data ¢,, it is assumed in this section (in accordance
with the agreement adopted in the commutative case) that Egs. (1) and (2) in Lemma 1 hold absolutely and
not only for modulo ¢,

For a stipulated ¢ = {o; <po} let the linear transform &m n) : Mim, »y — £ (M), m < » , be defined as
follows:
T (bm)- « oo Tn(bp) = 5Gm) [5Gmi) [---5@N 1.1, bEM, m<<in.
Let us place pr = (o, »} (Mpo, ))* 9o = M* for k€N,

THEOREM 2. Let ¢ = {0; ¢,} be a stationary Markovian state with the transition matrix o(1) = Z.
Then if 1 is the sole unitary eigenvalue of Z and at the same time is prime, it follows that ¢ is a factor-

state, Conversely, if ¢ is a factor-state and G Sk = M*, then 1 is the sole unitary eigenvalue of Z and is
k=1 .
prime,

Proof, Necessity, First of all note that if k <m =n, are stipulated, then for each b € M, k], c €
M{m,n] We have ¢(b-c) = [6['0, K] (0) Pol (Z”‘"‘@lm, () {1]) . Moreover, from the properties of quasiconditional
expectations it follows that Z |l =1 and || &, » (¢) [11]| <{lc]l. From the fact that V — VZ conserves its
trace it follows that Z(1) = 1. Therefore, from stationarity in the results obtained by S. Kakutani and K.
Yoshida [8] it follows that lim 2* = { ® ¢,, where (1 ® ¢,) (a) = 1-9(a), a =M. Moreover, from stationarity

it follows that ¢, (&(m, n) (¢) Ml)= Qo (278, o1 (0) [1]) = 9 () . Therefore, if k € N and b € M[o,k] are stipulated,
there exists a mq € N such that for n = m = m; and Ve € M, ,; We have




lo (b —o B e@|<]el. 8)
From the arbitrariness of n, it follows that the inequality (8) is equivalent to the factorizability derived by
R. T, Powers [9], and therefore ¢ is a factor-state,
Assume conversely that ¢ is a factor-state, Then Eq, (8) holds, and using the compactness of the
unit sphere in M[ k], one may write it in equivalent form
[¢ (27 — 1@ el ) [ ell Ve M,

for eachy == 6{0, 1 (0) gocll 8]l << 1. But from the inequality presented above and from the statement of
the theorem it derives that lim 2 = 1 ® ¢, with respect to the norm. From this it follows (see [8]) that

A and-]

1 is a prime eigenvalue of Z, being unique modulo 1.

-84, Gibbsian States

In this section we prove the following theorem,

THEOREM 3. Each one-dimensional Gibbsian state is a limit of the inverse (d)-Markovian states
for d — = in the H, Araki sense [3]. Under these conditions convergence is exponentially fast,

i

The proof of Theorem 3 will be split into three steps:
(1) the structure of the inverse (d)-Markovian space is described;
(2) the class of states which are examples of inverse (d)-Markovian states is formulated; -

(3) it is proved that by means of states constructed in (2) one may approximate the arbitrary Gibb-
sian state constructed by H. Araki {3].

Definition 5. Let M be a matrix algebra of the type /,, 4 = @ M ; let ¢ be a state on A, It is said
- N
that ¢ is an inverse (d)-Markovian state if a family {E[, 1}, 1, n1}nen exists which is such that

1) Egg, n1r 11, m1 * Mo, i} — My, ny is a quasiconditional expectation having the (d)-Markovian property,
where d is defined on the set of all segments of the type [1, n] (n € N) by the formula d: {1, n] — [d+2, nl.

2) For eachn =d + 1 and agy, n) € M[y, ) the equation

P (a[o.n]) =Q (TcE[o, nl.[1,0] (ago, n])) 9)

holds, where T¢: M[j o] = A is an algebra homomorphism that is defined by the equation T¢ ° Jk = Jk-y
k = 1).

According to the general definition 2 (see § 1) the (d)-Markovian property can be expressed in this
case by the relationships Ep,, ), (1, n1 (Mo, a+1)) &= My, 44y for eachn € N,

The following theorem determines the structure of inverse (d)-Markovian states,

THEOREM 4., Let ¢ be an inverse (d)-Markovian state on 4= @ M. Then a pair {o; 90, o1} exists

which is such that: 1) @[y, q] is the state on M[y,d]; 2) o: M — £ (M, 4) is the linear operator such that
the mapping ¢ ® ajpa1 = M @ Mio, a1 — 04a) lag, 1) E Mpp, 1 i8¢ L_positive (in the sense of [7]) with a
norm not exceeding 1; 3) for each a; € Mj, 0 =i = n, the equation

Ppo,m o (@)« - - Tnig)) =10 (@a1)" - -+« - 5(@n) " Ppo,a)] (Jo (@0} - - - -+ Jal(aq))

defines a projected family (cp[o’n]). Conversely, each such pair defines a unique inverse (d)-Markovian
state. - .

Remark, If one compares Eq. (3) in the theorem cited above to Eq. (1) which describes the general
structure of Markovian states, it is immediately evident that for d = 0 the latter is derived formally from
the former by inverting the sequence of the indices {d+1,..., n. Itis this which justifies the name
*inverse Markovian state."

Proof of Theorem 4, Let ¢ be an inverse (d)-Markovian state on A, and let {E;,, ,j, 11, nj}nen be the
corresponding family of quasiconditional expectations. Then ifa; €M, 0 =i =d + 1, it follows that for
eachn=d+1 )




(T, n1, 1.7 (Jo (@0) - - - -+ Jau1 (8a11)) =9 (o (0) - - - - * T (Bair))- (10)
Let us define the mapping oi” : M — £ (M(q, o) :
ot (@as1) [8g0, a1} = TEio, 1, 11, n) (810,a1* T asa (as1))-
Then by virtue of the (d)-Markovian property
Ego,ny, 11,1 (20,01 Va1 (Ga)) E My, 0y VREN

for each apy, ) = My, a1 @as = M . Therefore, the mappings 0'1(“) are correétly defined. But then from (10),
it follows that

®p0,41 (6 (@an1) [810,a1]) = P10, a1 (65 (8ar1) 10, 13])

for each ay, & M and ag 5 = M(,, 4. In this case we write, as usual, of” = o{**¥ = ¢ (mod ¢) Vrne N.
Finally, the equation in the statement 3) of the theorem derives from the properties of quasiconditional
expectations for repetition of the procedure described above,

Conversely, let the pair {o; ¢, 41}, satisfying the conditions 1), 2), 3) be stipulated. Then the pro-
jective family (<p[0,n]) defines a unique state on A, Let us define the family {E(,, 1, i, #j}nenx by Mmeans
of the formula v

Ego, ny, 11, n3 (B10, d+11* 8pasa, ) = Bpase,ny Epo, n1, 11,7 (210, as11)>
T'5(84+1) [a10,a1} = Efo. n}, 11,71 (210, a3 a1 (da2))s

where T denotes the endomorphism of a rightward shift and a,, p; & Mg, 51> @1 & M. Then, by virtue
of the factorizability of the family (M[o,n])’ each Ep,, 4}, 11, »3 1S a quasiconditional expectation satisfying
the (d)-Markovian property, where the function d is defined above, Moreover, Eq, (9) derives from the
condition of the theorem, Therefore, ¢ is an inverse (d)-Markovian state. The theorem has been proved.

Note that the congruence condition for the family (‘P[o,n]) is equivalent to the equation ¢ (1)* @g, a1 =
Pro, d) ,

In order to formulate specific examples of inverse (d)-Markovian states the following lemma is
useful,

. LEMMA 2, Let ¢ (a state on A) be defined by the equation $(Q) = tp(K:QKo)/ 7 (K:K), Q€ A, where ¢
is a state on A, Assume that the following conditions are satisfied: 1) K; € My, q] (where d € N is fixed).
2) An operator K € My, d) and a number A > 0 exist which are such that ¢,£ = Ap, where % denotes a lin~
ear operator A — A, defined as ¥ (@) = .7, (K*QK); (75: A =M, ] is defined as T, (J, (a)b) = b-7 (a);
ac=M; be= My, «3 ). Then ¥ is an inverse (d)-Markovian state,

Proof, Let ag, =M, a1, 23,1 = M. We place
‘ 8 (8441) [810.a3] = AT {To (K ago,q1 K 4 (KoBann Ko)-
Then for n >d , ‘
V(o (00) -+ * Ta(0a)) = [0(8ass)" 6 (Base)” - - - - - 6(@n) b0, 1] 0 (a0) - - - T (0))-

Moreover, the mapping Ja.; (2441)- 6o, a3 = 0 (@a+1) [apo, 43} 18 completely positive. From Theorem 4 it then
follows that ¢ is an inverse (d)-Markovian state.

From Lemma 2 it is not difficult to derive the following,

Proof of Theorem 3, Let ¢ be a Gibbsian state on A corresponding to the finite potential ¢, H,
Araki [3] proved that such a state always exists and has the form $#(Q) = qo(Ko*QKo)/ ¢ (KFKy), Q € A, where
K, € A, and ¢ satisfies the relationship ¢, £ = Ap, Where £: A — 4 is the linear operator defined by the
equation £ (Q) = T.i,(K*QK), Q@ = A, for a certain K€ A, The operators K, K; can be inverted, and there-
fore they may be approximated in the norm by the sequences (Kg), (K,,g) and inverse operators which are
such that K4, Ko,d € M|y 4. From the reasoning presented by H, Araki ({31, § 7) it then follows that states
#(d) on A and a number Ag > 0 exist which are such that ¢{’%; = A0, and %, (Q) = TF, (KiQKs). Con-
sequently, by virtue of Lemma 2 the state

$2(Q) = 99 (Ko, QKo 2)/9® (Ko, 4 Ko, a)



is an inverse (d)-Markovian state for each d € N, But £, and consequently ¢ also, depend continuously on
K (see I3], § 5). Hence, it follows that (liim P = ¢ (in the norm), This proves the first statement of the

theorem, The second statement derives from the fact that the approximating sequences may be determined
by truncating (starting with the d-th term) all series in the expression for K and K, by means of the Tomo-
naga—Schwinger —Dyson formula (see [3], § 6). The theorem has been proved.
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