BOUNDARY CONDITIONS FOR INTEGRABLE EQUATIONS

E. K. Sklyanin UDC 517.95

In the study of the equations on a finite segment that are integrable with the help
of the method of inverse problem it is convenient to impose periodic boundary conditions
or their variants [1, 2]. Below we describe a new class of boundary conditions, compatible
with complete integrability, for nonlinear equations that are integrable in the framework
of ultralocal r-matrix scheme [2]. The idea of the method, proposed here, has been suggested
to the author by the article [3] of Cherednik.

1. We fix a natural number D and a matrix-valued function r of a complex parameter
u, r(u) = Matp(C) @ Matp (C), that satisfies the classical Young—Baxter equation [2] and the
condition r(—u) = —r(u). Let 4 be an algebra with Poisson bracket and T be a function from
C into Matp () that satisfies the following well-known relation for the monodromy matrix [2]:
(T0, 7@} = [r_, TO1C)Y, (1)
where X(1) = X(u;) idp, x(2) = idp ® X(u,) V.X: C > Matp, r+ = r(u; * u,). Also, let
Ky (a = t) be functions from C into Matp (C) that satisfy the relation
[r_, KVED] + EOr KD — K@y kD) = 0, (2)

Proposition 1. The function &:C — Maty, (#)

I W=7 @) K_(u) T (—u) (3)
satisfies the equation

O, g —(r, gOFO| L g g@ g g0, (4)

Proposition 2. The quantities t{u)

TwW=tr K, (g (w=1tr K, () T (u) E_ (u)T-! (—u) (5)
are in involution: {t(u;), t(uy)} = 0 Yu,, u,.

Propositon 2 enables us to interpret T(u) as the generating function of the commutating
integrals of motion of a Hamiltonian system with the state space J£.

2. In the examples given below, T is constructed either as the product T(u) = Ly(u) ...
L;(u) of L-operators [2] L,(u) that satisfy (1) after the substitution T(u) = L,(u) (the dis-
crete case), or is determined from a differential equation [2]: T(u) = t(u; x4, x_), 3T(u;
x, x_)/3x =% (u, x)T(u; x, x_), T(u; x_, x') = idp, where & (s, z) satisfies

{ZD (21), ZO (22)} = [r_, P (z) {L L@ ()] 8 (21 — 2) (6)

(the continuous case). In the continuous case, the algebra..¢ is formed by functions on

the segment [x_, x4] and is completely determined only after the specification of the boundary

conditions for x = x4+ (cf. [2, Chap. 1, Sec. 1, pp. 19-22]). In this connection, we will sup-
x4

pose that there is given a local Hamiltonian H,= Sh(ndz such that {H,, trT(u)} = 0, and

the equation of motion 3Z(u, x)/dt = {Hy, £ (u, x)} (for periodic boundary conditions) can

be expressed for x e (x_, x4) in the form

0L (u, .t)/at = oM (u, .t)/a.‘t + [ (u, 2), £ (u, 2)], (7)
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where £ (u, z) & Mat, (-£) is the corresponding M-operator [2].

Proposition 3. Let the dynamics on +# be given for the equation of motion (7) for x =
(x_, x4+) and the following boundary conditions for x = x4:

K, () S (du, z,) = M Fu, z,) K, (1), (8)
and t(u) be given by Eq. (5). Then dt(u)/dt = 0 Vu.

In all the examples considered below, it is immediately verjfied that the boundary con-
ditions (8) are equivalent to the addition of the boundary terms Hy >~ H = H, + Hyp, {H, t(u)} =
0vu to the Hamiltonian H,.

3. Examples. a) Nonlinear Schrodinger Equation {1, 2]: iy = —Ygy + Zkﬁwf; The LM
pair is & (u, x) = —iuog/2 + ikP(x)oyp — iP(x)o_, £ (u, x) = i(u?/2 + kPPp)oy + (Vg — iuploy +
(vg + iup)o_, where o) , 3 € s1(2) are the standard Pauli matrices, ox = (o; * i0,)/2. The

Poisson structure is {¢(x), ¥(y)} = 0, {y(x), ¥(y)} = i8(x — y), and the r-matrix r@=—x3 -
%,

0y ® 0y/2u. To the choice of the matrices K¢(u) = uog + 194, 51 = 94 there corresponds the

o
Hamiltonian H = S @xtx + ¥P) dz + B 9B, b, where ¥+ = p(x4+), and the boundary conditions
o=+

X

v+' £ 8494 = 0, which coincide with the standard mixed boundary conditions for the Strum—
Liouville problem.

b) Sine-Gordon Equation [1, 2]: @ =p., py=Qu—sing, &L (4 &) =i(—0;shucos(p/2)—
0,p/2 + 0, ch u sin (@/2)/2, A (u, z) = i (03 ch u cos (P/2)— 0;0,/2 — 0y sh u sin (§/2))/2. {p(2), @ W}I={p(z), DWW =0,
(@), ¢W=38E—y)r (@ =10Q orcthu+ (0; ® 03+ 65 @ 05)sh~? u]/16, K, (u) = osshu -+ i, T)i =4,

X4
1 B P , . ®
H=—§.-S(p2+cp§—-cosq))dz— E 4ﬁacos—2§—, cpii20i51n—2¢—=0.
X O==rf

¢) Landau—Lifshitz Equation [2]:8,=SxS, +SxJTS, S=(Sy 8 53, (S,

3 .
S)=1, T=diag(Ju, Je, Js)y, L (u, )= | iy, (u) S, (2) 50y M (w, 2) =1 D) (wg, (w) X
=1 afy
X sasﬁs;e“ﬂ" + 8,000 () wy (u) | ™)), wy (u) = p/sn (u, k), wa(u)=pdn(u, k)/sn(u, k),
ws (u) =p on (u, K)fsn (u, k), p=(Js —J)2, k= ((Jo— J1)/(Js — T1))'T2, {Sp(2), Sgu)}=
‘ 1 : o -
== N 8, () =g D () 5y ® 5 Koy ) = 2iy(s) - 20, 50n, By

[
X4

1 ~
= 0y H= g § 5,0 8) 48, 790 ds+ 38,8 (5,), 5 (e.) X (B0t S () = 0.
X o=

N
d) Toda Chain [1, 2]:{p,, P} ={tm 9.} =0, {(Pp 2.} =08, H= Z P§/2+
: .

N—1

+ 2 it (ale‘h + -%—1- egq') + (aNe—qN + %N- e—qu) ’

q
. U —p, —en oy u _ XN BN”
L"(")=( S o ) K‘(”)=(—ﬂ1u al)' K*‘”’“(—u “N)»

As far as the author knows, the complete integrability of the Hamiltonian H with four
arbitrary constants o, 8;, ay, and By has not been mentioned in the literature (see, e.g.,

[51).
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GENERALIZED TODA FLOWS, RICCATI EQUATIONS ON THE GRASSMANIAN,
AND THE QR-ALGORITHM

L. E. Faibusovich UDC 517.9

The connection established in [1] between the QR-algorithm and a class of dynamical
systems, called generalized Toda flows, has served as the impetus for a number of publica-
tions. As it turned out, the QR-algorithm proposed in [2, 3] is one of the most effective
algorithms for finding the spectra of various classes of matrices [4]. Its modification
by means of numerical methods of integration of dynamical systems, which leads to a signifi-
cantly simplified computational scheme, is undoubtedly of interest. This note is devoted
to a detailed study of the asymptotic behavior of the generalized Toda flows. Our approach
is based on an observation of Kostant, Guillemin, and Sternberg [5], according to which this
behavior is determined by the action of a one-parameter group of linear transformations on
the manifold of complete flags, i.e., in the language of mathematical system theory, by the
asymptotic behavior of a matrix Riccati differential equation (see, for example, [6-8]).

Given a complex n x n matrix Y, let Y =Y, + Y, + Y_, where Yy and Y_ are strictly upper
and, respectlvely, lower triangular matrices and Y, = Re (Y,) = iIm(Y,) is a diagonal matrix.
We put M(Y) =Y_~Y * 4+ iIm(Y,), where Y _* denotes the Hermitian conjugate of the matrix
Y . leen an n x n matrix X,, let G be a complex analytic function defined in an open subset
of C, which contains the spectrum of X;,. We call the phase flow of the dynamical system

X=1[X, 1, (6 (X)), X (0)=X, (1)

a generalized Toda flow [9]. Here, [ , ] designates the usual commutator of matrices. The
system (1) can be incorporated in the Kostant—Symes—Adler scheme [5]. Its solution has the
form X(t) = Q*(t)X,Q(t), where ‘

exp (1G (X)) = Q () R.(2) (2)

is the decomposition into the product of a unitary matrix Q(t) and an upper-triangular matrix
R(t) with real nonnegative diagonal entries {the QR-decomposition). Taking G(z) = In(z = c),
with ce C a constant, we deduce that the values of the solution X(t) of problem (1) at t =

0, 1, ... are the successive iterations of the QR-algorithm with constant shift [9].

For a real number y we let E(y) denote the direct sum of the root subspaces of the matrix
G(Xo) corresponding to the eigenvalues A with ReX = y. Let y; < Y; < ... < Y be the list of
all real numbers for which E(yj) # 0. We put P; = Z{E(YJ) j s i}, Ny .= Z{E(y ): jzm+
1 -1}, i =[1l, m]. Also, let mj: C0'=» E(Yl), ie [1, m] denote the prOJectlon onto E(y;)
parallel to I{E(y3): y # i}. Given a subspace V ¢ €N, we put II4(V) = Z{n;(V n Py): i [1,
m]} and I_(V) = %n (VnNj): ie [1, m]}. Further, let ey, i = [1, n], be the standard basis
in C" and let vy denote the subspace sganned by ey, j = [1, i]. We put V4 t = I+(vy), ie [1,
n]. Clearly, O cvV;itcv,tc .., c Vi Ch are complete flags of subspaces in Cn We choose
in CM" orthonormal bases e1+, e;i , ie [l, nl, such that the vectors e;t (e;”) with je [1, i]
span the subspace Vj + (respectively, V;7), ie [1, n]. Let Qi be the unitary transformatlons
in CM gpecified by the conditions Qq_-e1 = e1+, ie [1, n]. Flnally, let X4 = Q+*X,Q+ = Hxlj-ﬂ
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