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In ~he study of the equations on a finite segment that are integrable with the help 
of the method of inverse problem it is convenient to impose periodic boundary conditions 
or their variants [i, 2]. Below we describe a new class of boundary conditions, compatible 
with complete integrability, for nonlinear equations that are integrable in the framework 
of ultralocal r-matrix scheme [2]. The idea of the method, proposed here, has been suggested 
to the author by the article [3] of Cherednik. 

i. We fix a natural number D and a matrix-valued function r of a complex parameter 
u, r(u)~ Mat D(C) ~ Mat D(C), that satisfies the classical Young-Baxter equation [2] and the 
condition r(-u) = -r(u). Let ~ be an algebra with Poisson bracket and T be a function from 
C into MatD(~) that satisfies the following well-known relation for the monodromy matrix [2]: 

{Ta), T( ~)} = [L, T(~)T(s)], 

where X (~) ~ X(u~) ® id D, X (~) ~ id D @ X(ua) v.X: C + MatD, r± ~ r(u~ ± ua). 
K~ (~ = ±) be functions from C into Mat D (C) that satisfy the relation 

Also, let 

(1) 

[L, K(~)K (~)] + K(1)~K (2) -- K(S)~K (I) = O. 

Proposition i. The function ~:E ~ Ma~ (~) 

(2) 

satisfies the equation 

~r (~) ---- ~ (u)/c_ (u) ~-~ ( - u )  (3) 

{~(1), ~)} = [~, ~a)~(2)] + ~(Z)r+~(~ _ ~(~)r+~rO). 

Proposition. 2. The quantities ~(u) 

(4) 

~(u) ~ trK+(u)~ (u)= grK+(u)T(u)K_(u)r-l(--u) (5) 

a r e  i n  i n v o l u t i o n :  { ~ ( u l ) ,  ~ ( u ~ ) }  = 0 V u ~ ,  u=.  

Propositon 2 enables us to interpret ~(u) as the generating function of the commutating 
integrals of motion of a Hamiltonian system with the state space ~.~ 

2. In the examples given below, T is constructed either as the product T(u) = LN(U) ... 
L1(u) of L-operators [2] Ln(u) that satisfy (i) after the substitution T(u) = Ln(u) (the dis- 
crete case), or is determined from a differential equation [2]: T(u) E t(u; x+, x_), ST(u; 
x, x_)/Bx =~(u, x)T(u; x, x_), T(u; x_, x_) = id D, where ~(=, ~ satisfies 

{~(~ (~, ~(~) (a)} = It_, ~a) (a) + ~¢~) (a)] ~ (a - ~) ( 6 )  

(the continuous case). In the continuous case, the algebra ~ is formed by functions on 
the segment [x_, x+] and is completely determined only after the specification of the boundary 
conditions for x = x± (cf. [2, Chap. i, Sec. i, pp. 19-22]). In this connection, we will sup- 

x+ 
pose that there is given a local Hamiltonian H0= I h(z)dz such that {H 0, tr T(u)} = 0, and 

x_ 

the equation of motion 8~(u, x)/@t = {H0,~ (u, x)} (for periodic boundary conditions) can 
be expressed for x ~ (x_, x+) in the form 

a~  (u, x)/at = aJ¢ (u, :~)/az + I ~  (u, z), .~ (u, ~)1, (7) 
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where J4(u,x)~MatD(~)is the corresponding M-operator [2]. 

Proposition 3. Let the dynamics on ~ be given for the equation of motion (7) for x ~ 
(x_, x+) and the following boundary conditions for x = x±: 

~± ( u ) ~ ( ± u ,  ~±i = ~ ¢ ( ~ u , ~ ± ) K ±  (u), ( 8 )  

and  ~ ( u )  be  g i v e n  by Eq. ( 5 ) .  Then d ~ ( u ) / d t  = 0 Vu. 

I n  a l l  t h e  e x a m p l e s  c o n s i d e r e d  b e l o w ,  i t  i s  i m m e d i a t e l y  v e r ~ . f i e d  t h a t  t h e  b o u n d a r y  c o n -  
d i t i o n s  ( 8 )  a r e  e q u i v a l e n t  t o  t h e  a d d i t i o n  o f  t h e  b o u n d a r y  t e r m s ' H 0  + H = H0 + H b ,  {H, < ( u ) }  = 
0 ¥ u  t o  t h e  H a m i l t o n i a n  H o. 

3 .  E x a m p l e s .  a )  N o n l i n e a r  S c h r ~ d i n g e r  E q u a t i o n  [1 ,  2 ] : '  i S t  = -~_xx + 2 ~ $  =: The LM 
pair is~ (u, x) = -iua~/2 + i~(x)a+ - i~(x)a_,~(u, x) = i(u2/2 + ~¢~)% + ~(~x - iu~)a+ + 
(~x + iu$)o_, where oz,:,~ ~ sl(2) are the standard Pauli matri¢es, o~ ~ (oz ~ i~)/2. The 

Poisson structure is {~(x), ~(y)} = 0, {~(x), ~(y)} = i6(x - y), and the r-matrix r(u)=--u~- 
~, 

o= ~ s~/2u. To the choice of the matrices K~(u) = u% + i%~, ~ = %~ there corresponds the 

H~iltonian H = ~¢~ + u~¢)dx + ~ ~=$=, where ~ ~ O(x~), and the boundary conditions 
~_ ~=~ 

~' ~ ~ = ~0, which coincide with the standard mixed boundary conditions for the Str~ 
Liouville problem. 

~) Sine-Gordon Equation [1, 2]:~=~, ~=~--s~n~, ~(=, @=~(--~=os(~/~)-- 
~p/2 + % ch u sin (~/2))12, ~ (u~ ~ = ~ (~3 ¢h u cos ($/2)-- a ~ / 2  - -  a~ sh u sin (~/2))/2. {~ (~, $ (y)} = {p (~, p (y)} = 0, 
{p (~, ¢ (~)} = ~ @ - ~), ~ (~) = I~  @ ~ cm u + (z~ @ % + ~ @ a~):sh-~ u]/16, K~ (~) = ~, sn u + ~ ,  ~ = ~ ,  

-t~+~ J - Z -V-,~' H = (p~ + q~ --  cos q)) dz --  4% cos 
~ ~ = ~  

qQ _ 20±  si= - - f -  = o. 

c) Landau-Lifshitz Equation [ 2 ] : S t = S x S~ + S X ~S, S = (S,, S,, S~), (S, 
S 

S ) = i ,  ~'=diag(Jx,$~,Ja),  ~ E ( u , z ) =  ~ iw~(u) Ss(x)s~,  ~ ( u , X ) = i ~  (w=(u) X 
~=I ~y 

X %S~S~S ~sv + 8 = % ~  (U) ~V (=) I s=~v I), z* (s) = O/Sn (=, k), ~ (~)  = ~ dn (u, k) [ sn (s, k), 
wa (u) = p on (u, k)/sn (u, k), p = (?a --  ?0'/'/2, k = ((?, - -  $,)/(6 --  ?0) v', {8a (z), 8a(y)} = 

~ " 
' I ~ ~a (u) % N %, = --  s ~ S ~  (~) 5 (~ --  ~), r (~) = ~ g~(~) = 2~,(=) + ~ z ~ ,  ~ = 

- ~ ~ 

:'~, "=+~+[(S., S.)+(S,~S)]dx+ 2"~S.(.), S(.~)~(.~e,~S'(m~))=0. 
~ ~ 

N 

d) Todd Chain [i, 2]:{p m, pn)={qm, _qn}=0, (~m,q~}=Sm~, //=Zp~/2 q- 
n=l 

~--I 

+ 2 .q~+1~ * (~leq' + ~ ~') + (~e~ + g ~-~) , 

). :( 
(~-~' --~ K_(~) --~ ~ ' ~ I. L n  (~) = ~ . ~ n ,  0 

As far as the author knows, the complete integrability of the Hamiltonian H with four 
a r b i t r a r y  c o n s t a n t s  ~ ,  ~ ,  ~N, and  BN h a s  n o t  b e e n  m e n t i o n e d  i n  t h e  l i t e r a t u r e  ( s e e ,  e . g . ,  
[5]). 

i. 
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GENERALIZED TODA FLOWS, RICCATI EQUATIONS ON THE GRASSMANIAN, 

AND THE QR-ALGORITHM 

L. E. Faibusovich UDC 517.9 

The connection established in [i] between the QR-algorithm and a class of dynamical 
systems, called generalized Toda flows, has served as the impetus for a number of publica- 
tions. As it turned out, the QR-algorithm proposed in [2, 3] is one of the most effective 
algorithms for finding the spectra of various classes of matrices [4]. Its modification 
by means of numerical methods of integration of dynamical systems, which leads to a signifi- 
cantly simplified computational scheme, is undoubtedly of interest. This note is devoted 
to a detailed study of the asymptotic behavior of the generalized Toda flows. Our approach 
is based on an observation of Kostant, Guillemin, and Sternberg [5], according to which this 
behavior is determined by the action of a one-parameter group of linear transformations on 
the manifold of complete flags, i.e., in the language of mathematical system theory, by the 
asymptotic behavior of a matrix Riccati differential equation (see, for example, [6-8]). 

Given a complex n × n matrix Y, let Y = Y+ + Y0 + Y_, where Y+ and Y_ are strictly upper 
and, respectively, lower triangular matrices and Y0 = Re (Y0) = i Im (Y0) is a diagonal matrix. 
We put H0(Y) = Y_- Y_* + i Im (Y0), where Y_* denotes the Hermitian conjugate of the matrix 
Y . Given an n × n matrix X0, let G be a complex analytic function defined in an open subset 
o~ C, which contains the spectrum of X 0. We call the phase flow of the dynamical system 

X = Ix, n0(~(x))], x (0)= x0 (i) 

a generalized Toda flow [9]. Here, [ , ] designates the usual con~nutator of matrices. The 
system (i) can be incorporated in the Kostant-Symes-Adler scheme [5]. Its solution has the 
form X(t) = Q*(t)X0Q(t), where 

exp(tG(Xo)) = Q(O ~ ( ~  (2) 

is the decomposition into the product of a unitary matrix 0(t) and an upper-triangular matrix 
R(t) with real nonnegative diagonal entries (the QR-decomposition). Taking G(z) = in (z - c), 
with c ~ C a constant, we deduce that the values of the solution X(t) of problem (i) at t = 
0, i, .i. are the successive iterations of the QR-algorithm with constant shift [9]. 

For a real number 7 we let E(y) denote the direct sum of the root subspaces of the matrix 
G(X0) corresponding to the eigenvalues % with Re l = y. Let ~i < 72 < .-. < 7m be the list of 

~ ii real numbers for which E(~ i) ~ 0. We put Pi = Z{E(yj):j ~ i}, Ni.= E{E(~j): j ~ m + 
- i}, i ~ [i, m]. Also, let ~i: cn + E(~i), i E [i, m] denote the projection onto E(Ti) 

parallel to Z{E(~): y ~ i}. Given a subspace V c C n, we put H+(V) = E{~i(V 0 Pi): i ~ [i, 
m]} and H (V) = Z~I(V N Ni): i ~ [i, m]}. Further, let ei, i E [i, hi, be the standard basis 
in C n and-let V i denote the subspace spanned by ej, j ~ [i, i]. We put Vi± = H+(Vi), i ~ [i, 
n]. Clearly, 0 c VI± c V2 ± c ... c Vn± = C n are complete flags of subspaces in-C n. We choose 
in C n orthonormal bases ei +, ei-,' i~ [i, n], such that the vectors e~ + (ej-) with j ~ [i, i] 
span the subspace Vi+ (respectively, Vi-), i ~ [i, n]. Let Q+ be the~unitary transformations 
in C n specified by the conditions Q±e i = el±, i ~ [i, n]. Fi~ally, let X± = Q±eX0Q± = l~xij±ll. 
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