
VARIETIES OF MODULES OF F-SHEAVES 

V. G. Drinfel'd UDC 513.6 

The present article is the first in a series of papers containing a detailed account 
of the proof of the part of Langiand's conjecture for GL(2) over a global field k of charac ~ 
teristic p > 0 dealing with constructing a map Z 2 + Ei, where E~ is the set of irreducible 
two-dimensional representations over ~, £ ~ p, of the Weyl group of the field k, continu- 
ous in the Z-adic topology and having only finitely many branching points, and E= is the 
set of irreducible representations of GL(2) over adeles of the field k appearing in the space 
of the ~.-valued parabolic forms. A brief account is contained in [2, ii]; see also [12, 
13]. The existence of the inverse map E~ + E= has been proved in [4] and, by a different 
method, in [14, i$]. 

The general scheme of constructing the reciprocity map E= + E~ has been presented in 
[2, 11-13]. We only recall that the main role is played by varieties of modules of F-sheaves 
of rank 2: roughly speaking, the required £-adic representations of Gal ~Q/Q), correspond- 
ing to parabolic representations ~ of the group GL (2, A) such that ~ belongs to a discrete 
series are realized in cohomologies of varieties of modules of elliptic curves (cf. [16]). 

The present article studies geometry of varieties of modules of F-sheaves. The conse- 
quent articles of the cycle will deal with computing the ~-functions of these varieties (in 
the case of rank 2), constructing their compahtifications (also for rank 2), and the proof 
of existence of the reciprocity map E= + E~. 

I dedicate this article to my teacher Yu. I. Manin in connection with his 50th birthday. 

The following notation is adopted throughout the article: k, fixed global field of 
characteristic p > 0; F~, field of constants of k; X, smooth projective irreducible curve 
over F~, corresponding to k; ~ is the adele ring of k; Ov, completed local ring of a point 
v~X; if D is a finite subscheme in X, then A D = H°(D,©.D); IDI is the order of D. We write 
"a scheme" where one would write "a scheme ovez F~." If Y and Z are schemes, then Y × Z 
denotes the product of Y and Z over F~,. Similar conventions are adopted for rings and their 
tensor products as well as for morphisms of schemes or rings. The Frobenius endomorphism 
of a scheme S (relative to F~) is denoted by Fr S or Fr. If Y is a closed subscheme in Z, then 
we identify sheaves of Oz-modules with their direct images under the inclusion Y ÷ Z. In 
particular, if a sheaf of Oz-modu!es is referred to as an invertible sheaf on Y, then it 
is meant that it is a direct image of such a sheaf. 

i. F-Sheaves 

We recall the notion of an F-sheaf introduced in [2, ii] (note that F-sheaves are called 
Frobenius-Hecke sheaves or FH-sheaves in [12] and "shtukas" in [13]). 

Definition. A left F-sheaf of rank d over a scheme S is a diagram 

yZ 
(i.i) 

where ~ and ~ are locally free sheaves of Oxxs-modules of rank d, i and j are inclusions, 
the cokernel of i is an invertible sheaf on the graph F~ of some morphism ~: S + X, the 
cokernel of j is an invertible sheaf on the graph F~ of some morphism ~:S ÷ X. 
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A right F-sheaf of rank d over a scheme S is a diagram 

/ (1.2) 

where ~ and ~ are locally free sheaves of Oxxs-modules of rank d, f and g are inclusions, 
the cokernel of f is an invertible sheaf on the graph F~ of some morphism ~: S + X, the co- 
kernel of g is an invertible sheaf on the graph F8 of some morphism 8: S + X. 

We say that = is the zero of the F-sheaf and ~ is its pole. 

Remarks. i) We will often say "an F-sheaf ~ " meaning the diagram (I.i) or (1.2). 

2) Roughly speaking, an F-sheaf is a sheaf ~ together with an isomorphism ~.between 
the restrictions of (id x x Frs)*:~ and ~ to (X x S) - (F~ U FS) having singularities over 
F U F 8 (~is undefined over F 8 and ~-i is undefined over F~). So we use the terms "zero" 
a~d "pble." - 

3) Roughly speaking, an F-sheaf is a locally free sheaf of Oxxs-modules ~ along with 
an isomorphism (~d x x Frs) ~ ~', where ~' is a modification of ~ of a certain type. By 
a modification of ~ is meant (in the case when S is a spectrum of a field) a locally free 
sheaf whose general fiber is identified with the general fiber of ~. The definition of an 
F-sheaf employs simplest nontrivial modifications of ~, preserving its degree: a "minimal 
decreasing" of ~ over F~ with a consequent "minimal increasing" over F8 (in the case of 
left F-sheaves) or, conversely, a "minimal increasing" over F~ with a consequent "minimal 
decreasing" over F~ (in the case of right F-sheaves). 

4) It follows from the previous remark that if r= 0 F8 = ~, then the notions of a left 
and right F-sheaf essentially coincide. In this case~ an F-sheaf can be understood as a 
d-dimensional locally free sheaf of Ox×s-modules ~, equipped with a morphism (id X x Frs)*. 
~-+~ (F~), whose cokernel is a direct sum of an invertible sheaf on F~ and a (d - l)-dimen- 
sional locally free sheaf on FS. 

5) The notions of a left and right F-sheaf of rank 1 coincide even if F~ 0 F~ ~ @: de- 
fining an F-sheaf of rank 1 is equivalent to defining an invertible sheaf ~ on X x S equipped 
with an isomorphism (~dx X F~s) * £~Z (F~--F=). 

6) Sheaves ~ on X x S equipped with an isomorphism (idx X Frs) ~ Z~Z (a regular one, 
i.e., with no singularities) are not very interesting objects, as is demonstrated by the 
following proposition. 

Proposition i.i. Let Y be a projective scheme over F., L an algebraically closed field, 
and pry: Y 8 L + Y the projection. Then the functor ~ ~ (p>y)~ is an equivalence between 
the category of coherent sheaves of OY-modules and the category of coherent sheaves of Oy®L- 
modules equipped with an isomorphism (idy~FrL) * ~ .  

Proof. We fix a very abundant invertible sheaf ~ (i) on Y. It is known that the cate- 
gory of coherent sheaves of OyT-modules is equivalent to the quotient of the category of 
finitely generated graded modules over ~ /I"(Y, ~ (~)) relative to the subcategory of modules' 

n>~ 

having only finitely many nonzero homogeneous components. The category of coherent sheaves 
of ~YeL -modules admits a similar description. It remains to show that the functor V ~V @ L 
is an equivalence between the category of finite-dimensional vector spaces over F~ and the 
category of pairs (W, ~ ), where W is a vector space over L and ~: W + W is a bijective q- 
linear map (in other words, we have reduced the proof of the proposition to the special case 
of Y = Spec F~). Indeed,.it is easily seen that the above functor is completely strict, 
and its surjectivity follows from a corollary at the end of Sec. 14 in [7]. m 

Let ~ be a left or right F-sheaf over S and D c X a finite subscheme such that the 
zero and the pole of ~ do not involve D (i.e., they are morphisms S + X - D). The restric- 
tion of ~ to D x S is denoted by ~D • In the studied situation the restrictions of the morph- 
isms in the diagrams (i.i) or (1.2) to D x S are isomorphisms, so we obtain an isomorphism 
(idD x F~) ~ ~D~D. A structure of level D on Z is an isomorphism-~D~×S such that 
the diagram 
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( t d u × F ~ ) * ~ n  ' ~ ~ n ,  

• xo .¢ 

is co~utative. If the zero or the pole of N involves D, then, by definition, there are 
no structures of level D on ~ . 

We will now describe several ways to construct F-sheaves starting from other F-sheaves. 

Construction i. The inverse image of an F-sheaf over S with a zero at =~X(S) and 
a pole at 8~X(S) relative to a morphism f: S' ÷ S is an F-sheaf over S' with a zero at 
f*(=) and a pole at f*(8). 

Construction 2. The diagram obtained from a left (right) F-sheaf with a zero at ~ and 
a pole at 8 by replacing all sheaves and morphisms between them by their conjugates is a 
right (left) F-sheaf with a zero at 8 and a pole at ~. 

Construction 3a. If a diagram (i.i) is a left F-sheaf with a zero at ~ and a pole" 

at 8, then the diagram ~-~(idx X Frs)* Z~-(idx × F~)*~, where f = (id X × Frs)*i , is a left F- 
.sheaf with a zero at Fro= and a pole at 8. 

Construction 3b. If a diagram (1.2) is a right F-sheaf with a zero at ~ and a pole 
• 

at 8, then the diagram ~(idxX Frs)" ~ ~-~ (~dx X Frs) ~ ~, where j = (id x x Frs)eg , is a left 
F-sheaf with a zero at ~ and a pole at Fro~. 

Note that a consecutive implementation of constructions 3a and 3b is equivalent to tak- 

ing the inverse image relative to Fr: S ~ S. 

Construction 4. The determinant of an F-sheaf ~ is an F-sheaf of rank 1 with the s~e 
zero and pole as those of ~ . 

Construction 5. Let ~ be an F-sheaf on S, ~ an invertible sheaf on X, and .~ its 
inverse image relative to the projection X x S + X. Then ~ is also an F-sheaf (with 
the s~e zero and pole as those of ~ ). 

Construction 6. Suppose that an F-sheaf ~ of rank d over S with a structure of level 
D and a subsheaf of ~D -modules ~ .  are given. Let ~' be the kernel of the composition 
~ ~o ~ ~8 ~ ~xs/~,.. where ~ is the inverse image of ~ on D x S. Then ~' is an F- 
sheaf (with the s~e zero and pole as those of ~ ). 

Constructions 1'-4'. A structure of level D on an F-sheaf ~ is naturally extended 
to F-sheaves obtained from it by applications of constructions 1-4. 

Construction 5'. The same is also true for Construction 5 if the restriction of ~ to 
D is trivialized. 

Construction 6. Suppose that in the situation of Construction 6 an epimorphism~., 
is given, where D' is a subscheme of D. Then the composition ~'~~.xs defines a struc- 
ture of level D' on ~' . 

In the remaining part of this section we will discuss a connection between F-sheaves 
and elliptic modules. We fix a closed point ~ X  and put A = H°(X - {~}, Ox ). The notion 
of an elliptic A-module of rank d was introduced, essentially, by Carlitz [10] and redis- 
covered by the author [5]. in [5, 6] elliptic modules were used to construct the restric- 
tions of the reciprocity map Z= + E~ (see the introduction to this paper) to the set of ~E= 
in which the component ~ is caspidal or special: it has been shown that the required £-adic 
representations of Gel (k/k) are realized in cohomologies of varieties of modules of elliptic 
modules of rank 2 equipped with some additional structures. It has been shown in [3] (see 
also Sec. 3 in [17]) that defining an elliptic A-module of rank d over S, where S is a scheme 
over A, is equivalent to defining an increasing sequence of d-dimensional locally free sheaves 

. 

of ~xxs-modules {~) and a compatible system of morphisms ~: (~dxXFrs)~ ~ + ~  such that: 
i) ~m=~( ~, where m _. ~ is the degree of the residue field of the point ~ over F~ ; 2) the 
sheaves ~(~+~[~), where ~: X x S + S is the projection, are locally free and one-dimen- 
sional; 3) for each s~ S the restriction of ~'to X x s has Euler characteristic i + i; 
4) the support of the cokernel of t i is a graph of a structure morphism S + SpecA. A f~ily 
{~,~), satisfying conditions 1)-4) is called an elliptic sheaf. If {~,~) is an ellip- 
tic sheaf, then the diagram 
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~ C ~ + 1 < - - - ( i d x  × Frs)* ~ ., ~ i  ( 1 . 3 )  

iS an F-sheaf. If one applies Construction 3b to this F-sheaf, then one obtains the left 
F-sheaf (~dx × F~)~'~+~.~(~dx X Frs) ~ ~-+~+m,. corresponding to the right F-sheaf (id x x 
Fzs) ~ ~+,-+~+z~-~+*.. In view of the fact that ~-~m = ~(-- oo), we deduce that the ellip- 
tic sheaf {~, ~} is uniquely reconstructed if the F-sheaf (1.3) is known for some i. Thus, 
elliptic sheaves (and thus, also elliptic A-modules) of rank d over S bijectively correspond 
to F-sheaves ~ of rank d over S with a zero at ~ and a pole at ~ such that: i) ~: S + 
SpecA c X is a structure morphism; 2) ~(S) = {~}; 3) the (md)-fold application of Construc- 
tion 3b to ~ yields the same result as a single application to Z of Construction 5 with 
J~= ~x (oo)~ (more exactly, there is an isomorphism, equal to the identity on Z between 
the F-sheaves obtained from Z) by applying these constructions); 4) for each s~.S the Euler 
characteristic of the restriction of ~ to X x s is equal to zero (of course, 0 could be 
replaced by any fixed integer). 

2. Group Schemes Correspondin~ to an F-Sheaf 

If G is an elliptic A-module of rank d over S, then to each nonzero ideal I c A corre- 
sponds a finite locally free group scheme G I over S, namely, the annihilator of I in G. How 
can G I be expressed in terms of the F-sheaf ~, corresponding te G? 

Definition. A ~.-sheaf on a scheme S is a finite-dimensional locally free sheaf of ~s- 
modules ~. equipped with a homomorphism ~: Fz~-~. 

Let E be the vector bundle corresponding to the ~-sheaf ~ . On the one hand thereis 
a linear map ~*: E * + Frs*E*; on the other hand, the Frobenius map Frob: E ~ ÷ Frs*Ee, which 
is q-linear. Put Gr(~) = Ker(~--Fro~). Gr is a contravariant functor from the category 
of ~-sheaves on S to the category of group schemes over S equipped with an action of F~ . 

Suppose now that an F-sheaf ~ over S is given along with a finite subscheme D c X not 
involving the pole of ~ . Then a morphism (ldD X Fr8) ~ ~o-+~o arises. So the direct image 
~ of the sheaf ~D relative to the projection D x S + S is a ~-sheaf. Put (Z) = Gr(~). 
The ring A D = HO(D, OD) acts on ~ and, thus, also on Gr D (.~). It is readily seen that if ~ 
corresponds to an elliptic A-module G and D = Spec (A/I), then there is a canonical isomorph- 
ism G I = Gr D (~) compatible with the action of the ring A D = A/I. We omit this verifica- 
tion because the statement above is needed only to motivate the definition of Gr ( ~ ) and 
Gr D (Z). 

We will prove some properties of the functor Gr. 

Proposition 2.1. i) For each ~-sheaf ~ the scheme Gr (.~) is finite and locally free. 
If dim ~ = n, then the order of Gr (~) is equal.to qn. 

2) The sheaf L~e ~ Gr(~) [i e. the inverse image of the sheaf ~ • , ~or(~)/s relative to the 
zero section ~: S-+Gr(~) ] is canonically isomorphic to the cokernel of the morphism 

• ~: F r ~ - ~ .  

3)  The  s c h e m e  ~ r ( g )  i s  ~ t a l e  o v e r  S i f  and  o n l y  i f  ~ i s  an  i s o m o r p h i s m .  

6 )  6 r  maps  s h o r t  e x a c t  s e q u e n c e s  i n t o  s h o r t  e x a c t  s e q u e n c e s •  

5) The functor Gr is completely strict. 

6) Each finite etale group scheme over S equipped with, an action of F~,is isomorphic 
to Gr(~) for some ~.-sheaf ~. 

Proof. If S = SpecB, ~ - ~  and (bij) is the matrix of the morphism ~: Fr~ ~-+~, 
then Or(~) is the subscheme of G~B, given by the system of equations 

x~ - -  ~=~1 b~jz~ = O, ] ~ -  i . . . . .  n. ( 2 . 1 )  

It is easily seen that the quotient of B[xm, ..., Xn] over the ideal generated by the left- 
ml mn " hand parts of (2.1) is a free B-module with a basis x I ... x_ , ~O~<m~<.q. This immediately 

implies statement I). Statements 2)-4) directly follow from the f~ct that Gr (~)is locally given 
by the system (2.1), and statement 5) is a consequence of the following lemma. 
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LEMMA. If Gr($) is given by the system (2.1) and h is a function on Gr.($), defining a 

homomorphism of group schemes Gr($)-*Ga®B, compatible with the action of Fq., then h=~ 

cix i, clUB. 

Proof. We write h in the form F(x I, ..., Xn), where F is a polynomial whose degree in 
each variable is less than q. The polynomial F(xl + Yl ..... Xn + Yn) - F(xz, .... x n) - 

F~.Yl, .... Yn) has, in each variable, a degree less than q and its restriction to G~($) X 
Gr.($) is equal to zero. So this polynomial itself is zero. Similarly, for each c~Fq the 
equality F(cxl, ..., cx n) = cF(xl ..... x n) holds in the polynomial ring. Since the degree of 
F in each variable is less than q,we conclude that F is a linear function. • 

Statement 5) which has already been proved and the descent theory allow us to reduce 
the proof' of statement 6) to the case when the group scheme is equal to S X F~, and in this 
case statement 6) is obvious. • 

Proposition 2.2. Suppose an F-sheaf ~ of rank d over S is given along with a subscheme 
D c X not involving the pole of ~. 

i) OrD (~) is a finite locally free scheme of order qd'[D[. 

2) The scheme GrD (~) is etale over S if and only if D does not involve the zero of ~. 
In these cases the geometric fibers of GrD (~) are free AD-modules of rank d. 

3) Defining a structure of level D on Z is equivalent to defining an isomorphism of 
group schemes GrD (~).-~S X (A~) a, compatible with the action of AD, where AD* is the vector 
space over Fq, dual to A D. 

Proof. Statement i) and the first part .of statement 2) follow from Proposition 2.1. 
It suffices to prove the second part of statement 2) in the case when S = Spec F, F being 
an algebraically closed field. In this case :Gr~ (~) can be viewed not as a group scheme 
but rather as a group equipped with an action of A D, i.e., as an AD-module M. It follows 
from the definition of Gr~.(~) that H~(D~F,Z~)=M*®F, where M* = HomF^(M,F~). Since 

, ~ 
H°(D 8 F, ~D) is a free d-dimensional module over A D 8 F, M ~ , and thus also M, are free 
d-dimensional AD-modules. Statement 3) follows from the equality Gr ( Os ® AD) = S × AD* and 
the complete strictness of the functor Gr. • 

Remarks. I) AD~ is a one-dimensional free A-module. 

2) In [5], a structure of level I on an elliptic module G of rank d over S is defined 
as an isomorphism G I & S × (I-~/A) d. On the other hand, defining a structure of level D = 
Spec (A/I) on the F-sheaf corresponding to G is equivalent to defining an isomorphism G I g 
S × (AD*)d. Since AD* = (A/I)* = I-1~A-i/~A~.(the matching between A/I and I-~A~/~A ~ is 
determined by means of the "sum of residues" map from I-I~A~/~A ~ to F~), the two notions 
of level structures coincide whenever a generator of the one-dimensional free (A/I)-module 
~A~/I~A I is fixed. 

3) If Construction 6 from Sec. 1 is applied to the F-sheaf ~, corresponding to an ellip- 
tic module G with a fixed structure of level I and D = Spec (A/I), and then an elliptic module 
G' is constructed from the obtained F-sheaf ~' then G' is the quotient of G relative to 
the subgroup 

S X Hom~(H ° (O, O~/Q), F~) C G~. 

From Proposition 2.2 follows 

Proposition 2.3. Suppose that an F-sheaf ~ of rank d over S is given along with a 
finite subscheme D c X not involving the zero and the pole of ~, a subscheme D' c D, and 
a structure of level D' on ~. Then the functor assigning to an S-scheme S' the set of struc- 
tures of level D on the inverse image of ~ relative to the morphism S' + S extending the 
inverse image of a given structure of level D' is representable by a scheme which is a prin- 
cipal fiber space over S with the group G = Ker (GL (d, A D) ÷ GL (d, AD,)). 

3. Schemes of Modules 

We denote by FshD, d (respectively, D,dFsh) the functor assigning to a scheme S the set of 
isomorphism classes of right (respectively, left) F-sheaves of rank d over S equipped with 
a structure of level D. We will show that for each of these functors there exists a rough 
(and sometimes even actual) scheme of modules. 
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First, let d = i. If D ~ @, then we denote by PicDX the scheme representing the func- 
tor S~ {isomorphism classes of invertible sheaves on X × S trivialized over D x S}. The 
representability of this functor for D ~ @ follows from the existence of the Picard scheme 
PicX and the lack of nontrivial automorphisms for an invertible sheaf on X × S which would 
be equal to the identity on D × S. For D = @ the studied functor is not representable but 
it has a rough scheme of modules, namely Pic X. So we put Pic_____~X = Pi__£cX. The group opera- 
tion in Pic Dx will be written additively. We denote by PicDnX the clopen subset of PiCDX 
corresponding to invertible sheaves of degree n. ~nx is a connected scheme of finite 
type (the connectedness follows from the presence of an epimorphism PicD°X + Pic°X with 
a connected kernel). Note that PicD°X is nothing but a generalized Jacobian [8]. There 
is a natural morphism X - D + PicDiX assigning to a point u~X (~) the isomorphism class 
u of the sheaf Ox®~ (u), naturally trivialized over D. 

Proposition 3.1. For the functor FshD, I = D,~Fsh there exists a rough scheme of modules 
MD, I. If D ~ @, then MD, I is an actual scheme of modules. There is a pullback 

/ 
M~,~ ~ PicDX 

~i,~)~ _ _ ~Fr--id 

(x-~) × (x--~) ~ ~ Pic~, 
~ - -  

_ 

where g~ and g2 assign to an F-sheaf its zero and its pole, respectively, and f is forgetting 
the F-structure on an invertible sheaf. • 

COROLLARY. HD, ~ is a disjoint union of nonempty schemes ~D,~ n = f-~(Pic~nX) which 
are finite and etale over (X - D) 2. 

Note that one can restate Lang~s geometrical theory of class fields [8] in terms of 
the schemes ~D,~; in a certain sense therestatement is more natural than the original state- 
ment. 

~f d > l, then, in order to obtain ~ (rough) scheme of modules of finite type, one has, 
in addition to the degree, to "hold" another invariant of an F-shea~. Namely, if ~ is a 
locally free sheaf of rank d on a smooth irreducible projective curve Y over an algebraically 
closed field L, then we denote by ~ (y) the greatest degree o~ inver~ible subsheaves in. Y 
(these degrees are bounded above because if ~ '  is an invertible subsheaf, then deg~ 
dimH°(~) + g - I ~ dimH°(~) + g - ~). ~n the case when L is not closed, h(~)~e~(~), where 
~ is the inverse image o~ ~ on Y ® L. A standard reasoning shows that ~ (~) remains un- 
changed i~ the field L is extended and i~ there is a ~amily o~ sheaves {~t}, then for each 

m~-Z the set {tlh(.Yt) ~ m) is open. Ne denote by Fs~, d (respectively, Fsh~:~) the sub- 

functor o~ FshD.d, obtained by imposing the following condition on an-F-sheaf ~ over S: for 
each ~ the degree o~ the restriction .~ o~ the sheaf ~ to X × s is equal to n (respec- 

tively, degZ~=n, and ~ (Z,)<m). Similarly, we define D,~Fsh and ~Fsh. 

Proposition 3.2. There exists a number c (depending on d and X) such that if IDI ~ 
m,n~ . 

dm-n + c, then the functors Fsh~:~ and D,d~sn are representable by quaslprojective schemes 
m, 

~DI~ and D,dnM ove~ ~. 

Proof. A standard argument (see [18]) shows that there exists c [for instance c = 
(d + l)g + i, where g is the genus of X] such that: a) for each d-dimensional locally free 
sheaf ~ on X.~, such that deg~=~, ~(~)<~, each automorphism of ~, equal to the iden- 

tity over D®~, is the identity itself~ b) there exists a quasiprojective scheme Bun~: n d 

over F¢ such that Bun~:~(S) = {isomorphism classes of d-dimensional locally free sheaves ~ 
on X x S trivialized over D x S and such that deg Z~=~, ~(~)~ for all s~S}. To prove 
the representability of Fsh~ consider the functor S ~ {isomorphism classes of diagrams of 
the form Z--/~~ ', where ~, ~, ~' are locally free sheaves of rank d, f, and g are are 
inclusions, Coker f and Coker g are invertible sheaves on graphs of some morphisms S ÷ X - D, 
the restriction of ~ to D x S is trivialized, for each s~S the relationships degZ~= 
,, ~ (~,)<m, h (~)< m} hold. If IDI ~ dm - n + c, then this functor is representable by some 

• V + Bun m'n assigning to a quasiprojective scheme V over ~. There are morphisms ~, ~. D,d 
diagram ~-+~-~" the sheaves ~ and ~' respectively. We denote by ~:~ the preimage 

of the diagonal ~ c Bun~'~ x Bun~'~ relative to the morphism (~loFr, ~2): V ~ Bun~:~ x 

Bunm: n'D d Then Ms: nD d represents Fsh~: n.D d Slmllarly," " one can construct m'nM.D,d 

112 



~m,n Reraarks. i) There are natural morphisms '*D,d + (X - D) 2 and m,n~ D,d'" + (X - D) ~ assigning 

to an F-sheaf its zero and its pole. 

m,nM 2) On *'D,d~m'n and D,d"* there is a natural action of GL(d, A D). 

We will now construct a rough scheme of modules for Fsh~ ~. First, we will fix m, n~Z 
and show that there exists a rough scheme of modules for Fsh~i ~. Indeed, if D' c X is a 

finite subscheme such that D' D D and the functor Fsh~ is representable, then, as follows 

from Proposition 2.3, the quotient of ~m,n '*D,d over the action of the group G = Ker (GL(d, AD,) + 

GL(d, AD)) is a rough scheme of modules for the functor Fsh~ x (X_D)2(X - D') ~. We now 

choose finite subschemes D~, D=, Ds c X containing D in such a way that the functors 
m,n FshDi,d, i = i, 2, 3 would be representable and the equalities D~ ~ Du = D~ ~ D~ = Da ~ Ds = 

D would hold, at least in the set-theoretic sense, then we glue together the rough schemes 

of modules for ~ ,m,n rsnD, d x (x_D)=(X - Di )~. As a result, we obtain a scheme *'D,dMm'n which is a 

rough scheme of modules for Fsh~:~ [in verifying this fact, we use the condition ~ (X - 
~=I 

'Di )u = (X - D)u; note that (X - D~) = U (X - Du) ~ is not, generally, equal to (X - D)=]. If 

~m,n open subscheme in **D,d • Put D,d m ~m,n Then M n is a rough M' ~ m, then '*D,d is an ~m',n Mn = U "*D,d" D,d 

scheme of modules for Fsh~, d. Finally, the disjoint union MD, d of the schemes M~,d, n~Z, 

is a rough scheme of modules for FshD, d. Similarly, we construct the rough schemes of mod- 

ules m,n~ n M Clearly, ~m,n and m,n~ D,d"*' D,:d ' and D,d M. **D,d D,d,-, are schemes of finite type over F~,while 

MD, d ,n D,n dM ' MD,d, and D,d M are schemes of locally finite type over F~. It is also clear that 

the schemes MD, d and D,d M are separable. 

We will list structures present on MD, d and D,d M. 

i) Assigning to an F-sheaf its zero and its pole defines morphisms MD, d + (X - D) ~, 
D,d M ~ (X - D) 2. 

2) GL(d, AD) acts on MD, d and D,d M preserving the morphisms MD, d + X =, D,d M + X ~. 

3) If D' m D, then there are natural morphisms MD,,d + MD, d and D,,d M + D,d M (forgetting 
the structure). They are morphisms of schemes over X ~ inducing the isomorphisms G \ MD,,d ~ 

MD, d × (X_D)2(X - D') 2, G \ D,,d M & D,d M × (x_D)2(X - D') 2, where G = Ker(GL(d, AD,) + 
GL(d, AD)). 

4) The schemes MD, d and D,d M are canonically isomorphic over the complement to the diag- 
onal A c X 2. For d = i, MD, d = D,d M. 

5) Construction 2' from Sec. i defines an isomorphism *: MD, d & D,d M such that the 
diagram 

MD, d * • >- D,  ~ M  

~ (b, ~}~,-(~, ~) ~ 
X 2 > X 2 

commutes. For d = i, the morphism * is involutive. For d > i it is involutive over the 
complement to the diagonal A c X = (i.e., where MD, d does not differ from D,dM). 

6) Constructions (3a)' and (3b)' from Sec. i define morphisms F~: D,d M + MD, d, F=: 
MD, d + D,d M, such that the diagrams 

FI F2 
D, d M  ' ~ M D ,  d M D ,  d " ~ D, dl~I  

$ ~ × ~  ~ ~ ~ ~ 
X ~ ~ X ~ X ~ _ > X ~ 

commute. Also, F~F2 = Fr, F=FI = Fr, *FI* = F 2. 

7) Construction 4' from Sec. i defines morphisms det: 
They are morphisms of schemes over X 2. 

MD, d + MD, I, det: D,d M + MD, I. 
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8) Construction 5' from Sec. 1 defines an action on MD.,d and D,d M of the group of iso- 
morphism classes of invertible sheaves on X trivialized over D. We denote this group of 
PicDX (note that PicDX is the group of F~.-points of the scheme PicDX). The action of 
PicDX preserves morphisms MD, d + X ~, D,d M + X ~. 

9) Put Md=|imMD.d, dM-----I~mD.dM. We will define an action of the group GL(d,~)/k* 
-D D 

on M d. Since M d is an (actual) scheme of modules for the functor Fsh~ ~---~ Fsh~.4, it suffices 

to define the action of GL (d, ~)/k* on Fsh d. First, we will define an action of the semigroup 
GL_ (d, 9~)= {h ~ GL (d, ~) I h -~ ~ Mat (d, O)}, where O ~ 9/ is the ring of integral adeles. Suppose 
that hE GL_(d, 9/) is given along with an element of Fsh d (S), i.e., a right F-sheaf ~ over 
S equipped with structures of all levels compatible with each other. Since h ~ GL (d, 9/), 
we haveh-~0 d c O d. There exists an open ideal I c 0 such that h-~O d m I.O d. The ideal 
I is associated with a finite subscheme D c X and the submodule h-~od/I.O d c (O/I) d with 
a subsheaf ~ ~(9~. Applying Construction 6 from Sec. i, we obtain an F-sheaf ~', which, 
as can be easily seen, does not depend on the choice of I. In order to define on Z' a struc- 
ture of level D', where D' is an arbitrary finite subscheme in X, we choose I in such a way 
that I.O d c J.h-~O d, where J c O is the ideal corresponding to D'. The composition h-~od/ 

i.od + h_~od/j.h_~O d +h (O/j)d defines an epimorphism .~ -~ (9~,. Applying Construction 6' 
from Sec. i, we obtain a structure of level D' on ~' Thus, we have assigned to each 
h ~ GL_ (d, 9/). a morphism M d + M d. It is readily seen that we have obtained an action of 
GL_(d, 9/) on M d. On the other hand, the action of PiCDX on MD, d turns, after taking the 
limit, into an action on M d of the group lira Pi09 X = 9/*/k*. It is easily seen that the re- 

~D~' 
striction of this action to 9/* ~ GL_ (d, 9/) coincides with the restriction of the action 
of GL_ {d, 9/). Since GL (d, 9/)= 9/*-GL_ (d, 9/), we obtain an action on M d of the group 
GL (d, 9/)/k*. Similarly, one can define an action of this group on d M. 

Note that the action on M d and dM of the subgroup GL(d, 0) c GL(d,. 9/ ) is obtained as 
a result of a limit passage over D from the action of GL(d, A D) on MD, d and D,d M. 

The action of GL(d, 9/ ) preserves morphisms MD, d + X ~, D,d M + X 2 and commutes with F~ 
and F=. Furthermore, for each h ~ GL (d, 9/) the diagrams 

* det dot 
MD, d > D, dM MD, d ' ~ MD, l ~ D, d M  

" 

MD, d *>' D, d M  MD, d det MD, 1 <det 
) '" D ,  aM 

commute (here, h t is the matrix transpose). 

For each finite subscheme D c X put K D = Ker (GL(d, 0) + GL(d, AD)). Clearly, K D \ 
M d = MD, d ® X2(k ® k). Thus, the general fiber of the morphism MD, d + X 2 can be reconstruc- 
ted if one knows the scheme M d together with an action of GL(d, 9/ ). The information on 
closed fibers is lost in a passage to the limit in D. On the ~ther hand, the passage to 
the limit in D is beneficial because it enables us to study the action of GL(d, 9/ ) instead 
of "Hecke correspondences" between the schemes MD, d. In order to avoid loss of information 
on fibers of the schemes MD, d over a fixed closed point u~X 2 and, at the same time, have 
an action of the adele group, it is convenient to introduce for each set T consisting of 
closed points of X the scheme /]~[-~- |im ~//O.d. In a manner similar to the action of 

DT~=~ 

GL(d, ~ ) on M d one can define an action on Md T of the group GL(d, 9/T), where 9/T is the 
adele ring without T-components. Here, elements of k * having no zeros and poles at the 

• T *  • points of T act trivially [it is assumed that k C(9/ ) ~GL (d, ~Y)] The natural morphism 
M d + MdT is compatible with the action of GL(d, ~T), and MdT @ X2(k ® k) = G \ Md, where 

G=Y[GL (d, O~). Ofcourse, the above arguments are also true for varieties of modules of 
~T 

left F-sheaves. 

Remark. The action on MD, ~ of the morphisms *, F~, F= and of the group Pic DX can be 
described quite explicitly. Namely, if points of MD.~(~) are written according to Proposi- 
tion 3.1 in the form (~, ~, ~), where ~, ~ ~(X - D)[~), ~ PiCDX(~), ~ -~ = Fr(a) -~a,- 
then 

• (a, ~, a) : (~, a, - -a) ,  ( 3 . 1 )  
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F~(~,~,a)=(Fr(~),~,a--a) ,  F~(~ ,~ ,a)=(~ , r  r (~),a+~), (3.2) 

l (~ ,~ , a )= (~ ,~ , a + l )~  l~_Pic~X. (3.3) 

The action of PicDX on geometric fibers of the morphism MD, ~ + (X - D) ~ is free and ~ransitive~ 

,m,n Proposition 3.3. There exists a number c such that if IDI ~ dm- n + c, then *~D,d and 
m~n~ D,d,, are smooth schemes over X ~. The relative dimension of these schemes (if they are not 

empty) is equal to 2d - 2. 

~m,n ~ (X - D) 2, m,n~ (X - D) ~ are, clearly, Note that the fibers of the morphisms "D,d D,d" + 

not empty if dm ~ n (it suffices to consider F-sheaves of the form ~.i..~a, where ~ 
is an F-sheaf of rank i and ~ ..... ~ are inverse images of invertible sheaves on X with 
d e g c g ~ m  for a l l  i and d e g ~ q - . . . q - d e g e g d = ~ ) .  

Proof. Let c, Bun~:~, V, ¢~, ¢= have the same meaning as in the proof of Proposition 

3.2. Recall that ~D,d~m'n is the preimage of the diagonal relative to the morphism (~ o Fr, 

~=): V + Bun~:~ × Bun~:~. A standard argument shows that Bun~:~ is a smooth variety. It 

.is easily seen that V is also a smooth variety. Moreover, the morphisms (~i, k): V + 

Bun~:~ × X =, i = i, 2, are. smooth, where k is the natural morphism V ÷ X =. The fibers of 

these morphisms V + Bun~:~ × X = have dimension 2d - 2. This, along with the fact that the 

differential of the endomorphism Fr is equal to zero, implies the statement being proved 
m,nM ~m,n It is proved similarly for D,d~-~. m for ~'D,d" 

Remarks. i) let IDI ~ dm- n + c. The b~rational isomorphism between M~'~ and ~'~M 
~, ~'~,! ~,~ 

can be decomposed into c-processes. To this end, consider two-sided F-sheaves, i.e., com- 
mutative diagrams of the form 

in which the left half is a left F-sheaf and the right half is a right F-sheaf with the same 

Mm,n and m,nM for zero and pole as those of the left half. We denote by ~M~ the analog of "D,d D,d ~~ 

two-sided F-sheaves. It is easily deduced from the proof of Proposition 3.3 that the natural 
m,n~ ~m,n (respectively ~M~ + D,d,-,j is a e-process with a center in a subscheme morphism ~M~ + ~~D,d 

m,n~ ~m,n (respectively, Z' c D,d,.,j parametrizing F-sheaves ~, for which there exists an iso- Z c ~~D,d 

morphism (id × Fr)*~--~, rendering the diagram (1.2) [respectively, (I.i)] commutative. It 
is easily seen that Z and Z' are smooth d-dimensional varieties, and the connected component 

of each of these varieties bijectively correspond to Fq-points of the variety Bun~:~. 

2) One can also construct the "lower~ bound" of Mm,n m,n~ "D,d and D,d~-~, i.e,, write the birationa! 
~m,n and m,n~ isomorphism between "D,d D,d~-, in the form ~-~@,where @ and ~ are proper morphisms from 

m,n~ ~D,d~m'n and D,@-~, respectively, into some variety U which are birational isomorphisms. In o~der 

to obtain U we have to introduce the following version of the notion of an F-sheaf over S: 
a d-dimensional locally free sheaf of ~x×s-modules ~, equipped with a morphism f: (id X × 
Frs) ~ ~-~ ~ (F~)~ inducing an isomorphism (~dx × Frs)* de~ ~ -~(det ~) (r~ -- F~) such that the rank 
of the restriction of f to F8 does not exceed I. A point u~U is singular (for d > i) if 
a = 8 and f induces the isomorphism (idx × Frs)* ~Z. A formal neighborhood ~ of such a 
point is isomorphic to a formal neighborhood of the point (0,0)~A ~ × Y, where Y is the 
variety of matrices C of order d such that rg C ~ i. The natural morphism ~ + X = has the 
form (z, C) ~ (z, z + TrC), where z is the coordinate in A ~. 

Mm,n IDI ~ dm- n + c, whose We will now show that in the absolute tangent bundle 8 to ~*D,d' 

dimension is equal to 2d, there is a natural d-dimensional subbundle ~'. To this end, we 
mm,n note (see the proof of Proposition 3.3) that ~ is the restriction to "D,d c V of the rela- 

tive tangent bundle of the morphism ~=: V + Bun~:~. Recall that ~ assigns to a diagram 
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~'~>$ ~+~. the sheaf ~'. Thus, ~2 is written as a composition V~>W~-~ BunD,d,m'n where W(S) = 
{d-dimensional locally free sheaves $ on X × S trivialized over D × S with a selected sub- 
sheaf ~'C~ such that $/~' is an invertible sheaf on the graph of some morphism S + X - D 
and deg~;~-n, h(~)<m for all s~S}..~ and ~ are smooth morphisms whose fibers are d- 
dimensional. So the relative tangent bundle of the morphism ~: V + W is a d-dimensional 

subbundle in the relative tangent bundle of the morphism ~2: V + Bun~. The corresponding 

d-dimensional subbundle in @ is denoted by 8'. Similarly, one can define a d-dimensional 

distribution ~" on m'nM'D,d It is easily seen that ~' is invariant relative to GL(d, AD), and 

the natural morphism M~|n~ + M~'~, where D' D D, maps the distribution 8' on M~:~ into the 
m ~ '~ ~'~ distribution e' on MD~ d. This allows to define the distribution e' on M d as well ason an 

open subscheme UD, d c MD, d parametrizing F-sheaves with no nontrivial automorphisms identical 

over D. Similar statements are true for e". It is easily verified that: l) the action 
of GL(d, ~ ) on M d (respectively, d M) preserves e' (respectively, e"); 2) the kernel of the 
differential of the morphism D,d U ~ UD, d is equal to e" and its image is equal to e'; 3) 

the kernel of the differential of the morphism F2: UD, d ÷ D,d U is equal to e' and its image 

is equal to e"; 4) the morphism ~: UD,d. ~ D,d U maps ~' onto ®"; ~) the differential of the 

natural morphism UD, d ÷ X ~ (respectively, D,d U ~ X 2) maps e' (respectively, e") into the 

relative tangent bundle of the first (respectively, second) projection X 2 ÷ X; 6) over the 

m,n~ and, there- ~m,n does not differ from D,d'" complement of the diagonal h c X ~ (i.e., where "D,d 

fore, ~' and 8" are distributions on the same variety) 8' is transversal to ~". 

Put A r = (id X × Frx)r(A), where h c X ~ is the diagonal, A i = X ~ -- ~ At, A=limA~ 
+ 2 I~ l~ i  ~ 

(the projective limit exists because the morphisms A i X are affine). 

The scheme A is Noetherian but not of finite type over F~. Put ~D,a= MD,d × X =A = 

D,d M × X=A. Similarly, we can define ~ ~m'~ O.d, D.d, ~4. Henceforth, we will deal with ~,~, 

rather than MD, d (this is sufficient for the proof of Langland's conjecture). Thus, we 
avoid problems related to the distinction between left and right F-sheaves while preserving 
all structures on schemes of modules listed above (in particular, there are no morphisms 
F,:.~.~--~D.~, F~: ~,d-+~.~, ~: ~,~~D.~). Of course, effects associated with the diag- 
onal in X = are also worth studying (an example of such an effect is the analytic theory of 
elliptic modules; see Secs. 3 and 6 in [5] and also [9, 19]). 

For d = 2 there is another reason why it is more convenient to work with ~o,~ rather 
than with MD, d or D,dM. 

Proposition 3.4. Let h be an automorphism .of an F-sheaf ~ of rank 2 over a field B 
which is the identity over D @ B, where D is a nonempty subscheme in X. Suppose. that 
Frm(e) ~ Frn(8) for all m, n, where ~ X(B) is the zero of ~, and ~X(B) is its pole. 
Then h = id. 

This proposition will be proved in Sec. 4. It will imply, via standard reasoning, that 
if D ~ @, then: i) for each finite subscheme D' o D the group Ker (GL(2, AD,) + GL(2, AD)) 
acts freely on ~D'~ 2) @%~.~ is an actual scheme of modules for FshD, ~ × x2A; 3) the state- 

m,n~ ~m,n and in ments on smoothness and structure of the tangent bundle stated above for ~*D,d D,d ~* 

the assumption that dm - n ~ IDI - c are true for the entire scheme ~D.d in the studied 
case of d = 2, D ~ @. 

Remark. Put W = UD, d × x=A (if d = 2, D ~ @, then W = ~.4 ). The presence of "partial 
Froben-~us ~ndomorphisms" F~, F=: W + W and the decomposition of the tangent bundle to W 
into a direct sum of two d-dimensional subbundles mean that W resembles Y × Z, where Y and 
Z are schemes over X (in fact, in view of the existence of the automorphism ~, even Y × Y). 
One can show that W is decomposed into a direct product at the "formal level." More exactly, 
the inverse image ~ of the sheaf of jets of functions (of finite order) on MD, d relative 

to the morphism W + MD, d can be naturally written as a completed tensor product ~I~, 

where ~, and ~ are sheaves of algebras over ~w. Here, F~, F=, and GL(d, ~i) preserve ~. 
and ~, and * reverses their places. Furthermore, the natural morphlsms ~-+~,~-+_.~ 
are isomorphisms. 
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4. 0rispheric Curves 

We fix an algebraically closed field B and points =~X(B), ~X(B) such that the image 
of the morphism (~, 8): SpecB + X ~ is contained in A, i.e., 

Fr  = (a) =~= 6 fo r  ~ach n ~ Z. ( 4 . 1 )  
. -  

. P r o p o s i t i o n  4 . 1 .  L e t  ~ b e  an  F - s h e a f  o f  r a n k  1 o v e r  B w i t h  a z e r o  a t  ~ a n d  a p o l e  
a t  8 .  We d e n o t e  b y  ~ t h e  e m b e d d i n g  ( idx  k F r B ) * ~ - + Z  (6). I f  s ~ H ° ( X @ B ,  ~), ~ ( ( idx × 
F r B ) * s )  = s ,  t h e n  s = 0 .  

Henceforth, we write ~ (8) where we should write ~ (r$) (cf. Sec. i). In other words, 
we think of ~ and ~ as points of X ® B. 

Proof. Suppose s ~ 0 and Y is the divisor of zeros of s. Then (id X × FrB)*Y + = = 
~ + Y. But this equality (we emphasize that it involves divisors on X 8 B rather than classes 
of divisors) is impossible because, by (4.1), the number of points of the form Fr n (~), n~Z, 
in the left-hand part of the equality is greater by i than that in the right-hand part. [] 

Definition. An F-sheaf ~ of rank d over B with a zero at ~ and a pole at ~ is said 
£o be reducible if there exists a nonzero subsheaf ~ of rank r < d such that the image 
of (id x x FrB)*~ in ~ (8) is contained in ~4(~). 

Suppose that ~ is a reducible F-sheaf and the subsheaf ~, involved in the definition 
of reducibility is such that the sheaf ~=~/~ is locally free [note that if ~ is not 
locally free and ~'~ is the preimage of torsion of ~ under the homomorphism ~-~, 
then the image of (id X x FrB)*~' in ~ (8) is contained in ~'(~), so ~ can be replaced by 
~']. It is easily seen that one of two possibilities holds. Either ~ is an F-sheaf with 
a zero at a and a pole at 8 and the image of the morphism (idx X FrB)*~-+~ (6) is equal to 
~. and, therefore, ~ is hhe inverse_image of a locally free sheaf ~ on X (see Proposition 
i.i), or the image of the morphism (idx X Fr~)*~-~ (6) is equal to ~ (so ~ is the inverse 
image of a locally free sheaf ~, on X) and ~ is an F-sheaf with a zero at ~ and a pole 
at 8. An exact sequence 0-~-+Z-+~-+0 is called an F-decomposition of type i or 2 
depending on which one of the two possibilities is materialized. Henceforth, we will con- 
sider the case of d = 2 (in this case ~ and ~ are invertible sheaves). 

Proposition 4.2. Let ~ be an F-sheaf of rank 2 over B such that its zero = and its 
pole ~ satisfy (4.1). Then: 

i) ~ possesses at most one F-decomposition of type i and at most one F-decomposition 
of type 2; 

2) if an F-decomposition 0-+~-+~-+~-+0, is given, then each automorphism of the 
F-sheaf ~, inducing the identity automorphisms of the sheaves ~ and ~, is itself equal to 
the identity. 

Proof. i) Suppose F-decompositions 0-+~--~-+~-~0 and O~'-->Z-~'_~0, have 
the same type. The homomorphism ~--> ~' determines a section ~H~(X(~B~ ~'(~gJ~). 
Since ~'~* is an F-sheaf of rank i with a zero at ~ and a pole at ~ or with a zero at 
$ and a pole at ~ (depending on the type of the F-decompositions) and s satisfies the hy- 
pothesis of Proposition 4.1, s = 0 and, therefore, ~=~'. 

2) Let h be an automorphism of Z, equal to the identity on ~ and ~. Then h - i deter- 
mines a morphism ~-+~ and, therefore, a section s~H°(X ® B, J~4~) By Proposi- 
tion 4.1, s = 0 and, therefore, h = i. • 

Proof of Proposition 3.4. The trace and the determinant of the endomorphism h - i are 
functions on X ® B equal to zero on D ® B. So they are equal to zero identically. There- 
fore, (h - i) = = 0. Suppose that h ~ i and put ~ = Ker(h.- i). Then the image of (id X × 
FrB)* ~ in ~ (8) is contained in ~ (8) and the sheaf ~7~ is invertible. It remains to 
apply statement 2) of Proposition 4.2 to the F-decomposition 0-+~-+~-+~/~-+0. [] 

, 

Let P~A(B) be the point determined by the pair (~, 8) and D c X a finite subscheme 
such that ~, $~ (X - D)(B). The fiber of MD, = over P is denoted by MD, P. We will identify 
the scheme MD, P with the set of its closed points. We will elucidate the structure of the 
set of points of MD, P corresponding to reducible F-sheaves. Suppose that a structure of 
level D is given on an F-sheaf ~ of rank 2 over B with a zero at ~ and a pole at ~ possess- 
ing an F-decomposition 0-~-+~-+~-+0. Then the image~of ~m under the isomorphism 
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f~ ~ O~®~ is invariant relative to the isomorphism (idD X FrB)*(~®B ~'~®, and, therefore, 
. . . . .  ~ 

is the inverse image of a one-dimensional free subsheaf of d)D-modules ~ ~ D. We tentative- 
Ob~o such that h (~D ~ 0) = ~. Then h induces isomorphisms ly fix an automorphism ~: ~ ~ 

~o ~, ~ ~/~. If our F-decompositon has type i, then ~ is an F-sheaf of rank 1 with 
a structure of level D and $~ is the inverse image of an invertible sheaf on X trivialized 

dsf over D. Thus, we obtain an el~ent m~,p=[GL(2, Ao) x~o,~.p X P~oX]/H+ (Ao), where MD, m. P 
is the fiber of MD, l over P, B+ c GL(2) is the subgroup of upper triangular matrices, B+(A D) 
is the set of AD-points of the algebraic group B+, and the right action of B+(A D) on MD,~, P x 

PicDX is defined by the formula (z~p).(~ ~ =~b )=(~[~m,~;iy), where x ~MD, I,p, y ~PicDX , a~d ~ 

is the image of ~ under the natural homomorphism AD* + PicDX (here, multiplicative notation 
of the group operation In PiCDX is used temporarily). If the F-decomposition has type 2, 
then we obtain an element of the set ~D,p ~ = [GL(2, A D) x MD,~, P x PiCDX]/B+(AD) , differing 
from ~D,P~ by the fact that the action of B~(A D) on MD,~, P x PicDX is defined by the formula 

b % 

)=(~[~z,~[~), where x~M D,~,P, y ~Pic D X. 

L e t  ~ ~ fiD,p ~ o r  ~ ~ fiD,p ~. The s e t  o f  p o i n t s  o f  MD, P c o r r e s p o n d i n g  t o  a g i v e n  ~ i s  
d e n o t e d  by C~ and c a l l e d  an o r i s p h e r i c  c u r v e  o f  t y p e  1, i f  e ~ ~D~p ~, o r  o f  t y p e  2 i f  ~ e fiD Pa.  

" " " l [  "~  ~ 

I t  w i l l  soon be p r o v e d  (see P r o p o s i t i o n  4 .3 )  t h a t  these are ~ndeed curves.  The term o rx -  
sphe r i c "  has been borrowed f~om Chap. 3 i n  [ i ] .  I t  f o l l o w s  from statement  i )  o f  P r o p o s i t i o n  
4.2 t h a t  o r i s p h e r i c  curves of  the s ~ e  type do not  i n t e r s e c t  each o the r .  The un ion of  a l l  
o r i s p h e r i c  curves i s  the se t  o f  p o i n t s  of  MD, P cor responding to r e d u c i b l e  F-sheaves.  

P r o p o s i t i o n  4 .3 .  i )  For each ~ ~ ~D,p ~ ~ fiD,p a the se t  Cm c MD, P i s  c losed and i s o -  
morphic to  an a f f i n e  l i n e .  

2) Suppose t h a t  D ~ @. Let  8p = 8p' S 8p" be the d~composi t ion o f  the tangent  bundle 
8p to MD, P induced by the decomposi t ion 8 = 8' • ~" cons idered i n  Sec. 3. Then C~ i s  tangent  
to  8p' i f  ~ f i D , p  ~ and to  8p" i f  ~ f i D , p  =. 

Note t h a t  C~ i s  viewed as a reduced scheme. 

Proof .  I f  the F-sheaf  ~ has an F-decompos i t ion  of  type 2, then ~*  Has an F-decomposi- 
t i o n  o f  type i .  So the isomorphism ~: MD, P + MD,~'qp ) ,  where ~(P) i s  the p o i n t  w i t h  the co- 
o r d i n a t e s  (8,  e ) ,  maps o r i s p h e r i c  curves o f  type 2 i n t o  o r i s p h e r i c  curves o f  type i .  Thus, 
i t  s u f f i c e s  to  prove the p r o p o s i t i o n  f o r  ~ ~ D , p  ~. The ac t i ons  o f  the  groups GL (2,  A D) and 
PiCDX reduce the a r g ~ e n t  to  the case when ~ corresponds to an element o f  GL (2,  A D) x 
MD,~, P x PieDX of  the form (E, ~ ,  0 ) ,  wher e ~ i s  some F-sheaf  of  ~ank 1 w i t h  a s t r u c t u r e  o f  
l e v e l  D. Then C~ i s  the se t  o f  F-sheaves ~ w i t h  a s t r u c t u r e  o f  l e v e l  D possess ing an F-de- 
compos i t i o n  

0 ~ . ~ > . ~  ~, ~x~,~0 (~.2) 
such that the diagram 

0--> ~ D ~  t s > ~D -- ~ ~D®e -~ 0 

I 
0---> (~)D.®~, x ~ ( x ,  O) > ~ e B  (x, ~ ) ~ y  > O D e B  ~ O . 

commutes. If D ~ @, then the exact sequence (4.2) is unique, and if D = @, then there is 
arbitrariness in multiplying f and g by an element of F~. The kernel ~' of the composition 
~-+ZO--~.O~®B--~D®B~ where O~®B--~OD®B iS the projection onto the first factor, is an 
F-sheaf possessing an F-decomposition 

0---,-,/l ( - -D)  -+ ~'->- Ox®B --~- O. ( 6 .3 ) .  

Conversely, an element of C~ is uniquely restored from an F-sheaf ~" and an F-decomposition 
(4.6). The set of isomorphism classes of F-decompositions of the form (4.3) is made, in 
a usual way, into a vector space over Fg_,which we will denote by Ext~ (~Dx®B, ~ (--D)). Thus, 
we have constructed a bijection 'ExtF ((Dx®B,J~ (--D))-~ C. for D ~ @ and ExtF (Ox®B, ~)/F~-+ C~ 
for D = @. 

Let D' m D be a finite subscheme such that ~, ~ (X- D')(B), and let ~'~ ~D,,p ~ be 
one of the preimages of ~. Then the validity of the proposition for C~, implies its validity 
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for C~. Indeed, C~ is closed (as the image of Ct~, in MD, P) and is isomorphic, as a scheme, 
to H \ C~,, where H c Ker (GL(2, AD,) + GL(2, AD)) is the stationary subgroup of ~ [the 
fact that C~ ~- H \ C~, is not quite obvious for D = @ because, in this case, H does not act 
freely on M D,,P and there could be the possibility that fibers of the natural morphism H \ 
C~, + MD, P have nilpotents; in order to exclude this possibility, it suffices to verify that 
the order of the stationary subgroup in GL (2, A D) of each point of C~0, is not divisible 
by p, and this follows from Proposition 4.2]. 

Thus, we can assume without loss of generality that D ~ O and I DI e deg ~ + 2. Then 
the natural map Ex~F (Ox®E,_~ (~D)) -+ Ex~ ((gx®B, J~ (--D)) is an embedding. Indeed, if, for 
the exact sequence of (gx®e-modules 0 ~ ~ (--D) -+ ~ -+ ~)x®B -~ 0 there existed to distinct 
morphism {lax X Fre)*~ -+ ~ (~), inducing the given map (idx X Fr~)*d~ (--D) -+ .~ (~.-- D) and the 
identical inclusion (idxXFrB)*(Px®B->-(gx®B (~), then the difference of these morphisms would 
define a nonzero morphism ~gx®B----- (idx×Fr~)*~x®~-~ ~ (~ -_.D),~ which is .impossible because 
de~ ~ (~ - D) < 0. It is easily seen that the image of ExtF ((gx®B, ~ (--D)) in Ext (d).x~e, 
~ (--D)) is equal to Ker (~ - ~), where I is the natural map Ex~(~x®B, ~ (--D)) -+ Ex~ (Ox®~, 
~(~ -D)), and ~ is the composition of the q-linear bijection Ext (~x®B, ~ ('D))-+Ex~ (0x®~, 
(id x x FrB)~'*~ (-D)) and the natural homomorphism Ext (,(gx®B, (idx X~r~)~-ii-D))-~x~d)~®~, 

~ (~ - -  D)). 

LEMMA i. Suppose that V and W are finite-dimensional vector spaces over B, dimV - 
dimW = i, X: V + W is a surjective linear map, ~2: V + W is a surjective q-linear map. Then 
the algebraic group Ker (l - ~) is isomorphic to G= X F~, where r is the dimension over F~ 
of the space {£~ W*/£(~(x))q = £(~(x)) for all x ~V}. 

Proof. We will show that V and W have bases ex, ..., es, vx .... , Vr' andfI, -.'.,fs-x, 
wx, ..., Wr, respectively, such that X(v i) = ~(v i) = w i and 

X (el) ~-  O, X (ei+x) ~---, (ei) = l  ] f ~Ip~ I ~ ~ ~ s -- l ,  , (e,) -~- O. (&. ~)  

The l e n a  i s  e a s i l y  d e d u c e d  f r o m  t h i s .  

~e  d ~ f f n e  s u b s p a c e s  Yn c V a s  f o l l o w s :  Y0 = O, Yn+l  = A - I ( * ( Y n ) ) -  Clearly, Yn c Yn+l  
and  t h o r ~  e x i s t s  s s u c h  t h a t  Yn = Ys f o r  n ~ s ,  d imY n = n f o r  n g s .  I n  Ys and  * ( Y s )  t h e r e  
e x i s t  b a s ~ s  ~x *, . . . .  e s  * and  f ~ * ,  . . . .  f s _ l  *, r e s p e c t i v e l y ,  s u c h  t h a t  X(~I  *) = O, X(ef+~ *) = 

i.X q~-s-i , ~--i qi-~ , 
fi, *(ei) = fi for 1 ~ i ~ s - i. Putting eider-- ~c~+s_ie~,]i=]~--~c~+~_i~, where ci ..... 

~=I ~=i 
~-i 

Cs_ i are determined from the relationship 9 (e~)= ~ cf/~, we make (4.4) hold. Since % and ~ 
~=I 

-- 

induce bijective ~aps ~, ~: V/Y s + W/X(Ys) , there exists a basis Vl, ..., v r of the space 
~/Ys such that l(v i) = ~(vi) for all i. Since i - ~ induces a surjective map Ys + X(Y), 
v i can be lifted to an element vi~ V such that X(vi) = ~(vi). It remains to put w i = X(vi). m 

The maps ~,~: Ex~ (Oxen, .~ (--D)) ~ Ex~ (~xeB, ~ (~ -- 0)~ satisfy the hypotheses of Lena i. 
If ~ Ex~ (~xeB, ~ (~--D)) ~,l(%(z))~= £(~(x)) for all z~ Ext (~x@B, ~ (--D)), then the section 
of the F-sheaf ~-I(D - ~) O fl corresponding to £ by the Serre duality satisfies the condi- 
tion of Proposition 2.1, whence £ = 0. Thus, Ex~ (~x@B, ~ (--D))~ G=.. 

It is easily seen that the map 7/: ExL~ (~x~B, ~ (--O))~ MD. p constructed above is regular. 
A direct verification which we omit shows that the differential of f maps the tangent space 
to z ~ Ex~ (~x~B, ~ (--D)) isomorphically onto the fiber of Op' at the point f(x). 

L ~  2. Let Y be a separable scheme over B, and let f: A .~ + Y be a morphism injective 
in the set-theoretic sense and such that the differential of f at each point is also injec- 
tire. Then either f is a closed embedding or f can be extended to a morphism pi + y. m 

It remains to show that /: Ex~F (~x~B, ~ (--D))~ Mo,p is not extended to a morphism ~: 

~i.+ MD,p" Otherwise, the point ~(~)would be fixed relative to ~=~(~0 ~')]a~AD~, because 

H'C~ = C~. In this case the F-sheaf corresponding to ~(~) would possess a nonidentity auto- 
% % =  ~ ~ ~ ~ 

morphism h whose restriction to D 0 B would be unipotent. The impossibility of this situa- 
tion is proved like Proposition 3.4. • 

Remarks. i) It is readily seen that for an arbitrary F-sheaf ~ [it is not necessary 
that H ° (X ~ B, ~ (~)) = 0) Ex~ (~x~B, .~) are the one-dimensional hypercohomologies of the 
complex 0 ~ . ~ . ~  (~)~0, where ~ is the projection X O B + X and the morphism ~.~ 
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~,~ (6) is the difference of the natural embedding and the composition ~$~-+~, (idz × FrB), 
(idx × Fr~)*~--- - -n .  (idx X FrB)*¢/-+ u,¢g (~). 

2) I t  i s  e a s i l y  s een  t h a t  t h e  .groups Ext~ (©x®e,J~(--D)), where  ~g r u n s  t h r o u g h  t h e  s e t  
o f  F - s h e a v e s  o f  r ank  1 w i t h  a s t r u c t u r e  o f  l e v e l  D in  which  t h e  z e r o  and t h e  p o l e  s a t i s f y  
( 4 . 1 ) ,  a r e  g l u e d  up i n t o  a g roup  scheme G D o v e r  ~D,x, and t h e  morphisms Ext~,(Gxes,~(--D))~ 
MD, P ( s e e  t h e  p r o o f  o f  P r o p o s i t i o n  4 . 3 )  come f rom t h e  morphism ]D: G ~ D , ~ .  One can show 

~ • * t h a t  t h e  morphisms fD, D @, and t h e  morphzsm G ~ / F q ~  ~ a r e  l o c a l l y  c l o s e d ,  bu t  n o t  . ,  
c l o s e d ,  ~ b e d d i n g s .  

i 
For all m, n~Z we define m,n~,p c ~D,P, i = i, 2, as follows: m'noz..D,p = [GL(2, 

AD ) M m Pic~,mX]/B+(AD) m,n~= ~ D,~,P x ' D,P = [GL(2, A D) ~ MD,~,en-m ~ Pic~X]/B+(AD). This defini- 

tion means that the union of the curves Cm, m~m,n~i consists of points MD, P which corre- D,P 
spend to F-sheaves Z of degree n possessing an F-decomposition 0 ~ ~ ~ 0  of type 
i such that deg~ = m. 

~+i, ~ ~, ~ Proposition 4.4. If 2m ~ n, then =~D.~P; --~D,P is the union of disjoint curves Cm, 
- ~ 1  ~ ~ 1  ~ Z  ~ ~ l , n ,  ~D,P ~ ' ~D,P. 

_ 
~ m + l , n  ~m,n 

Proof. The point ~o,P -- D,P corresponds to an F-sheaf ~ of degree n having an 
invertible subsheaf ~ of degree m + i but no invertible subsheaves of higher de~ree. Since 
~ is maximal, the sheaf ~=~/~ is invertible. The homomorphism (idx X FrB)*~Z (~) 
induces the zero homomorphism (idx X Frs)*~(~)~ because deg~(O)~n--m~deg.~. So 
0 ~ ~  ~0 is an F-decomposition. If ~' is a maximal invertible subsheaf in ~, dis- 
tinct from~,.then the composition ~ ' ~ ~  is distinct from zero and, therefore, 
deg~'<~deg~<m. Thus, ~ is the only invertible subsheaf in ~ of degree m + i. • 

It is easily seen that applying constructions 1-3, 5, 6 from Sec. i to reducible F- 
sheaves, and construction 2 reverses the type of an F-decomposition while the remaining con- 
structions preserve it. The morphisms *, Fz, Fa act on orispheric curves as follows. Put 
F~(P) = (Fr(a), 8), F~(P) = (a, Fr(8)), *(P) = (8, ~). The endomorphisms e, Fz, Fa of the 
scheme ~,z induce the morphisms Fz: MD, P + MD,F~,(p), F:: MD, P * MD,Fu(p), ~: MD, P * 
MD,e(p ). It is readily verified that F~(C~) = CF~(~), Fa(C~) = CF~(~), ~(C~) = C,(,), where 

. i + " • 
the map F i. ~D,P ~,Fi(P)' x' J = i, 2 is induced by the map Fi: MD, z, P * MD, z,Fi(P), 

+ I " 
, -~ -~ ~. ~2 P ~D,*(P) transform the. class o~ a triple (h, x, and the maps .: uD,P + ~D,*(P)' "" D, 

<no e y)~ 

t h a t  - - t0  c o u l d  be r e p l a c e d  h e r e  by any  ~ a t r ~ x  o f  t h e  form bo ' ~' b~F~ ,  b e c a u s e  ~1 l i e s  

in the kernel of the homomorphism AD* + Pie DX). 

We fix a finite set T of closed points of X such that the image of each morphism ~*: 
SpecB + X, 8*: Spec B * X either lies in T or is a co~on point of X. Put M~=]~MD.p, 
M[p ~ M~, , , r ,  T ~  = lim i ~--~D,P, where  D r u n s  t h r o u g h  t h e  s e t  o f  f i n i t e  subschemes  in  X - T 

( t h e  n o n e m p t i n e s s  o f  t h e s e  s e t s  i s  g u a r a n t e e d  by t h e  c o n d i t i o n  imposed on T ) .  I f  ~ . t ~ ,  

t h e n  p u t  C ~ = I ~  C ~ ,  where  D r u n s  t h r o u g h  t h e  s e t  o f  f i n i t e  subschemes  in  X - T and ~D i s  

t h e  image o f  ~ in  fii  S i n c e  lim PicDX=(~T)*/F T, where  F T i s  t h e  s e t  o f  e l e m e n t s  o f  k ~ 
D,P" ~ _ r  

h a v i n g  no z e r o s  o r  p o l e s  a t  t h e  p o i n t s  o f  T, T ~  = {GL (2 ,  0 T) x M~,p x [ ( , ~ ' T ) ~ / F T ] } / B + ( o T ) ,  ' 

where  O T = ~ O v ,  and t h e  r i g h t  a c t i o n  o f  B+(O T) on M~pX [(~T)*/]FT] iS g i v e n  by t h e  f o r m u l a  
v~T 

{ (a[~x' a[*Y)' ~ ~ ~' (4.5) 
( m , y ) ' ( ~ l  ~ z ) =  (a[ I x ,a l l y ) ,  ~ = 2 .  

S i n c e  G L  (2, OT).B+ (9~T) = GL (2, ~T), we have  

T ~  ~--- {GL (2, 9if) × M~p X [(f4r)*/FT]}]B+ (gff ), (4.6) 

where the action of B+(~ T) on M~,p x [(~ T)*/FT] is still given by the formula (4.5). It 

is readily verified that the left action of GL (2, ~ T) on T~ defined by formula (4.6) is 
• 

"regular" in the sense that Ch~ = h'C~ for ~TQ~, h~GL (2, ~T). 
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Recall that the action of PicDX on MD, I, P and thusm also the action of (19~T)*/FT~on 

M~. is free and transitive. So fixing a point z ~ M~,p provides the isomorphism M~,p 

(9~ T )*/F T, and thus also the isomorphism 

. 

Suppose now that ~* and ~* map SpecB into a co~on point of X and T = ~. Instead of 

Mg, M~.~,e e~ we will write Mp, M~,p, ~. We denote by CrD, P the set of points of MD, P ly- 

ing in two orispheric curves simultaneously. One of these curves is of type i, another is 

of type 2 so we have maps CrD, P + ~i ' D,P' i = i, 2. Put Crp=1i~CrD,p, where D runs through 

the set of finite subschemes in X. 

Proposition 4.5. There is a GL (2, ~ )-equivariant bijection Crp ~ {GL (2, ~ ) x M~,p x 

(~*/k*)}/H, where H c GL (2, ~) is the group of diagonal matrices and the right action of 

H on M~,p x (~*/k*) is given by the formula (z,y).(~. ~)~(~-~z,_. b-~y). The natural map {GL 
. 

(2, ~) X ~.~ X (~*/~)}/H = Crp ~ Q~ : {GL (2, ~) X ~,p X (~/~*))/B+(~) transforms the 
class of the triple (h, x, y)~ GL (2, ~ ) x M~,p x (~*/k*) to the class of the triple (h, 

to Y) x~ for i = i and 

Proof. If we have an F-sheaf ~ of rank i over B with a structure of level D and an 
invertible sheaf ~ on X,trivialized over D, then ~ ,  where ~ is the inverse image 
of $~, on X ~ B, is an F-sheaf with a structure of level D. Here, ~ ~ ~ possesses F-de- 
compositions of both types. A map MD,~, P x PiCDX + CrD, P arises. Upon a passage to the 

limit with respect to D, we obtain f: M~,p x (~*/k*) + Crp. It is easily seen that f is in- 

jective and the equality hx = y, where x, y ~ Imf, h ~GL(2, ~), implies that h~ H. It 
remains to show that if x~ Crp, then there exists h ~ GL (2, ~.) such that hx ~ Imf. Suppose 
that the poin t x corresponds to an F-sheaf ~, having F-decompositions 0 ~ ~ ~ ~ ~ ~ 0 
and 0+,~'~'~ ~'~0 of types i and 2, respectively. We denote by A the support of the 
sheaf ~/(~ ~ ~) = Coker (~' ~ ~). Since ~ ~ ~', the scheme A is finite, and the co~utativ- 
ity of the diagram 

(idx x Fr~)* ~' ~ ~', 
$ . $ 

(idx ~ FrB) *~ ~ ~ 

implies that A is invariant relative to id x × Fr B. So A = D ® B, where D is a finite sub- 
scheme in X. We have: ~/(~4'):~o/~, where ~ is a subsheaf of ~o, invariant rela- 

-~OD®B, defining the struc- tire to id D × Fr B. The image of ~ under the isomorphism ~D~ ~ 
ture of level D on ~, is the inverse image of some subsheaf ~Oz D. So for some g~GL" 
(2, ~) the point gx corresponds to the F-sheaf ~ ' .  • 

Remark. Fixing a point z~M1, P we obtain a bijection 

o )I (4.8) 
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K~LER STRUCTURES ON K-ORBITS OF THE GROUP 

OF DIFFEOMORPHISMS OF A CIRCLE 

A. A. Kirillov UDC 514.76+517.98 

i. Formulation of the Problem 

Among the infinite-dimensional symplectic manifolds which arise as orbits of the coad- 
joint representation of an infinite-dimensional Lie group, one of the simplest and at the 
same time most important examples is the manifold (cf. [2, 3]) 

, 

M Diff+ (S~)/Rot (S~). (1) 

Here Diff+ (S I) means the subgroup of diffeom0rphisms of the unit circle S I, preserving 
orientation, and Rot (S I) is the subgroup of rotations of the circle. I have more than once 
already stated the conjecture that on M there exists a Diff+ (S1)-invariant complex structure, 
which together with the symplectic structure on M turns M into a homogeneous K~hler manifold. 
It will be shown below that this is really so. 

The original version of this paper is contained in [i]. 

We recall how one usually constructed a complex structure on a homogeneous manifold 
X = G/H, where G and H are ordinary (finite-dimensional) Lie groups (cf. [4]). Let x 0 be 
the initial point in X, corresponding to the coset H, ~ and ~ be the Lie algebras of the 
groups G and H, respectively; ~= and ~ be their complexifications. The space ~q~ can be 
identified naturally with the complexification Tx0CX of the tangent space to X at x0. The 
group H acts on this space. 
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