VARIETIES OF MODULES OF F-SHEAVES

V. G. Drinfel'd UDC 513.6

The present article is the first in a series of papers containing a detailed account
of the proof of the part of Langland's conjecture for GL(2) over a global field k of charac-
teristic p > 0 dealing with constructing a map £, - I;, where I, is the set of irreducible
two-dimensional representations over EL, 2 # p, of the Weyl group of the field k, continu-
ous in the %-adic topology and having only finitely many branching points, and I, is the
set of irreducible representations of GL(2) over adeles of the field k appearing in the space
of the Q;-valued parabolic forms. A brief account is contained in {2, 11]; see also [12,
13]. The existence of the inverse map %, - I, has been proved in [4] and, by a different
method, in [14, 15]. -

The general scheme of constructing the reciprocity map I, » I, has been presented in
{2, 11-13]. We only recall that the main role is played by varieties of modules of F-sheaves
of rank 2: roughly speaking, the required %-adic representations of Gal (Q/Q), correspond-
ing to parabolic representations m of the group GL (2, A) such that 7. belongs to a discrete
series are realized in cohomologies of varieties of modules of elliptic curves (cf. [16]).

The present article studies geometry of varieties of modules of F-sheaves. The conse-
quent articles of the cycle will deal with computing the {-functions of these varieties (in
the case of rank 2), constructing their compactifications (also for rank 2), and the proof
of existence of the reciprocity map %, » I;.

I dedicate this article to my teacher Yu. I. Manin in connection with his 50th birthday.

The following notation is adopted throughout the article: k, fixed global field of
characteristic p > 0; F,, field of constants of k; X, smooth projective irreducible curve
over F,, corresponding to k; 9 is the adele ring of k; Oy, completed local ring of a point
vE X; if D is a finite subscheme in X, then Ap = H°(D,0p); |D| is the order of D. We write
"a scheme'" where one would write "a scheme over F,." If Y and Z are schemes, then Y x Z
denotes the product of Y and Z over F,. Similar conventions are adopted for rings and their
tensor productsg as well as for morphisms of schemes or rings. The Frobenius endomorphism
of a scheme S (relative to F;) is denoted by Frg or Fr. If Y is a closed subscheme in Z, then
we identify sheaves of Oy -modules with their direct images under the inclusion Y »+ Z. 1In
particular, if a sheaf of Oz-modules is referred to as an invertible sheaf on Y, then it
is meant that it is a direct image of such a sheaf.

1. F~Sheaves

We recall the notion of an F-sheaf introduced in [2, 11] (note that F-sheaves are called
Frobenius—Hecke sheaves or FH-sheaves in [12] and "shtukas" in [13]).

Definition. A left F-sheaf of rank d over a scheme S is a diagram

e
& ' (1.1)
d (idx X Fl's) *z7

where & and § are locally free sheaves of (Oxxs-modules of rank d, i and j are inclusions,
the cokernel of i is an invertible sheaf on the graph I'y of some morphism a: S = X, the
cokernel of j is an invertible sheaf on the graph I'g of some morphism B: S - X.
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A right F-sheaf of rank d over a scheme S is a diagram
Z

X 8, (1.2)
/ |

@dxxF%)ﬁz !

where £ and € are locally free sheaves of Oxxs-modules of rank d, f and g are inclusions,
the cokernel of f is an invertible sheaf on the graph I'; of some morphism a: S » X, the co-
kernel of g is an invertible sheaf on the graph g of some morphism B: S > X.

We say that a is the zero of the F-sheaf and B is its pole.
Remarks. 1) We will often say "an F-sheaf £ ' meaning the diagram (1.1) or (1.2).

2) Roughly speaking, an F-sheaf is a sheaf £ together with an isomorphism ¢ between
the restrictions of (idy x Frg)*% and £ to (X x S) — (Iy U T'g) having singularities over
To U Tg (¢ is undefined over I'g and ¢7! is undefined over Ty). So we use the terms 'zero"
and "pole."

3) Roughly speaking, an F-sheaf is a locally free sheaf of Oxxg-modules £ along with

an isomorphism (idy X Frg)* £=5 %', where &’ is a modification of £ of a certain type. By

a modification of £ is meant (in the case when S is a spectrum of a field) a locally free
sheaf whose general fiber is identified with the general fiber of Z. The definition of an
F-sheaf employs simplest nontrivial modifications of £, preserving its degree: a "minimal
decreasing" of £ over Ty with a consequent "minimal increasing" over I'g (in the case of
left F-sheaves) or, conversely, a "minimal increasing" over I'g with a consequent "minimal
decreasing" over I'y (in the case of right F-sheaves).

4) It follows from the previous remark that if Iy n rg = $, then the notions of a left
and right F-sheaf essentially coincide. 1In this case, an F-sheaf can be understood as a
d-dimensional locally free sheaf of Oxxs-modules £, equipped with a morphism (idg x Frg)*-
£ — £ (T's), whose cokernel is a direct sum of an invertible sheaf on Iy and a (d — 1)-dimen-
sional locally free sheaf on Ig.

5) The notions of a left and right F-sheaf of rank 1 coincide even if Ty N I'g # @: de-
fining an F-sheaf of rank 1 is equivalent to defining an invertible sheaf £ on X x S equipped
with an isomorphism (idx X Frs)* L= % (I's — L'a).

6) Sheaves £ on X x S equipped with an isomorphism (idx X Frs)* 2% (a regular one,
i.e., with no singularities) are not very interesting objects, as is demonstrated by the
following proposition.

Proposition 1.1. Let Y be a projective scheme over F, L an algebraically closed field,
and pry: Y 8 L > Y the projection. Then the functor ¥ = (pry)*¥ is an equivalence between
the category of coherent sheaves of Oy-modules and the category of coherent sheaves of Over -
modules equipped with an isomorphism (idy &® Frp)* 4 = 4.

Proof. We fix a very abundant invertible sheaf @ (1) on Y. It is known that the cate-
gory of coherent sheaves of Oy -modules is equivalent to the quotient of the category of
finitely generated graded modules over g;fﬂ()ﬁ(?(n» relative to the subcategory of modules

nzo
having only finitely many nonzero homogeneous components. The category of coherent sheaves
of Orer -modules admits a similar description. It remains to show that the functor V—~V @ L
is an equivalence between the category of finite-dimensional vector spaces over F,and the
category of pairs (W, ¢ ), where W is a vector space over L and ¢: W > W is a bijective gq-
linear map (in other words, we have reduced the proof of the proposition to the special case
of Y = Spec F;). 1Indeed, it is easily seen that the above functor is completely strict,
and its surjectivity follows from a corollary at the end of Sec. 14 in [7]. =

Let £ be a left or right F-sheaf over S and D ¢ X a finite subscheme such that the
zero and the pole of % do not involve D (i.e., they are morphisms S + X — D). The restric-
tion of £ to D x S is denoted by £p. In the studied situation the restrictions of the morph-
isms in the diagrams (1.1) or (1.2) to D x S are isomorphisms, so we obtain an isomorphism
(idp X Frg)* £p = £p. A structure of level D on ¥ is an isomorphism %p=s O%ys such that
the diagram
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id, x Fry)*Z 25,
() 2y 2,
O5s
is commutative. If the zero or the pole of £ involves D, then, by definition, there are
no structures of level D on & .

We will now describe several ways to construct F-sheaves starting from other F-sheaves.

Construction 1. The inverse image of an F-sheaf over S with a zero at o & X(S8) and
a pole at B & X(8) relative to a morphism f: S' > S is an F-sheaf over S' with a zero at
f*(a) and a pole at f*(B).

Construction 2. The diagram obtained from a left (right) F-sheaf with a zero at o and
a pole at B by replacing all sheaves and morphisms between them by their conjugates is a
right (left) F-sheaf with a zero at B and a pole at a.

Construction 3a. If a diagram (1.1) is a left F-sheaf with a zero at o and a pole

at R, then the diagram 51;(idx X Frg)* $<f—(idx X Frs)*¥, where £ = (idy x Frg)*i, is a left F-
.sheaf with a zero at Frea and a pole at B.

Construction 3b. If a diagram (1.2) is a right F-sheaf with a zero at o and a pole

at B, then the diagram %‘L (idx X Frs)* & ER (idx X Frg)* &, where j = (idy x Frg)*g, is a left
F-sheaf with a zero at a and a pole at FreoB.

Note that a consecutive implementation of constructions 3a and 3b is equivalent to tak-
ing the inverse image relative to Fr: S <« §.

Construction 4. The determinant of an F-sheaf ¢ is an F-sheaf of rank 1 with the same
zero and pole as those of Z.

Construction 5. Let £ be an F-sheaf on S, £ an invertib%g sheaf on X, and .# its
inverse image relative to the projection X x § » X, Then £ ® J is also an F-sheaf (with
the same zero and pole as those of & ).

Construction 6. Suppose that an F~sheaf £ of rank d over S with a structure of level
D and a subsheaf of Op ~modules @ C 0%, are given. Let %' be the kernel of the composition
L %o :;Odpxs—réfjxs/C, where @ is the inverse image of @ on D x S, Then % is an F-
sheaf (with the same zero and pole as those of £ ).

Constructions 1'-4', A structure of level D on an F-sheaf % is naturally extended
to F-sheaves obtained from it by applications of constructions 1-4.

Construction 5'., The same is also true for Construction 5 if the restriction of J to
D is trivialized.

Construction 6. Suppose that in the situation of Construction 6 an epimorphism @~ 05,
is given, where D' is a subscheme of D. Then the composition .55’—>@—+0%»xs defines a struc-
ture of level D' on &' .

In the remaining part of this section we will discuss a connection between F-sheaves
and elliptic modules. We fix a closed point « & X and put A = H°(X — {»},®x). The notion
of an elliptic A-module of rank d was introduced, essentially, by Carlitz [10] and redis-
covered by the author [5]. 1In [5, 6] elliptic modules were used to construct the restric-
tions of the reciprocity map I, + I; (see the introduction to this paper) to the set of 715,
in which the component m, is caspidal or special: it has been shown that the required %-adic
representations of Gal (k/k) are realized in cohomologies of varieties of modules of elliptic
modules of rank 2 equipped with some additional structures. It has been shown in [3] (see
also Sec. 3 in [17]) that defining an elliptic A-module of rank d over S, where S is a scheme
over A, is equivalent to defining an increasing sequence of d-dimensional locally free sheaves
of Oxxs -modules {#:} and a compatible system of morphisms ¢;: (idx X Frg)* §; — Fia such that:
1) Fiwm =F;(0), where m is the degree of the residue field of the point « over F;; 2) the
sheaves n,(¥:1/Fi)y where m: X x S > S is the projection, are locally free and one-dimen-
sional; 3) for each s & S the restriction of ¥: to X x s has Euler characteristic i + 1;
4) the support of the cokernel of tj is a graph of a structure morphism S - SpecA. A family
{F1, t:}, satisfying conditions 1)-4) is called an elliptic sheaf. If {F: &} 4is an ellip-
tic sheaf, then the diagram
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.%‘-iC9~1+1<“(1dX><F1'S)* (1.3)

is an F-sheaf. If one applies Constructlon 3b to this F- sheaf then one obtains the left
F-sheaf (1dx X Frs)* F i1 (idx X Frs)* §; > Fiu, correspondlng to the right F-sheaf (idy x
Frg)* Fia— Fie< Fia. In view of the fact that Fi-am = F: (— ), we deduce that the ellip-
tic sheaf {F: t;} is uniquely reconstructed if the F-sheaf (1.3) is known for some i. Thus,
elliptic sheaves (and thus, also elliptic A-modules) of rank d over S bijectively correspond
to F-sheaves £ of rank d over S with a zero at o and a pole at 8 such that: 1) a: S -
SpecA c X is a structure morphism; 2) B(S) = {=}; 3) the (md)-fold application of Construc-
tion 3b to £ yields the same result as a single application to £ of Construction 5 with

M = Ox (), (more exactly, there is an isomorphism, equal to the identity on £ between
the F-sheaves obtained from %) by applying these constructions); 4) for each s =S the Euler
characteristic of the restriction of £ to X x s is equal to zero (of course, 0 could be
replaced by any fixed integer).

2. Group Schemes Corresponding to an F-Sheaf

If G is an elliptic A-module of rank d over S, then to each nonzero ideal I = A corre-
sponds a finite locally free group scheme Gy over S, namely, the annihilator of I in G. How
can Gy be expressed in terms of the F-sheaf &, corresponding tc G? :

Definition. A ¢-sheaf on a scheme S is a finite-dimensional locally free sheaf of Os-
modules & equipped with a homomorphism ¢: Fr§& — &. .

Let E be the vector bundle corresponding to the ¢-sheaf & . On the one hand there is
a linear map 9 *: E* » Frg*E*; on the other hand, the Frobenius map Frob: E* > Frg*E*, which
is gq-linear. Put Gr (§) = Ker (¢p* — Frob). Gr is a contravariant functor from the category
of ¢g-sheaves on S to the category of group schemes over S equipped with an action of F,

Suppose now that an F-sheaf £ over S is given along with a finite subscheme D c X not
involving the pole of £ . Then a morphism (idp X Frs)* $p —%p arises. So the direct image
& of the sheaf Pp relative to the projection D x S » S is a @-sheaf. Put (%) = Gr ().

The ring Ap = H°(D, @p) acts on & and, thus, also on Grp(Z). It is readily seen that if £
corresponds to an elliptic A-module G and D = Spec (A/I), then there is a canonical isomorph-
ism Gy = Grp(Z) compatible with the action of the ring Ap = A/I. We omit this verifica-
tion because the statement above is needed only to motivate the definition of Gr (&) and

Grp(Z).
We will prove some properties of the functor Gr.

Proposition 2.1. 1) For each ¢-sheaf & the scheme Gr (&) is finite and locally free.
If dim & = n, then the order of Gr (&) is equal to q"

2) The sheaf Lie* Gr (é’) [i.e., the inverse image of the sheaf Qb qys relative to the
zero section e: § - Gr(8) ] is canonically isomorphic to the cokernel of the morphism

o: Fr§& — &. v
3) The scheme Gr (¢) is étale over S if and only if ¢ is an isomorphism.
4) Gr maps short exact sequences into short exact sequences.

5) The functor Gr is completely strict.

6) Each finite etale group scheme over S equipped with an action of F,, is isomorphic
to Gr (§) for some ¢-sheaf &.

Proof. If S = SpecB, $z0§i and (bij) is the matrix of the morphism ¢: Frs & — &,
then Gr(g) is the subscheme of G, ® B, given by the system of equations

zb{jx{—-o j:i,...,n. (2.1)
i=s1,
It is easily seen that the quotient of B[x;, ..., xn] over the ideal generated by the left-
hand parts of (2.1) is a free B-module with a basis x7% ... Xy In 0 m;<g. This immediately

implies statement 1). Statements2)-4)directly follow from the fact that Gr (§) is locally given
by the system (2.1), and statement 5) is a consequence of the following lemma.
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LEMMA. If Gr (%) is given by the system (2.1) and h is a function on Gr (§), defining a
homomorphism of group schemes Gr (&) — G, ® B, compatible with the action of F,, then A=Y -
i
ciXy, ci E B.

Proof. We write h in the form F(x;, ..., %), where F is a polynomial whose degree in
each variable is less than q. The polynomial F(x; + yi, ..., Xg + ¥p) — F(xy, ..., %) —
F(yys ..-» Yp) has, in each variable, a degree less than q and its restriction to Gr (&) x
Gf(g) is equal to zero. So this polynomial itself is zero. Similarly, for each ¢&F, the
equality F(cx;, ..., cXp) = cF(x;, ..., Xy) holds in the polynomial ring. Since the degree of
F in each variable is less than g, we conclude that F is a linear function. =

Statement 5) which has already been proved and the descent theory allow us to reduce
the proof of statement 6) to the case when the group scheme is equal to S X Fg, and in this
case statement 6) is obvious. =

Proposition 2.2. Suppose an F-sheaf £ of rank d over S is given along with a subscheme
D c X not involving the pole of &£.

1) Grp (%) is a finite locally free scheme of order qd'IDl.

2) The scheme Grp (%) is etale over S if and only if D does not involve the zero of £.
In these cases the geometric fibers of Grp (%) are free Ap-modules of rank d.

3) Defining a structure of level D on £ is equivalent to defining an isomorphism of
group schemes Grp (%)= S X (4p)% compatible with the action of Ap, where Ap* is the vector
space over F,, dual to Ap.

Proof. Statement 1) and the first part of statement 2) follow from Proposition 2.1.
It suffices to prove the second part of statement 2) in the case when S = SpecF, F being
an algebraically closed field. In this case 'Grp(¥) can be viewed not as a group scheme
but rather as a group equipped with an action of Ap, i.e., as an Ap-module M. It follows
from the definition of Grp(¥) that H*(D®F,Zp)=M*QF, where M* = Homf,(M, F,). Since
H°(D ® F, ¢,) is a free d-dimensional module over Ap ® F, M*, and thus also M, are free
d-dimensional Ap-modules. Statement 3) follows from the equality Gr ( @s e AD) = S x Ap* and
the complete strictness of the functor Gr. =

Remarks. 1) Ap* is a one-dimensional free A-module.

2) In [5], a structure of level I on an elliptic module G of rank d over S is defined
as an isomorphism Gy 3 S x (I 1/A)d, On the other hand, defining a structure of level D =
Spec(A/I) on the F- sheaf correspondlng to G is equivalent to defining an 1somorph19nGI 3
S x (Ap*)d. Since Ap* = (A/I)* = I-10,"1/Qp' (the matching between A/I and I1Qu1/p' is
determined by means of the "sum of residues' map from I™1Qp'/Qp! to F,), the two notions
of level structures coincide whenever a generator of the one-dimensional free (A/I)-module
Qat/IQp is fixed.

3) If Construction 6 from Sec. 1 is applied to the F-sheaf £, corresponding to an ellip-
tic module G with a fixed structure of level I and D = Spec (A/I), and then an elliptic module
G' is constructed from the obtained F-sheaf & then G' is the quotient of G relative to
the subgroup

S x Homp (H* (D, 0%/Q), F,) < Gy.

From Proposition 2.2 follows

Proposition 2.3. Suppose that an F-sheaf £ of rank d over S is given along with a
finite subscheme D « X not involving the zero and the pole of £, a subscheme D' ¢ D, and
a structure of level D' on £. Then the functor assigning to an S-scheme S' the set of struc-
tures of level D on the inverse image of £ relative to the morphism S' - S extending the
inverse image of a given structure of level D' is representable by a scheme which is a prin-
cipal fiber space over S with the group G = Ker (GL(d, Ap) -+ GL(d, Apt)).

3. Schemes of Modules

We denote by Fshp 4 (respectively, ,dFsh) the functor assigning to a scheme S the set of
isomorphism classes of right (respectlvely, left) F-sheaves of rank d over S equipped with
a structure of level D. We will show that for each of these functors there exists a rough
(and sometimes even actual) scheme of modules.
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First, let d = 1. If D # @, then we denote by PicpX the scheme representing the func-
tor S+~ {isomorphism classes of invertible sheaves on X x S trivialized over D x S}. The
representability of this functor for D # @ follows from the existence of the Picard scheme
PicX and the lack of nontrivial automorphisms for an invertible sheaf on X x S which would
be equal to the identity on D x S. For D = @ the studied functor is not representable but
it has a rough scheme of modules, namely PicX. 8o we put PichX = PicX. The group opera-
tion in PicpX will be written additively. We denote by PicpPX the clopen subset of PicpX
corresponding to invertible sheaves of degree n. Picp™X is a connected scheme of finite
type (the connectedness follows from the presence of an epimorphism Picp’X - Pic®X with
a connected kernel). Note that 2__D X is nothing but a generalized Jacobian [8] There
is a natural morphism X — D ~» Picp’X assigning to a point ueE.X(FJ the isomorphism class
u of the sheaf OX@EIUQ naturally trivialized over D.

Proposition 3.1. For the functor Fshp , = p, 1Fsh there exists a rough scheme of modules
Mp,;. If D= @, then Mp ; is an actual scheme of modules. There is a pullback

Mp , — s PicpX
(. E:)l _ LFr—id

o (G BB
(X — D) X (X — D)= pict x,

where g; and g, assign to an F-sheaf its zero and its pole, respectively, and f is forgetting
the F-structure on an invertible sheaf. =

COROLLARY. Mp ; is a disjoint union of nonempty schemes Mp ;" = £~ 1(Picp"X) which
are finite and etale over (X — D)2.

Note that one can restate Lang's geometrical theory of class fields [8] in terms of
the schemes Mp ;; in a certain sense the restatement is more natural than the original state-
ment.

If d > 1, then, in order to obtain a (rough) scheme of modules of finite type, one has,
in addition to the degree, to "hold" another invariant of an F-sheaf. Namely, if § is a
locally free sheaf of rank d on a smooth irreducible projective curve Y over an algebraically
closed field L, then we denote by % (¥) the greatest degree of invertible subsheaves in- §
(these degrees are bounded above because if 4 (C ¥ is an invertible subsheaf, then deg ¥/ <<
dimH°(A) + g = 1 < dimH°( ) + g — 1). In the case when L is not closed, k()% (¥), where
¥ is the inverse image of ¥ on Y © L. A standard reasoning shows that % (¥) remains un-
changed if the field L is extended and if there is a famlly of sheaves {%:}, then for each
me&Z the set {t|h(F:) < m} is open. We denote by FshD g (respectively, Fsh ) the sub-
functor of Fshp 4 obtained by imposing the following condition on an-F- sheaf'ﬁ over S: for
each s § the degree of the restriction %, of the sheaf £ to X x s is equal to n (respec-

tively, deg &, =n and k(L) < m). Similarly, we define D,dFSh and m’nFsh.

Proposition 3.2. There exists a number ¢ (depending on d and X) such that if [D| =
dm - n + c, then the functors FshD 4 and D, dFsh are representable by quasiprojective schemes

’n ’
Mg,d and nM over Fq

Proof A standard argument (see [18]) shows that there exists c [for instance c =
(a + l)g + 1, where g is the genus of X] such that: a) for each d-dimensional locally free
sheaf § on X ®F such that deg § =n, k(F) <X m, each automorphism of ¥, equal to the 1den-
tity over l)@@]%, is the identity itself; b) there exists a quasiprojective scheme BunD d
over F, such that Bun (S) {isomorphism classes of d-dimensional locally free sheaves Z
on X x S trivialized over D x S and such that deg & =n, h (%) < m for all s S§}. To prove
the representablllty of Fshg 3 consider the functor S8 — {isomorphism classes of diagrams of
the form $ %<&-$’ where ‘2 8 % are locally free sheaves of rank d, f, and g are are
inclusions, Coker f and Coker g are invertible sheaves on graphs of some morphisms § +~ X — D,
the restriction of £ toD x S is trivialized, for each s &S the relationships deg &, =
n,h(&?)<i7n,h(2@ < m} hold. If IDI 2 dm — n + ¢, then this functor is representable by some
qua51pr03ect1ye scheme V over F,. There are morphisms ¢,, $p: V = BunD 3 assigning to a
diagram £ — & <« £ the sheaves £ and % respectively. We denote by MD 4 the prelmage

of the diagonal A c BunD d X Bung 3 relative to the morphism (y,Fr, ¢z)’ V = BunD d X

Bunm 3 Then M% 3 represents FshD Similarly, one can construct d
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Remarks. 1) There are natural morphisms M%:S + (X = D)2 and %:EM -+ (X — D)? assigning

to an F-sheaf its zero and its pole.

2) On M%:d and @ dM there is a natural action of GL(d, Ap).

We will now construct a rough scheme of modules for FShB ﬂ First, we will fix m,ne=Z
and show that there exists a rough scheme of modules for Fsh Indeed, if D' c X is a
finite subscheme such that D' > D and the functor Fshm D.d is representable, then, as follows
from Proposition 2.3, the quotient of Mm D.d over the action of the group G = Ker (GL(d, Apt) -
GL(d, Ap)) is a rough scheme of modules for the functor Fshp’q x (x-p)2(X — D')2. We now
choose finite subschemes D;, D,, Dy © X containing D in such a way that the functors
FshD1 d» 1 =1, 2, 3 would be representable and the equalities D; N D, = D; A Dg =D, N Dy =
D would hold, at least in the set-theoretic sense, then we glue together the rough schemes

of modules for Fsh x (x-p)2(X — D;)2. As a result, we obtain a scheme Mm’d whlch is a
rough scheme of modules for Fshm [in verifying this fact, we use the condition LJ(X' -
(=1 .

Dj)2 = (X = D)2; note that (X - D)2 U (X — D2)2 is not, generally, equal to (X — D)2]. If
M' > m, then MD d is an open subscheme in M% I Put MD,d = MD,d Then MD,d is a rough
scheme of modules for FshD a Finally, the disjoint union M d of the schemes MB d,leEZ,
3 ] 3
is a rough scheme of modules for FShD,d' Similarly, we construct the rough schemes of mod-
ules %:gM, Bde, and D,dM' Clearly, Mg:g and %:EM are schemes of finite type over F, while
ngd’ B,dM’ MD,d’ and D,dM are schemes of locally finite type over F,. It is also clear that
the schemes Mp 4 and p gM are separable.
~ We will list structures present on Mp,4 and p gM.

1) Assigning to an F-sheaf its zero and its pole defines morphisms Mp 4 + (X — D)2,
DdM—)(X'—D)2

2) GL(d, Ap) acts on Mp 4 and p,gM preserving the morphisms Mp 4 > X2, p gM »> X2.

3) If D' > D, then there are natural morphisms Mpt 4 > Mp g and p' gM » p,gM (forgetting
the structure). They are morphisms of schemes over X2 1nduc1ng the 1somorph1sms G\ Mpr g3
Mp,d * (x-p)2{X = D')%, G \ pr gM 3 p,aM x (x-p)2(X — D')?, where G = Ker (GL(d, Apr) ~
cL{d, Ap)).

4) The schemes Mp,q4 and p gM are canonically isomorphic over the complement to the diag-
onal A € X2, For d = 1, Mp,d = p,d-

5) Construction 2' from Sec. 1 defines an isomorphism *: Mp,d 3 p,dM such that the
diagram

MD,d —-—-——*—~>~ D,d]‘/[

!
;ng Goren 5

commutes. For d = 1, the morphism * is involutive. For d > 1 it is involutive over the
complement to the diagonal A c X2 (i.e., where Mp,q does not differ from D,dM)-

6) Constructions (3a)' and (3b)' from Sec. 1 define morphisms F;: D,dM > Mp g4, Fa:
Mp,d * D,dM, such that the diagrams

F, F,
D,dM“_”—*MD,d MD,d—'*D,d]V[
) .
)%2 Frxid }‘22 %2 __ldxFr &2

commute. Also, F;F, = Fr, F,F, = Fr, *F;* = F,.

7) Construction 4' from Sec. 1 defines morphisms det: Mp,q4 > Mp,1, det: p gM > Mp ,.
They are morphisms of schemes over X2.
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8) Construction 5' from Sec. 1 defines an action on Mp 4 and p gM of the group of iso-
morphism classes of invertible sheaves on X trivialized over D. We denote this group of
PiepX (note that PicpX is the group of Fy-points of the scheme PicpX). The action of
PicpX preserves morphisms Mp 4 > X%, p gM > X2.

9) Put My=lim Mp,gq, dM=l_iDm p,dM.  We will define an action of the group GL (d, %)/k*
D
on Mgq. Since Mg is an (actual) scheme of modules for the functor Fshy = lim Fshp 4, it suffices
D

to define the action of GL (d,%)/4* on Fshy. First, we will define an action of the semigroup
GL_(d, %)= {h = GL (d, ¥) | »™* = Mat (d, 0)}, where O C % is the ring of integral adeles. Suppose
that k= GL_(d, ¥) is given along with an element of Fshy(S), i.e., a right F-sheaf £ over
S equipped with structures of all levels compatible with each other. Since ke GL (d, %),

we have h™10¢ c 04, There exists an open ideal I < O such that h~20¢ 5 1-04, The ideal

I is associated with a finite subscheme D ¢ X and the submodule h~104/1-0d c (0/1)9 with

a subsheaf @ C ©f. Applying Construction 6 from Sec. 1, we obtain an F-sheaf %', which,

as can be easily seen, does not depend on the choice of I. In order to define on ¥ a struc-
ture of level D', where D' is an arbitrary finite subscheme in X, we choose I in such a way
that 104 ¢ J-h~10d, where J c 0 is the ideal corresponding to D'. The composition h~10d/

1-04 » h~10d/J-n"10d » (0/J)d defines an epimorphism @ — Of. Applying Construction 6'
from Sec. 1, we obtain a structure of level D' on ¥ Thus, we have assigned to each

h = GL_ (d, o). a morphism Mg » Mgq. It is readily seen that we have obtained an action of
GL.(d,%) on Mg. On the other hand, the action of PicpX on Mp 4 turns, after taking the
limit, into an action on Mg of the group l‘i_:@.PicD X = U*/k*. It is easily seen that the re-

striction of this action to %* ] GL_(d, %) P coincides with the restriction of the action
of GL_(d, ¥). Since GL (d, %) = %¥*.GL_(d, %), we obtain an action on My of the group
GL (d, %)/k*. Similarly, one can define an action of this group on gM.

Note that the action on Mg and gM of the subgroup GL(d, O) c GL(d, % ) is obtained as
a result of a limit passage over D from the action of GL(d, Ap) on Mp 4 and p gM.

The action of GL(d, ¥ ) preserves morphisms Mp g > X?, p gM > X* and commutes with F,
and F,. Furthermore, for each 4= GL (d,¥) the diagrams

* det det
Mp,4— p,aM Mp, 4 —> Mp,y«—p,aM
hl l(h‘)" hl sot ldeth st : lh ;
* e e
Mu,d—>]_),dM MD,d MD,]_ D,dM

commute (here, ht is the matrix transpose).

For each finite subscheme D ¢ X put Kp = Ker (GL(d, 0) » GL(d, Ap)). Clearly, Kp \
Mg = Mp 4 @ x2(k 8 k). Thus, the general fiber of the morphism Mp 4 > X? can be reconstruc-
ted if one knows the scheme My together with an action of GL(d, ¥ ). The information on
closed fibers is lost in a passage to the limit in D. On the other hand, the passage to
the limit in D is beneficial because it enables us to study the action of GL(d, % ) instead
of "Hecke correspondences' between the schemes Mp 4. In order to avoid loss of information
on fibers of the schemes Mp,q over a fixed closed point ue& X? and, at the same time, have
an action of the adele group, it is convenient to introduce for each set T consisting of
closed points of X the scheme ﬂlg===%§g_ﬂfn,m In a manner similar to the action of

DN\ T=@

GL(d, ¥ ) on My one can define an action on Mgl of the group GL(d, ¥T), where %T is the
adele ring without T-components. Here, elements of k* having no zeros and poles at the
points of T act trivially [it is assumed that k* C (¥7)* C— GL (d, %T)]. The natural morphism
Mg » MgT is compatible with the action of GL(d, ¥T), and M4T ® y2(k ® k) = G \ My, where

6 =IIGL (d,0,). 0f course, the above arguments are also true for varieties of modules of
=T - .

left F-sheaves.

Remark. The action on Mp ; of the morphisms *, F;, F, and of the group PicpX can be
described quite explicitly. Namely, if points of Mp ,(F,) are written according to Proposi-
tion 3.1 in the form (a, B, a), where a¢, g = (X — D)z-Fq), a = PicpX(F,), B —a = Fr(a) —'a,
then

* (@, B, a) = (B, @, —a), (3.1)
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Fy(a, B, a) = (Fr (a), B, & ~ &), F, (o B, a)=(a,Fr(B),a +f), (3.2)
l(a, B, a)=(a,p,a+1), ! PicpX. (3.3)
The action of PicpX on geometric fibers of the morphism Mp ; » (X — D)2 is free and transitive.

Proposition 3.3. There exists a number c such that if |D| 2 dm — n + ¢, then M% 4 and
dM are smooth schemes over X2. The relative dimension of these schemes (if they are not

empty) is equal to 24 — 2.

Note that the fibers of the morphisms M%:g > (X-D)2, ™ D dM + (X — D)? are, clearly,
not empty if dm 2 n (it suffices to consider F-sheaves of the form A; @ ... & A4, where A,
is an F-sheaf of rank 1 and A4, ..., As are inverse images of invertible sheaves on X with
deg A; <m for all i and deg Ay + ...+ deg Ay =n).

Proof. Let c, Bun%:g, V, ¥1, ¥, have the same meaning as in the proof of Proposition
3.2. Recall that MD 4 is the preimage of the diagonal relative to the morphism (¢, o Fr,
P,): V> BunD 3 x Bun% 4. A standard argument shows that Bun%:ﬁ is a smooth variety. It
is eas1ly seen that V is also a smooth variety. Moreover, the morphisms (wi, A: V>
Bun® np’ d x X2, i=1, 2, are'smooth where A is the natural morphism V »> X2. The fibers of
these morphisms V - BunD d X X? have dimension 2d — 2. This, along with the fact that the
differential of the endomorphlsm Fr is equal to zero, implies the statement being proved
for Mﬁ:ﬁ. It is proved similarly for ’d L]

Remarks. 1) let |D( 2 dm —n + ¢. The birational isomorphism between MD d and 1 dM

can be decomposed into o-processes. To this end, consider "two-sided F- sheaves,' i. e., com-
mutative diagrams of the form

z
F 7 ™,
| N(mxf})*z A

in which the left half is a left F-sheaf and the right half is a right F-sheaf with the same
zero and pole as those of the left half. We denote by gMg the analog of M%:g and %iﬁM for
two-sided F-sheaves. It is easily deduced from the proof of Proposition 3.3 that the natural
morphlsm DMd > Mm n (respectlvely mMn SM) is a o-process with a center in a subscheme
Zc MD d (respectlvely, Z' ¢ D dM) parametrlzlng F-sheaves &%, for which there exists an iso-

morphlsm (id X Fr)*2 = &, renderlng the diagram (1.2) [respectively, (1.1)] commutative. It
is easily seen that Z and Z' are smooth d-dimensional varieties, and the connected component

of each of these varieties bijectively correspond to Fy-points of the variety BunD d-

2) One can also construct the "lower bound" of MD d and B dM, i.e., write the birational
1somorphlsm between MD’d and B D, dM in the form ¢~ ¢,where P and ¥ are proper morphisms from
MD’d and B D, dM respectively, into some variety U which are birational isomorphisms. In order
to obtain U we have to introduce the following version of the notion of an F-sheaf over S:

a d-dimensional locally free sheaf of (xys -modules £, equipped with a morphism f: (idy x
Frg)* £ — £ (I'y), inducing an isomorphism (idx X Frg)* det £ = (det &) (I'y — I[,) such that the rank
of the restriction of f to I'y does not exceed 1. A point ues U is singular (for 4 > 1) if

= R and f induces the isomorphism (idxy X Frs)* £ £. A formal neighborhood ¢ of such a
point is isomorphic to a formal neighborhood of the point (0,0) = A! XY, where Y is the
variety of matrices C of order d such that rgC < 1. The natural morphism ¢ > X? has the
form (z, C) — (z, z + TrC), where z is the coordinate in AL.

We will now show that in the absolute tangent bundle © to M D d’ |D| 2 dm — n + ¢, whose
dimension is equal to 2d, there is a natural d-dimensional subbundle 0'. To this end, we
note (see the proof of Proposition 3.3) that 6 is the restriction to MD g €V of the rela-
tive tangent bundle of the morphism y,: V ~» BunD 3. Recall that ¢, assigns to a diagram
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55'_-,->$<-g"$ the sheaf £. Thus, ¢, is written as a composition viwl Bun%'i, where W(S) =
{d-dimensional locally free sheaves & on X x S trivialized over D x S with a selected sub-
sheaf i’C:% such that &/% is an invertible sheaf on the graph of some morphism S + X ~ D
and degft’js =n, h(%s)<<m for all s ES}. @ and Y are smooth morphisms whose fibers are d-
dimensional. So the relative tangent bundle of the morphism ¢: V + W is a d-dimensional

subbundle in the relative tangent bundle of the morphism y,: V > Bung’g. The corresponding
Ed

d-dimensional subbundle in @ is denoted by ©'. Similarly, one can define a d-dimensional

mnM

distribution 0" on D.d It is eas1ly seen that @' is invariant relative to GL(d, Ap), and

the natural morphism MDind > MD 4> where D' > D, maps the distribution ' on Mm D d into the
distribution ©' on MD d+ This allows to define the distribution ' on Mg as well as-on an
open subscheme Up 4 © Mp g parametrizing F-sheaves with no nontrivial automorphisms identical
over D. Similar statements are true for 6". It is easily verified that: 1) the action

of GL(d, ¥ ) on My (respectively, gM) preserves ©' (respectively, 0"); 2) the kernel of the
differential of the morphism p gU > Up g4 is equal to ©" and its image is equal to 0'; 3)

the kernel of the differential of the morphism F,: Up 4 > p,gqU is equal to ©' and its image
is equal to ©"; 4) the morphism *: Up g4 -3 p,qU maps ©' onto €"; 5) the differential of the
natural morphism Up g4 > X? (respectively, p gqU > X?) maps ©' (respectively, 0") into the
relative tangent bundle of the first (respectively, second) projection X? »> X; 6) over the
complement of the diagonal A c X? (i.e., where Mg:g does not differ from & D dM and, there—

fore, 0' and O" are distributions on the same variety) ©' is transversal to 9",
Put A, = (idg x Frg)T(a), where A c X? is the diagonal, A; = X% — |J A, A=1limA,
P —

i
(the projective limit exists because the morphisms A; » X2 are affine).

The scheme A is Noetherian but not of finite type over F,. Put Mp .= Mp 4 * x24 =
D,dM * x2A. Similarly, we can define p 4, Mpd, M. Henceforth, we will deal with Mp g,

rather than Mp 4 (this is sufficient for the proof of Langland's conjecture). Thus, we
avoid problems ’related to the distinction between left and right F-sheaves while preserving
all structures on schemes of modules listed above (in particular, there are no morphisms

Fi: Mp g Mp, 4, Fy: Mp g— Mp, 4, % MWp, 4> MWp,4). Of course, effects associated with the diag-
onal in X? are also worth studying (an example of such an effect is the analytic theory of
elliptic modules; see Secs. 3 and 6 in [5] and also [9, 19]).

For d = 2 there is another reason why it is more convenient to work with Mp a4 rather
than with Mp 4 or p, gM.

Proposition 3.4. Let h be an automorphism of an F-sheaf £ of rank 2 over a field B
which is the identity over D @ B, where D is a nonempty subscheme in X. Suppose that
Fr®®(a) = Fr0(B) for all m, n, where a = X(B) is the zero of &, and B = X(B) is its pole.
Then h = '

This proposition will be proved in Sec. 4. It will imply, via standard reasoning, that
if D # ¢, then: 1) for each finite subscheme D' > D the group Ker (GL(2, Apr) - GL(2, Ap))
acts freely on Mpy  2) Mp,. 1is an actual scheme of modules for FshD 2 X XzA, 3) the state-

ments on smoothness and structure of the tangent bundle stated above for MD q and g’gM in
s’

the assumption that dm — n s |D| — c are true for the entire scheme Mp,¢ in the studied
case of d = 2, D # §.

Remark. Put W=1Up g x x2A (if d =2, D # @, then W= Mp,g ). The presence of "partial
Frobenius endomorphlsms“ F,, F,: W > W and the decomposition of the tangent bundle to W
into a direct sum of two d-dimensional subbundles mean that W resembles Y x Z, where Y and
Z are schemes over X (in fact, in view of the existence of the automorphism *, even Y x Y).
One can show that W is decomposed into a direct product at the "formal level." More exactly,
the inverse image % of the sheaf of jets of functions (of finite order) on Mp g relative
to the morphism W » Mp g can be naturally written as a completed tensor product 2 & 7«2,
where %, and %, are sheaves of algebras over Ow. Here, F,, F,, and GL(d, ¥ ) preserve 4,
and %,, and * reverses their places. Furthermore, the natural morphisms ﬁ*y,—+-y@,1ﬁ%¢1_* %
are isomorphisms.,
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4, Orispheric Curves

We fix an algebraically closed field B and points o < X(B), B & X(B) such that the image
of the morphism (a, 8): SpecB » X? is contained in A, i.e.,

Fr" (@) %= P for each ne&Z. (4.1)

Proposition 4.1. Let £ be an F-sheaf of rank 1 over B with a zero at a and a pole
at B. We denote by ¢ the embedding (idx X Frp)*Z—> % ). 1f s=H'(X®B, %), ¢ (idx X
Frp)*s) = s, then s = 0.

Henceforth, we write £ (B) where we should write £ (I‘B) (cf. Sec. 1). In other words,
we think of o and B as points of X @ B.

Proof. Suppose s # 0 and Y is the divisor of zeros of s. Then (idg x Frp)*Y + a =
B + Y. But this equality (we emphasize that it involves divisors on X ® B rather than classes
of divisors) is impossible because, by (4.1), the number of points of the form Fr(a), n=Z,
in the left-hand part of the equality is greater by 1 than that in the right-hand part. =

Definition. An F-sheaf £ of rank d over B with a zero at o and a pole at B is said
to be reducible if there exists a nonzero subsheaf 4 C % of rank r < d such that the image
of (idx x Frpg)* A in £ (B) is contained in 4 (B).

Suppose that £ is a reducible F-sheaf and the subsheaf 4, involved in the definition
of reducibility is such that the sheaf B = %/A4 is locally free [note that if # is not
locally free and A' ¥ is the preimage of torsion of B under the homomorphism £ — 3,
then the image of (idy x Frg)* 4 in £ (B) is contained in 4’ (B), so A can be replaced by
A']l. It is easily seen that one of two possibilities holds. Either A4 is an F-sheaf with
a zero at a and a pole at f and the image of the morphism (idx X Frg)*® — B () is equal to
P and, therefore, B is the inverse image of a locally free sheaf By, on X (see Proposition
1.1), or the image of the morphism (idx X Frg)*4 — A (B) is equal to A4 (so 4 is the inverse
image of a locally free sheaf 4, on X) and B is an F~sheaf with a zero at a and a pole
at B. An exact sequence 0> A4 > % —>RB—>0 is called an F-decomposition of type 1 or 2
depending on which one of the two possibilities is materialized. Henceforth, we will con-
sider the case of d = 2 (in this case 4 and B are invertible sheaves).

Proposition 4.2. Let £ be an F-sheaf of rank 2 over B such that its zero a and its
pole B satisfy (4.1).‘ Then:

1) £ possesses at most one F-decomposition of type 1 and at most one F-decomposition
of type 2;

2) if an F-decomposition 0> A4 - % —> B0, is given, then each automorphism of the
F-sheaf ¥, inducing the identity automorphisms of the sheaves 4 and B, is itself equal to
the identity.

Proof. 1) Suppose F-decompositions 0—>A—>E—>B—>0 and 0 4 — £ - R - 0, have
the same type. The homomorphism 4 — B’ determines a section s=H' (X ® B, B ® A*).
Since B ® A* is an F-sheaf of rank 1 with a zero at o and a pole at R or with a zero at
R and a pole at o (depending on the type of the F-decompositions) and s satisfies the hy-
pothesis of Proposition 4.1, s = 0 and, therefore, 4 = A .

2) Let h be an automorphism of %, equal to the identity on 4 and %. Then h — 1 deter-
mines a morphism B —~ A4 and, therefore, a section s @ H'(X 8 B, B* ® 4) . By Proposi-
tion 4.1, s = 0 and, therefore, h =1, = '

Proof of Proposition 3.4. The trace and the determinant of the endomorphism h — 1 are
functions on X ® B equal to zero on D @ B. So they are equal to zero identically. There-
fore, (h — 1)? = 0. Suppose that h # 1 and put 4 = Ker (h — 1). Then the image of (idyg x
Frp)*A in £ (B) is contained in 4 (B) and the sheaf %/A4 is invertible. It remains to
apply statement 2) of Proposition 4.2 to the F-decomposition 0 > A4 —> %L —>%/A 0. =

Let P &A(B) be the point determined by the pair (a, B) and D c¢ X a finite subscheme
such that o, B& (X ~ D)(B). The fiber of Mp , over P is denoted by Mp,p. We will identify
the scheme Mp p with the set of its closed points. We will elucidate the structure of the
set of points of Mp p corresponding to reducible F-sheaves. Suppose that a structure of
level D is given on an F-sheaf £ of rank 2 over B with a zero at a and a pole at B possess-
ing an F-decomposition 0—» A4 - % — B-—+0. Then the image of Ap under the isomorphism
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%p = Obep 1is invariant relative to the isomorphism (idp X Fnﬂ*@D@B-e-0D®B and, therefore,
is the inverse image of a one-dimensional free subsheaf of ‘Op-modules @ C Op. We tentative-
ly fix an automorphism h: ©Op —0Op such that A (Op @ 0)=@. Then h induces isomorphisms

Op == @, Op = 0b/@. If our F-decompositon has type 1, then 4 is an F-sheaf of rank 1 with

a structure of level D and B is the inverse image of an invertible sheaf on X trivialized

over D. Thus, we obtain an element o= Qp p = %1 [GL (2, Ap) X Mp,1,p X PicpXV/B, (Ap), where MD 1,P
is the fiber of Mp ; over P, By < GL(2) is the subgroup of upper triangular matrices, B+(AD
is the set of Ap- points of the algebraic group B4, and the right action of B+(Ap) on Mp, 1 p %

PicpX is defined by the formula (=, ¥)- <al i ) ("1 Z, dy .I/), where x EMD,I,P’ y &PicpX, and a;

is the image of a; under the natural homomorphism Ap* - PicpX (here, multiplicative notation
of the group operation in PicpX is used temporarily). If the F-decomposition has type 2,

then we obtaln an element of the set Qp p 2 = [GL(2, Ap) x Mp,1,p X PchX]/B+(AD), differing
from Qp p' by the fact that the action of B4(Ap) on Mp ; p X P1cDX is defined by the formula

b
(z, y)- <a1 )_*(a2 z, a1 y) where x € Mp ., p, ¥ & PicpX.

Let w & Qp, p! or we& Qp p?. The set of points of Mp, P correspondlng to a given w 1s
denoted by C and called an orlspherlc curve of type 1, if we Qp,p*, orof type 2 if we Qp,p?
It will soon be proved (see Proposition 4. 3) that these are 1ndeed curves. The term "orl-
spheric' has been borrowed from Chap. 3 in [1]. It follows from statement 1) of Proposition
4.2 that orispheric curves of the same type do not intersect each other. The union of all
orispheric curves is the set of points of Mp p corresponding to reducible F-sheaves.

Proposition 4.3. 1) For each wE&E ap,p* | ] fp,p? the set Cy, © Mp p is closed and iso-
morphic to an affine line.

2) Suppose that D # §. Let 0p = 0p' & Op" be the decomposition of the tangent bundle
©p to Mp p induced by the decomposition © = @' & 0" considered in Sec. 3. Then C, is tangent
to op' if w e Qp,p' and to 0p" if w e Op p2.

Note that C, is viewed as a reduced scheme.

Proof. If the F-sheaf £ has an F-decomposition of type 2, then ¥£* Has an F-decomposi-
tion of type 1. So the isomorphism *: Mp,p * Mp,*(p), where "(P) is the point with the co-
ordinates (B, o), maps orispheric curves of type 2 into orispheric curves of type 1. Thus,
it suffices to prove the proposition for w & Qp, p'. The actions of the groups GL (2, Ap) and
PicpX reduce the argument to the case when w corresponds to an element of GL (2, Ap) x
Mp,1,p X PicpX of the form (E, 4, 0), where A is some F-sheaf of rank 1 with a structure of
level D. Then Cy, is the set of F-sheaves £ with a structure of 1evel D possessing an F-de-
composition

0— 4 1> 25 Oz5—>0 , (4.2)
such that the diagram
f g
0—).,41_-, >$D \0|D®B->O
[ i |
o_,opgbg"’_“_?)_, Ober —27Y . Gpen—s0

commutes. If D # @, then the exact sequence (4.2) is unique, and if D = @, then there is
arbitrariness in multiplying f and g by an element of F* The kernel %’ of the composition
% — %p = Obdep — OpeBs where Ohgs—rCOpgp 1is the pro_]ection onto the first factor, is an
F-sheaf possessing an F-decomposition

0> A (—D) > % —> Oxep — 0. (4.3)

Conversely, an element of C, is uniquely restored from an F-sheaf Z’ and an F-decomposition
(4.6). The set of isomorphism classes of F-decompositions of the form (4.3) is made, in

a usual way, into a vector space over F,,which we will denote by Extr (Ozgs, 4 (—D)). Thus,
we have constructed a bijection Extr (Oxer: A (—D))— C, for D # @ and Extr (Czes, ./l)/F:-> Co
for D = §.

Let D' > D be a finite subscheme such that ¢, BE (X — D')(B), and let w'e QDI’pl be
one of the preimages of w. Then the validity of the proposition for C,t implies its validity
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for C,. Indeed, C, is closed (as the image of Cy' in Mp,p) and is isomorphic, as a scheme,
to H \ C,', where H c Ker (GL (2, Apt) » GL(2, Ap)) is the stationary subgroup of w [the
fact that C, ~ H \ Cy' is not quite obvious for D = ® because, in this case, H does not act
freely on MDI p and there could be the possibility that fibers of the natural morphism H \
Cyt > Mpp have nilpotents; in order to exclude this possibility, it suffices to verify that
the order of the stationary subgroup in GL (2, Ap) of each point of Cyt is not divisible

by p, and this follows from Proposition 4.2].

Thus, we can assume without loss of generality that D # ¢ and |D| 2 deg A+ 2. Then
the natural map Extr (Oxgs, 4 (—D)) - Ext (Oxes, A (—D)) is an embedding. Indeed, if, for
the exact sequence of 0X®B -modules 00— A (=D)—>§ — Oxep 0 there existed to distinct
morphism (idx X Frg)*§ — & (B), inducing the given map (idx X Fre)*4 (—D)— A (B — D) and the
identical inclusion (idxXFrp)*Oxep — Ozes (f), then the difference of these morphisms would
define a nonzero morphism Oxgp = (idx XFrp)*Oxes — A (B — D), which is impossible because
deg 4 (B~ D) < 0. It is easily seen that the image of Extp (Ozgs, A4 (—D)) in Ext (Oxes,

A (—D)) is equal to Ker (A — ¢), where A is the natural map Ext (Oxes, 4 (-D))—>Ext (OxeB,
A (R — D)), and ¢ is the composition of the gq-linear bijection Ext(0x®3,u4(—J)»~+—Ext(0x@3,
(1dx x Frg)*A(~D)) and the natural homomorphism Ext (Oxes, (idx X Frp)* .4 (—D)) — Ext (Oxes:

A B —D)).
LEMMA 1. Suppose that V and W are finite-dimensional vector spaces over B, dimV —
dimW = 1, A: V> W is a surjective linear map, ¢: V > W is a surjective g-linear map. Then

the algebraic group Ker (A — ¢) is isomorphic to G, X Fz, where r is the dimension over F,
of the space {4 Wx/0(A(x))4 = 2{v(x)) for all x &V}.

Proof. We will show that V and W have bases e;, ..., eg, Vi, ..., vy and £, ..v, f5_1,
Wi, ..., Wp, respectively, such that A(vy) = y(v{) = w; and :
M) =0, A(es) =% () =Fimpr 1 i <{s—1, ¢ (e) =0. (4.4)

The lemma is easily deduced from this.

We define subspaces Y, c V as follows: Y, = 0, Y41 = A7 (9(Y,)). Clearly, Y, © Yp4i
and there exists s such that Y, = Y5 for n 2 s, dimY, = n for n < s. In Yg and $(Yg) there
exist bases e;', ..., eg' and £,', ..., fg-;', respectively, such that A(e;') = 0, Alej41') =

i-1
1 -
fi, v(ey) = f5 for 1 s i £ s — 1. Putting ¢; =¢f — Ec,ls: &, fi=Ffi — Zlcﬁ.,fif,f, where c;, ...,
. i=1 =
s=1
cg-; are determined from the relationship b (e)) = D) ¢;f;, we make (4.4) hold. Since A and ¥
i_
induce bijective maps A, p: V/Yg > W/)\(Ys), there exists a basis vy, ..., v, of the space
V/Yg such that A(vy) = \p(vi) for all i. Since A — ¢ induces a surjective map Yg > A(Y),
vj can be lifted to an element vi;& V such that A(vy) = ¥(vy). It remains to put wy = A(vj).

The maps A, {: Ext (Oxep, A (—D)) — Ext (Oxgs, A (B — D)) satisfy the hypotheses of Lemma 1.
If ! < Ext (Oxer 4 (B —D)*, I (M (@)= £(y(x)) for all z & Ext (Oxes, A (—D)), then the section
of the F-sheaf A47!'(D — B) ® Q corresponding to £ by the Serre duality satisfies the condi-
tion of Proposition 2.1, whence & = 0. Thus, Exty (Cxes, 4 (—D)) =G

It is easily seen that the map f: Exty (Oxes) £ (—D))— Mp p constructed above is regular.
A direct verification which we omit shows that the differential of f maps the tangent space
to z & Extp (Oxes, 4 (—D)) isomorphically onto the fiber of 0p' at the point f£(x).

LEMMA 2. Let Y be a separable scheme over B, and let f: A-* + Y be a morphism injective
in the set-theoretic sense and such that the differential of f at each point is also injec-
tive. Then either f is a closed embedding or f can be extended to a morphism P* > Y. =«

It remains to show that f: Exty (Oxgs, 4 (—D)) = Mp,p is not extended to a morphism f:
PY'> Mp p. Otherwise, the point (=) would be fixed relative to H={((1) ‘;)

ae= AD} , Dbecause

H-C, = Cy. In this case the F-sheaf corresponding to f(«) would possess a nonidentity auto-
morphism h whose restriction to D @ B would be unipotent. The impossibility of this situa-
tion is proved like Proposition 3.4. =

Remarks. 1) It is readily seen that for an arbitrary F-sheaf 4 [it is not necessary
that H°(X ® B, A (B)) = 0) Extr (Oxes, A) are the one-dimensional hypercohomologies of the
complex 0—m, A —>n,A () >0, where m is the projection X @ B » X and the morphism my.4 —
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ngA (B) is the difference of the natural embedding and the composition my4 — m, (idx X Frp).
(idy X Frp)* A4 = T, (ldx X Frg)* A — ﬂ* (ﬁ)

2) It is easily seen that the groups Extr (Oxer, 4 (—D)), where .4 runs through the set
of F-sheaves of rank 1 with a structure of level D in which the zero and the pole satisfy
(4.1), are glued up into a group scheme Gp over Mp,;, and the morphisms Exty (OxeB, A (—D)) —
Mp,p (see the proof of Proposition 4.3) come from the morphism fp: Gp—Mp,,. One can show
that the morphisms fp, D = @, and the morphism GQ/F —9-5.1)?‘2; g are locally closed, but not
closed, embeddings.

For all m, n & Z we define ™P2; p € 0j p, i = 1, 2, as follows: ™ *Pap p = [6L(2,
Ap) x Mp , p x Picy "X1/Bi(Ap), ™Tap p = [GL(2, Ap) x MpTT p X PchX]/B+(AD) This defini-
tion means that the union of the curves C,, w Em’nﬂﬁ p consists of points My p which corre-
> .

spond to F-sheaves £ of degree n possessing an F-decomposition 0> A —>ZL—>RB—>0 of type
i such that deg A =

Proposition 4.4. If 2m 2 n, then MPpH" — ME’p is the union of disjoint curves Gy,
o ™", Qb p | ™"Qp, p.
Proof. The point MpP"™ — Mp's? corresponds to an F-sheaf £ of degree n having an

invertible subsheaf A4 of degree m + 1 but no invertible subsheaves of higher degree. Since
A is maximal, the sheaf B = %/A4 1is invertible. The homomorphism (idx X Frg)*Z— £ (B)
induces the zero homomorphism (idx X Frg)* .4 — B (B), because deg B(B) =n —m < deg' 4. So

0> A—->L—>B—>0 is an F-decomposition. If A’ is a maximal invertible subsheaf in Z, dis-
tinct from A. then the composition A —>L—+ B is distinct from zero and, therefore,

deg A’ <degﬂ3<m Thus, A4 is the only invertible subsheaf in £ of degree m + 1. =

It is easily seen that applying constructions 1-3, 5, 6 from Sec. 1 to reducible F-
sheaves, and construction 2 reverses the type of an F-decomposition while the remaining con-
structions preserve it. The morphisms *, F;, F, act on orispheric curves as follows. Put
F,(P) = (Fr(a), B), Fo(P) = (a, Fr(B)), *(P) = (B, a). The endomorphisms %, F,, F, of the
scheme Mp, induce the morphisms F,: Mp p > Mp g 1(p), Fa: Mp,p > Mp, F, (P)’ *: Mp,p »
Mp,#(p). It 1s readily verified that F (Cw) = CF,(w)> F 2(Cy) = CF (w), *(Cy) = Cy(w), where

the map Fy QD p > Qﬂ Fy(P)" i, 3 =1, 2 is induced by the map Fi: Mp , p > Mp,1,F;(P)>

and the maps *: ‘QD p~ QD %(p)> %, QD p> QD *(P) transform the class 8f a triple (h X,
y)E GL (2, Ap) x MD,I,P x PicpX into the class of the triple ((RH- ( > *(z), —¥) (note
that (_(1)(1)) could be replaced here by any matrix of the form (gg) , @, b =F,, because Ff;| lies
in the kernel of the homomorphism Ap* -+ PicpX).

We fix a finite set T of closed points of X such that the image of each morphlsm a*:
SpecB » X, B*: SpecB » X either lies in T or is a common point of X. Put MP == lim My, p,

M;":P-.-:_-l_ig Mp 1, p, TQ} = lim Q};,p, where D runs through the set of finite subschemes in X -—.T
(the nonemptiness of these sets is guaranteed by the condition imposed on T). If we& tnll,,
then put Co=lim C,,, where D runs through the set of finite subschemes in X — T and wp is
the image of w in 911) p- Since ll}p PicpX = (¥YT)*/IT, where rT is the set of elements of k*
having no zeros or poles at the points of T, TQP {GL (2, o%) «x M x [(ﬂ'T)"‘/I‘T]}/B.I_(OT), '
where OT =UETO,,, and the right action of B_I_(OT) on MipX [(QIT)*/]I'T] is given by the formula

-1 -1\
@ b . (al Z, &, y)1 l—:ia (4 5)
(x’ y) (0 az) - { (a;lil, a;ly)’ i— 2. *

Since GL (2, 0T)-B, (¥T) = GL (2, %), we have
TOp={GL (2, ¥") x My px [(¥7)*/TT}/B. (¥7), (4.6)

where the action of B4(% T) on MT x [(2% Ty%/rT] is still given by the formula (4.5). It
is readily verified that the left act1on of 6L (2, ¥T) on Tﬂl defined by formula (4.6) is
"regular" in the sense that Cp, = h'C, for w ETQP, h & GL (2, D).
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Recall that the action of PicpX on Mp , p and thus also the action of (:SIIT)""/I’T on
M1T,Pfis free and transitive. So fixing a point z & Mrf,P provides the isomorphism Mrf,P 3

(%T)%/rT, and thus also the isomorphism
QL =~ GL(2, axT)/{(gl 22)|a1, azEI‘T,bE?!IT}. (4.7)

Suppose now that o* and p* map SpecB into a common point of X and T = §. 1Instead of
ﬂl%,ﬂlfp,ﬁg% we will write Mp, Ml,P’ Q%. We denote by CrD,P the set of points of MD,P 1ly-
ing in two orispheric curves simultaneously. One of these curves is of type 1, another is
of type 2, so we have maps CrD,P > Q%,P’ i=1, 2. Put Crp = lim Crp,p, where D runs through
the set of finite subschemes in X.

Proposition 4.5. There is a GL (2, % )-equivariant bijection Crp 3 {GL (2, ¥) x Ml,P x
(% */k%*)}/H, where H ¢ GL (2, %) is the group of diagonal matrices and the right action of

HonM px (¥*/k*) is given by the formula (=, y)(g 'g)z(a'lx, b‘ly). The natural map {GL
b .

2, %) X Myp X (W/K))/H = Crp — Qb= {GL (2, %) X Myp X (¥*/k*)Y/B,(¥)  transforms the
class of the triple (h, x, y) EGL (2,%) x M, p * (9%/k*) to the class of the triple (h,

. ) s L. 0
X, y) for i = 1 and to the class of the triple (h-(_1 é),x, y) for i = 2.

Proof. If we have an F-sheaf 4 of rank 1 over B with a structure of level D and an
invertible sheaf %, on X trivialized over D, then AP 9B, where B is the inverse image
of B, on X 8 B, is an F-sheaf with a structure of level D. Here, A4 P B possesses F-de-
compositions of both types. A map Mp ; p x PiepX » Crp p arises. Upon a passage to the
limit with respect to D, we obtain f: M; p x (¥*/k%) > Crp. It is easily seen that f is in-
jective and the equality hx = y, where x, yeInf, h EGL(Z, Ay, implies that he& H. It
remains to show that if x & Crp, then there exists h& GL (2, ¥) such that hx & Imf. Suppose
that the point x corresponds to an F-sheaf £, having F-decompositions 0 >~ A > ZL—> B —>0
and 0> A4 > % — B — 0 of types 1 and 2, respectively. We denote by A the support of the
sheaf %/(A4 @ A') = Coker (4 — B). Since A % A', the scheme A is finite, and the commutativ-
ity of the diagram

(idx X Frp)* 4" = A/,
J :
(idx X Frg)* B = B
implies that A is invariant relative to idy x Frg. So A =D @ B, where D is a finite sub-
scheme in X. We have: %/ (A @ A') = %p/#E, where £ is a subsheaf of &£p, invariant rela-
tive to idp x Frg. The image of /% under the isomorphism %p =5 Obes, defining the struc-

ture of level D on %, is the inverse image of some subsheaf @ C ©}. So for some g GL-
(2, %) the point gx corresponds to the F-sheaf £ O 4. =

Remark. Fixing a point z & M, p we obtain a bijection

Crp = GL (2, m)/{(gl 22) o, 4y = k*} i (4.8)
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KAHLER STRUCTURES ON K-ORBITS OF THE GROUP
OF DIFFEOMORPHISMS OF A CIRCLE

A. A. Kirillov ' UDC 514.76+517.98

1. Formulation of the Problem

Among the infinite-dimensional symplectic manifolds which arise as orbits of the coad-
joint representation of an infinite-dimensional Lie group, one of the simplest and at the
same time most important examples is the manifold (cf. [2, 31)

M = Diff, (SY)/Rot (§). - 3 (1)

Here Diff; (S') means the subgroup of diffeomorphisms of the unit circle S!, preserving
orientation, and Rot (S!) is the subgroup of rotations of the circle. I have more than once
already stated the conjecture that on M there exists a Diffy (S!)-invariant complex structure,
which together with the symplectic structure on M turns M into a homogeneous Kahler manifold.
It will be shown below that this is really so.

The original version of this paper is contained in [1].

We recall how one usually constructed a complex structure on a homogeneous manifold
X = G/H, where G and H are ordinary (finite-dimensional) Lie groups (cf. [4]). Let x, be
the initial point in X, corresponding to the coset H, g and § be the Lie algebras of the
groups G and H, respectively; g¢° and §° be their complexifications. The space ¢°§° can be
identified naturally with the complexification TXOCX of the tangent space to X at x,. The
group H acts on this space.

M. V. Lomonosov Moscow State University. Translated from Funktsional'nyi Analiz i Ego
Prilozheniya, Vol. 21, No. 2, pp. 42-45, April-June, 1987. Original article submitted Decem-
ber 3, 1986.

122 0016-2663/87/2102-0122$12.50 ©1987 Plenum Publishing Corporation



