DECOMPOSITION OF SIMPLE SINGULARITIES
OF FUNCTIONS

O. V. Lyashko

The goal of this article is to study the decompositions of simple singularities of functions under defor-
mations. All possible decompositions are described in terms of Dynkin diagrams of the singularities,

§1., DEFINITIONS

Let f: (CR, 0) — (C, 0) be the germ of an analytic function with a critical point of multiplicity u at the
origin, The germ of the analytic function F: (CR x C, 0) — (C, 0) for which F(x, 0) = {(x) is called the defor-
mation F of the function f with base C.

The critical point 0 of the function f under the deformation F can be decomposed with respect to the
type X= (Xi, . . 45 'Xk), where X; = (X;4,. . ., X, ;) , if there exists a §; > 0 such that for all 6 € (0, &;] there
exists an g;(6) such that, for all ¢ such that 0 < |e| < €y, the function F(-, ¢) of the variable x € C in the sphere
ix| < 6 has exactly k different critical values, the i~th critical value being attained at critical points of the types
Xigse o oo Xijye

Let g be the germ of an analytic function on the sphere V C CB, We will say that the germ g has a sin-
gularity of type X, if dg # 0 on the boundary 8V of the sphere, the function g attains exactly k critical values
inside the sphere V, and the i-thcriticalvalue is attained at critical points of the types X,,, ..., X;;;, By defi-

nlthIl, the multiplicity of the singularity is p(X)= Zp. (X;;) » where the u(Xjj) are the multiplicities of the

singularities X1 . The germ of the function G : (" >< C —>C on the set V x {0} that is such that G(x, 0) = g(x)
is called the deformatlon G of g. The decomposition of a function g of type X with respect to the type Y is de-
fined analogously. A singularity of type X abuts a singularity of type Y, if X can be decomposed with respect
to the type (Y, Y').

A Dynkin diagram of the critical point 0 of multiplicity 4 of a function of n variables, where n = 3 (mod
4) is a connected graph with u vertices numbered 1, 2, , . ., 4 that correspond to the vanishing cycles of a dis-
tinguished basis (see [3]). Two vertices are connected by k simple (dotted) edges, if the intersection index of
the corresponding vanishing cycles is equal to k (or minus k).

let E = (E,, . . ., Ex) be a partition of the set of vertices of the Dynkin diagram. We will call the par-
tition E proper, if every Ei consists of vertices numbered by consecutive integers., The part of the Dynkin
diagram formed by the vertices of Eji and the edges connecting them will be called the inner diagram for Ei,

This diagram is not necessarily connected. Denote the connected components of this diagram by (£; 1, ...,
E;;) . We will say that the original Dynkin diagram can be decomposed with respect to the type E into the
diagrams Ejj.

We will say that the decomposition of the Dynkin diagram with respect to the type E is consistent with

the decomposition of the critical point with respect to the type X, if, for every i, the set (E;,, ..., £;;) is a
set of Dynkin diagrams of critical points of the types (X;,, ..., X;;) corresponding to the i-thcritical value,

Simple critical points (points of types Ak, Dk, Eg, Eq, Eg) are defined in [11.
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§2, FORMULATION OF THE RESULTS

THEOREM 1. Assume that the critical point 0 of the function f can be decomposed with respect to the
type X. Then there exist a distinguished basis and a proper partition E of this basis such that the decomposi-
tion of the Dynkin diagram with respect to the type E is consistent with the decomposition of the critical point
with respect to the type X.

THEOREM 2, The simple critical point 0 of the function f can be decomposed with respect to the type
X if and only if there exist a distinguished basis and a proper partition E of this basis such that the decompo-
gition of the Dynkin diagram with respect to the type E is consistent with the decomposition of the critical
point with respect to the type X,

THEOREM 3, A simple critical point can be decomposed with respect to the type X = (X, . . ., Xk
if and only if it can be decomposed with respect to the type (X, . . ., Xk-9» X", X' being decomposable with
respect to the type (Xk-1» Xk).

Theorem 2 permits one to establish that some decomposition of a simple singularity is realizable. In
order to do this, starting from the original diagram (from a standard diagram of Ak, Dk, Ek, for example)
and changing the homotopic classes of the paths of the distinguished basis, it is necessary to convert to other
diagrams and investigate their partitions, Theorem 3 shows that it is sufficient to study the decompositions
into pairs of critical values.

A simple singular point abuts precisely those simple singular points, the canonical Dynkin diagrams of

which can be imbedded in the canonical Dynkin diagram of the original singular point (V. I Arnol'd [1], D.
Siersma [9]). Using Theorem 2, one can obtain the following result, which belongs to Grothendieck (see 5D.

THEOREM 4, Assume that, under some decomposition of a simple critical point S, singular points of
the types X, . . ., Xk correspond to some critical value., Then the canonical Dynkin diagram for S can be
decomposed into Dynkin diagrams of the singularities Xj after elimination of some number of vertices with
all of the edges going into them. The converse is also true.

All decompositions of simple singularities into pairs of critical values are described by the following
theorem,

THEOREM 5. L Assume that a critical point of type X can be decomposed with respect to the type
(Xys X5). Then

1) e (X + p(X,) = p (X)),
2) there exist abuttings X — Xj (i =1, 2),
3) if X is of type Dj, then there exists an i such that Ax-, abuts Xj.

IL All decompositions of simple singularities satisfying conditions 1), 2), and 3} are realizable except
for the decomposition Eg — (A4, Ay) (Ay, A,), which is not.

Remark., In terms of Dynkin diagrams, conditions 2) and 3) are described by Theorem 4. Condition 2}
means that the canonical diagram of each Xj can be imbedded in the diagram of X. Condition 3) means that
the diagram of one of the Xj can be imbedded in the diagram of Ax—,. For example, D, cannot be decomposed
with respect to the type (A;A;) (A{A,), since the diagram of (AjA;) cannot be imbedded in the diagram of A, and,

therefore, condition 3) is not fulfilled.

The number of different ways of decomposing simple singularities into pairs of critical values is con-
tained in the following table (1 < 8):
B 2 3 4 5 6 T 8
A},, 1 2 5 9 47 28
D, — — 4 10 22 38 74
E, — — — — 18 4 B

1
B

S. Zdravkovskaya [6] has investigated degeneracies of polynomials of one variable. For u =5, the num-
ber of irreducible strata has been calculated. For p = 5, the closure of the set of polynomials of type X need

not be an irreducible variety,
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§3. PROOFS

3.1. Proof of Theorem 1, Assume that, under a deformation F, the function f can be decomposed with
respect to the type X, Consider a minimal versal deformation G of f:

G:(C* x € 0 x0)—(C,0; (z )~ Gz, M.

Then the deformation F is equivalent to a deformation F' induced by the versal: F’ (z, k) = G (z, » (b)), h = C..
Fix some small hy, Then the function g; = G(+, A(hy)) has k different critical values and the i-thcritical value
is attained at the points Xi,g2 » « »» Xi,jj In the plane of values of g, draw k nonintersecting circles Bj with
centers at the critical values of g;. On the boundary of each circle, single out a point dj. Choose a point

ue G\ JB; suchthat Im z >ImuandVze {J B;. Then |J B; is contained in the half-plane H = {z= C|Im z >

Im u}.

Consider the path y(t), t €[0, 1], in the base of the versal deformation of f such that y(0) = A(hy) and, for
all t € (0, 1], the function gt = G{+, y(t)) has p different critical values contained in \J Bi. Now, in the half-

plane H, draw a system of nonintersecting paths 7j in H\ |J B; connecting the point u with di. Inside each cir-

cle Bj, draw a system of noninters‘ecting paths mjj connécting the point dj with the critical values of g;. Num-
ber the paths consecutively 1, 2, .. ., yu, the number of mij U 7j being larger than the number of =, U =, if

dr, dn ' .
arg '?T:TLL=0< arg—dTl 1o + In the case i =1, the number of rjj U =i is larger than the number of mjm U mj, if
arg i;?’ii ":0< arg dzi;n |t=0 . Then the paths mjj U mi give a distinguished basis of the vanishing cycles in the

homologies of g; }(u). The circles Bj give a partition of the critical values of the function g, and, consequently,
a partition E of the Dynkin diagram constructed from the 7jj U 7i. This partition is proper.

Note that, if the critical points corresponding to the critical values that lie in one circle do not merge as
t — 0, then the intersection index of the corresponding cycles is equal to zero, On the other hand, the Dynkin
diagram of a singular point is connected (see {4, 7). From this, it follows that the partition E is consistent
with X, Theorem 1 is proved. . '

3.2. Consider the base CH of the versal deformation of the function f. To the point A € CH, there corre-
sponds the set of p critical values of the function G(-, A) (taking their multiplicities into account)., With the
point A, associate the polynomial p(z) of degree p with leading coefficient one the roots of which are the criti~
cal values of G(+, A). We will obtain the germ of the mapping ¢ : (C*, 0) —(P, 0) , where P ~ CH, the space of
polynomials. In P, there is a natural stratification: The stratum S(u, . . ., pg) is the polynomials that have s
different roots with multiplicities p,, ..., Ms (B3 +ps + ... -+ us = p). For a simple singular point, ¢ is a
characteristic holomorphic mapping, and, for the stratum S(1, . . ., 1), the mapping ¢: ¢~ ! (8(1,1,...,1) —
s(l, ..., 1) is a covering (see [8}).

3.3. Proof of Theorem 2, Assume that f has a simple singular point of multiplicity u at the origin.
Consider a quasi-homogeneous versal deformation of f:

®
G(z, M) =/ (z) + _2‘.1 hig; (2),

where the ¢j(x) are monomials that define a basis of the local ring Qf [after factorization with respect to the
ideal (8f/6xj)] (see [2]). Consider also the Dynkin diagram of the function f and a proper partition E of this
diagram. The diagram is given by the set of paths 7i(t) in the plane of values of G(+, Aj), where A; does not
belong to the bifurcation set of the functions in CH., Iet A; € CH be such that G(-, ;) is of type X, Since G is a
quasi-homogeneous versal deformation, there exists a curve A (h) (h € C) such that A;(0) = 0, A,(1) = A, and
G(*, A(h)) is of type X for any h = 0. Therefore, in order to prove Theorem 2, it is sufficient to find such a
point A, :

In the plane of values of G(-, A\), construct a system of paths yi(7) such that: 1) yi(o) = 7i(1), 2) if the i-th
and j-thvertices of the diagram lie in one subset of the partition E, then yi{1) = i (1), and 3) the paths yj do not
mutually intersect and do not intersect the paths ;.

Such a system of paths 7y gives a path v in the space P, and y(7) €S(1, .. ., 1) for 7 € [0, 1}). Now raise
the path v in P to a path A(t) in CH, such that A(0) = A, (note that ¢(A;) = v(0)). Then A(1) is the desired point A,.
The proof is finished,
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3.4. A braid group of u filaments acts traunsitively on the set of Dynkin diagrams of the singularity of £
in the following manner. Let 7j be a distinguished basis of paths giving some Dynkin diagram of the singular-
ity of f, let the e; be the vanishing cycles corresponding to these paths, and let the tj (j = 1,...,

@ —1) be tthe standard generators of the braid group, The braid tj transforms the system of paths 7j into the
system mj:

W= L] m =Ry Wi = W U Brt1r

where Sj4 is the simple loop corresponding to Tj4y. From this, making use of the Picard—Lefschetz formulas,
we can describe the action of the braid on the vanishing cycles and, thus, on the Dynkin dlagram

tir (e, oo orep) > (ery « « o €jqy €raas €5 T €y €ir1dEhrry + - 1y EQ).

Proposition 1, 1) Let L be a subdiagram of a Dynkin diagram of f. One can transform the original dia-
gram so that L remains a subdiagram and the vertices of L are numbered consecutively.

2) Let (E,, E,) be a proper partition of a Dynkin diagram of f and let the numbers of the vertices of E,
be smaller than the numbers of the vertices of E,. Then there exists a diagram of { with proper partition
(E;, E,;) such that the numbers of the vertices of E; are larger than the numbers of the vertices of E,.

The proof of this proposition is not complicated. We omit it.

3.5, Proof of Theorem 3, Assume that f can be decomposed with respect to the type X = Xy o v 0s XN
Then there exist a distinguished basis and a proper partition E of this basis consistent with X. Since X' can
be decomposed with respect to the type (Xk-(, Xk), there exist a distinguished basis for X' and a proper parti-
tion (Ek-y, Ek) of this basis that corresponds to this decomposition. One can choose a distinguished basis for
f in such a manner that the Dynkin diagram for X' is a subdiagram of the Dynkin diagram for f and the parti-
tion E' into (Ex—y, Ei) is a subpartition of the partition E. Then, by Theorem 2, f can be decomposed with re-
spect to the type X,

Conversely, if £ can be decomposed with respect to the type X, then there exist a distinguished basis and
a partition E of the diagram consistent with X, By changing the distinguished basis, one can make the num-
bers of the vertices of Ek and Ei—4 be consecutive, while, at the same time, the inner diagrams of the Ej do
not change (item 3.4). Consider the partition (£, . . ., En, Ex—y J Ey) of the diagram of £. The decomposi-~
tion of f with respect to the type (Xy, . . ., Xk-3, X') corresponds to this partition and X' can be decomposed
into (Xk-y, Xk). The theorem is proved.

3.6. Proof of Theorem 4. Assume that after elimination of some number of vertices of the canonical
Dynkin diagram of f, this diagram can be decomposed into Dynkin diagrams of the singularities Xj. Then, for
some deformation, f can be decomposed so that singular points of the types Xj, . . ., Xk correspond o one
critical value, This follows from Theorem 2 and Proposition 1. ILet us now prove the converse.

Consider a root system R (of type Ay, Dy, or Ey) in the space R¥ and the Weyl group W(R). From each
u root ey, ..., ey, that generatesthewhole Weyl group, one can construct a diagram L: Its vertices corre-~
spond to the roots of the set and two vertices are connected by straight (dotted) edges whenever the scalar
product of the corresponding roots is equal to —1 (+1). These diagrams will be called the Dynkin diagrams of
Ay Dy, and Ey, respectively. If we reflect the ej in the mirror corresponding to ej, we obtain a new root set
that generates W(R) and its Dynkin diagram tj;(L).

Assume that the subdiagram L' of the diagram L constructed from ey, . . ., e; is a canonical Dynkin
diagram. Then one can reduce the diagram L to canonical form by reflecting e, in the mirrors of the ej (i = 2},
Indeed, consider the hyperplane H C R# generated by the vectors ey, . . ., ey. The reflections in the mirrors
of e,, . . ., ey generate the Weyl group W(R N H) in the hyperplane H. The e (i = 2) are a system of simple
roots of the root system H N R. Let e, be the projection of e; on H and C be the closure of the Weyl chamber
corresponding to the basis ey, . . ., ey. By reflection in the mirrors of the ej (i = 2), the vector e1 can be
transformed into ¢; € —C. Then this sequence of reflections in the space R! transforms e; into ej. The roots
el, € ...y € area basis for the system R. Therefore, this sequence of reflections transforms the diagram
L into a canonical Dynkin diagram (in the process, the diagram L' does not change at all).

Assume now that under deformation of a singularity of f, critical points of the types X, , . . ., Xk corre-
spond to one critical value., Then the diagram E = (E;, . . ., Ex) (the Ej are the connected components of E
corresponding to the Xj) can be imbedded in some Dynkin diagram L of the singularity of f, We may assume
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that the Ej are canonical diagrams of simple singularities, We will prove that E can be imbedded in the
canonical diagram of f. ILet « be a vertex of L not lying in E. Then one can reduce all of the connected com-
ponents of {a} U E to canonical form by reflecting e, in the mirrors of the roots of E, In this process, the
diagram L will transform into the diagram L' and {a} U E will transform into E' = (Ej, .. ., Ef1). Now choose
an o' = L'\ E’ and do the same operation. After several steps, we obtain the canonical diagram of f, Note
that, on each step, the subdiagram E did not change and, thus, it can be imbedded in the canonical diagram of f.

§4, DYNKIN DIAGRAMS

The proof of Theorem 5 is rather tedious, so we will only outline it. The proof is based on investigating
the possible Dynkin diagrams of the singularities Ak and Dk (for the singularities E,, Eq, and Eg, the proof is
carried out by checking out each case). We will present the corresponding assertions here without proof,

A, Let &y, ..., 844y be a canonical basis in Rt and g5 — gj (i = j) be a root system of A). Consider a
set of p roots {e;, . . ., eu} that generate the Weyl group of A,. Every such set defines a Dynkin diagram. We
will call the set of all such diagrams the Dynkin diagrams of Ay. If, in the set, the root ej is replaced by —ei,
the corresponding vertex in the Dynkin diagram changes orientation: Allsimple edges emanating from it be-
come dotted lines and vice versa. We will say that two diagrams coincide to within orientation of their ver-
tices if one of them can be obtained from the other by changing the orientation of several if its vertices.

The Weyl group of Ay coincides with the permutation group of the set {1, ..., u + 1}, The transposition
(i, j) corresponds to reflection in the mirror of the root g — &j Assume that the root set {ei, ..o ep} gen-—
erates the whole Weyl group of A“. Then the transpositions that correspond to reflections in the roots gen-
erate the permutation group of the set{l, . .., 4 + 1}. Consider an oriented graph with u + 1 vertices num-
bered 1, ..., p+1: iandj are connected by an edge going from i to j, if the root ej — & is in the set {e;, . . .,
eu}. Such a graph uniquely defines the original root set.” Now neglect the numbering of the vertices of the _
graph, We obtain an oriented graph. Denote it by I'. Denote the nonoriented graph corresponding to T" by T,
The graph T has p + 1 vertices and p edges and is connected, since the set of transpositions generates a per-
mutation group. Therefore, T is a tree. The graph I'defines a Dynkin diagram of Ay. After its vertices have
been numbered, it defines a root set, We associate the Dynkin diagram of this set with the graph I' (obviously,
the diagram does not depend on the manner in which the vertices of I were numbered).

Let T, and T, be trees with oriented edges such that T, = T,. Then the Dynkin diagrams corresponding
to Ty and T, coincide to within the orientation of their vertices. For any T, there exists an oriented graph T
such that T' = T' and such that, for any vertex of I'', all edges go into it or emanate from it simultaneously.
All edges of the Dynkin diagram corresponding to T'' are dotted. Therefore, every Dynkin diagram of A, coin-
cides to within orientation with a diagram that has all edges dotted.

_Any diagram of Ay with dotted edges can be obtained in the following manner, Consider an arbitrary
tree I" with y edges, Assume that it has k vertices out of which emanate pj =2 edges i =1, ..., k), With each
such vertex of T associate a complete graph with ui vertices, all edges of which are dotted. We will paste two
such complete graphs together at one vertex if and only if the corresponding vertices of I are connected by an
edge.

A braid group acts on the trees T with numbered edges: ;: T — t; (), where tj is a generator of the braid
group. The graph t;(I') can be obtained from T in the following manner, If the j and j + 1 edges of T' do not in-
tersect, interchange their numbers. If the j and j + 1 edges have a vertex in common, then in tj(I‘)_,_ the j edge
connects the two other vertices of these edges of T and the j + 1 edge coincides with the j edge of I, The re-
maining edges in tj(f) are the same as in T,

Proposition 2. Let T; and T, be two trees with numbered edges, Then T, can be transformed into T, by
the action of a braid group.

Let f be a singularity of type Ay. A distinguished basis of the vanishing cycles generates a root system
and the Weyl group of A in the homologies of the nonsingular fiber V =~ RH. In the space R! x V, choose a ba~
SIS €iy s « s Ep+ such that the root system coincides with the set cif vectors g — &j (i # j). Then every dis-
tinguished basis of the vanishing cycles defines the graphs T and T, Their edges are numbered (in a manner
corresponding to the numbering of the vanishing cycles).

Proposition 2 implies that any Dynkin diagram with vertices numbered in an arbitrary manner is a
Dynkin diagram of the singularity A.
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Let us prove Theorem 5 in the case of Au. Assume that the diagrams of (A,, ..., 4,) and (4, .. ., Ay
can be imbedded in the canonical diagram of A (that is, Zui + s —I<p and Jj + k — 1 < p)and that Zp‘i -
Zu,- = u . To be definite, let s = k, Divide the set of numbers {1, . . ., ¢} into s + k nonintersecting subsets

My oo My, M;,‘ ..., My in such a manner that every subset Mi(M]!) consists of ui(pcj) consecutive numbers
and that the numbers of Mj are less than the numbers of Mj for any j and i. We will construct complete graphs
on the sets M; | My, ..My U Mz, Mysy, - . ., M.

Connect an arbitrary point of Ml with a point of M;,; (1 <{i <k — 1) by an edge. Let S be the set of
vertices of these edges lying in (J Mi. Inthe set{JM;\ S, choose s — k points (in the set | JM;\ S, there are

Dk — (k — 1) elements, and Dk — (k — 1) > s — k). Comnect each of them with one of the vertices of Mj

k +1 =1 = s}, by an edge, different points being connected with different Mj. We have constructed a Dynkin
diagram of the singularity A,. A partition of the set {1,..., 1} into U Mj and U M defines a proper partition
of the Dynkin diagram. Obviously, the partition corresponds to the decomposition of Ay, with respect to the
type (4, . .4,) (4, . - 4y) . Hence, by Theorem 2, such a decomposition is realizable,

D. Let the i be a canonical basis in R¥ and - &; +-¢; (i % j) be a root system of Dy. An element of the
Weyl group of Dy can be considered to be permutation of the &; with a change of sign of an even number of vec-
tors. Reflections are ordinary transpositions and transpositions that change the signs of the permuted vec-
tors, Consider a set of p roots that generate the whole Weyl group, Construct the graph I': connect, i, j €
{1, . . ., 4} by an edge going from i to j, if the root £f — gj is in the set. If & 4 ¢e; (— & — ¢;) is in the set, con~
nect i and j by a dotted edge and place the sign + (=) on it. Finally, neglect the numbering of the vertices of the
graph so obtained,

Note that, when the signs of the roots of the set are changed, we can obtain any orientation of the solid
lines and any signs on the dotted lines, If the graph T is connected, it has one and only one cycle, since there
are u vertices and edges,

Proposition 3. A set of u roots generates the Weyl group of Dy, if and only if the graph T is connected
and there is an odd number of dotted edges on the cycle.

In the same manner as in the case of Ay, the graph I' defines a Dynkin diagram. From I, construct the
graph ', Make all edges solid and neglect the orientation and the signs on the edges.

Proposition 4, The graph T’ defines a Dynkin diagram to within the orientation of its vertices,

Consider the set of all connected graphs T with y vertices and p edges. Number the edges from 1 to u.
The braid group acts on the set of such graphs: f; T ¢t;T) . Ifthej~thand (j + 1)-th edges of T have two ver-
tices in common, then ¢ (1) =T, Otherwise, tj(I‘) is defined in the same manner as in A,

Let f be a singularity of type Dy Then a distinguished basis of the vanishing cycles defines a root sys-
tem of type Dy, and, hence, a graph I' with numbered edges. Under the circumstances, the numbering of the
edges cannot be arbitrary.

Proposition 5. Let T be the graph constructed from a distinguished basis of the vanishing cycles. Then:
1) When going around a cycle of the graph T, the numbering of its edges must be monotonic.

2) Let a cycle of T consist of I edges, numbered 1, . . ., I. Then other edges do not emanate from the
vertex that the edges 1 and ! have in common,

Making use of Proposition 5, one can show that, if the Dynkin diagram of Xj cannot be imbedded in the
caponical diagram of Ay (for i =1, 2), then Dy, cannot be decomposed with respect to the type (X, X;). On
the other hand, the proof of Theorem 5 for D), can be carried out by constructing an appropriate diagram of
Dy, and a proper partition of this diagram.

The author thanks V. 1. Arnol'd for many helpful discussions and S, M, Gusein—Zadye, who explained to
him what all the diagrams of Ay look like.
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FUNCTIONS WITH ISOMORPHIC JACOBIAN IDEALS

A. N, Shoshitaishvili

§0, Let us consider a set of germs -at 0 of functions F that are holomorphic at 0, i.e., F: CB — C, F(0) =
0, and grad F(0) = 0, Let us denote it by J. Let us consider a C algebra of formal power series Cl[xy, . . .,
xpll. For any F € J let us consider an ideal i(F) C Cllx;, . . . Xnll, spanned over the partial derivatives ox; F,
i=1,...,0

For any integer k =1 let us denote by Qk(F) the factor algebra C [lz,, ..., . 1/(i (F)YM*), where M is a
maximal ideal in C[[xy, . . ., Xpll.

With the aid of a contact group [1], we shall prove in Theorem 1 that the image in k jets of the set
Wk(F) = {sz J: the C-algebras Qi(F) and Qi(y) are isomdrphic}

is a manifold.

Let us consider Q (F) = Cllzy, . . ., z,11/i (F). We shall say that a germ G € J is Q equivalent to a germ
F € J if the C algebras Q(G) and Q(F) are isomorphic. The set of germs that are Q equivalent to a germ of F
will be denoted by W(F).

Let F have finite multiplicity, i.e., dimCQ(F) < «, In Theorems 2 and 3 we shall consider two classes
of finite-multiplicity germs of functions. The first of them is a class of functions F € J such that W(F) coin-
cides with the orbit of action of an R group, i.e., of a group of germs at 0 of holomorphisms h at 0, i.e., h:

C — CB, h(0) = 0, that acts in J according to the law (h, F) — F o k. This class of functions coincides with R~
equivalent functions (i.e., which lie in the same orbit of an R group) that are quasihomogeneous, The second
class consists of functions F € J for which W(F) coincides with the orbit of action of an RL group, i.e., a group
which is a direct product of an R group and a group p of germs at 0 of holomorphisms at 0, i.e.,, p: C — C,
p(0) = 0, that act according to the law ((p, &), F) = p o F o h.

§1, Let us consider a function F € J, In C Iz, . . ., 2,1l let us define two subalgebras ak(F) and Ak (F):
& (F) ={ge=MC Cllz, ..., z,0: i(g) C (F) U M) ; AKF) is a linear space spanned over ak(F) and i(F) * M.

Let us denote ak(F), Ak(F), ((F)+ M)k the images of the algebras ak(F), AK(F), i(F) - M under a factor-
ization mapping Cllz,, . . ., 2,11 > C [z, . . ., z, 1/ M*+L.
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