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SIMPLE SINGULARITIES 

The goal of this ar t ic le  is to study the decompositions of simple singulari t ies  of functions under defor -  
mations. All possible decomposit ions are descr ibed in t e rms  of Dynkin diagrams of the singulari t ies .  

§i. D E F I N I T I O N S  

Let f: (C n, 0) ~ (C, 0) be the germ of an analytic function with a cr i t ical  point of multiplicity # at the 
origin. The ge rm of the analytic function F. (C n x C, 0) ~ (C, 0) for which F(x, 0) -- f(x) is called the defor-  
mation F o f the function f with bas'e C. 

The cr i t ical  point 0 of the function f under the deformation F can be decomposed with respec t  to the 
type X = (X 1 . . . . .  "Xk), where Xi = (Xtl . . . . .  Xi.~.~) , if there exists a 6 0 > 0 such that for  all 5 E (0, 5 0] there 
exists an e0(6) such that, for  all ~ such that 0 < lel < ~0, the function F( . ,  e) of the variable x E C n in the sphere 
Ix] < 5 has exactly k different cr i t ical  values,  the i - thc r i t i ca l  value being attained at cr i t ical  points of the types 
X~,I . . . . .  Xi,f~. 

Let g be the ge rm of an analytic function on the sphere V C C n. We will say that the ge rm g has a sin- 
gulari ty of type X, if dg ~ 0 on the boundary ~V of the sphere,  the function g attains exactly k cr i t ical  values 
inside the sphere V, and the i - thc r i t i ca lva lue  is attained at cr i t ical  points of the types X~,I . . . . .  Xi,ji. By defi-  

nition, the multiplicity of the singulari ty is ~ (X) = ~,~ (X~j), where the/~(Xij) are  the multiplicities of the 
{j 

singularit ies Xi]. The ge rm of the function G : C ~ × C --~ E on the set  V × {0} that is such that G(x, 0) - g(x) 
is called the deformation G of g. The decomposit ion of a function g of type X with respec t  to the type Y is de-  
fined analogously. A singulari ty of type X abuts a singulari ty of type Y, if X can be decomposed with respect  
to the type (Y, Y'). 

A Dynkin diagram of the cr i t ical  point 0 of multiplicity p of a function of n variables,  where n - 3 (mod 
4) is a connected graph with # ver t ices  numbered 1, 2 , . . . ,  # that correspond to the vanishing cycles  of a dis-  
tinguished basis (see [3]). Two ver t ices  are  connected by k simple (dotted) edges, if the intersect ion index of 
the corresponding vanishing cycles  is equal to k (or minus k). 

Let E = (E i . . . . .  E k) be a parti t ion of the set of ver t ices  of the Dynkin diagram. We will call the pa r -  
tition E proper ,  if every Ei consists  of ver t ices  numbered by consecutive integers.  The par t  of the Dynkin 
diagram formed by the ver t ices  of Ei and the edges connecting them will be called the inner diagram for El. 

This d iagram is not necessar i ly  connected. Denote the connected components of this d iagram by (E~.~ . . . . .  
E~,j~) . We will say that the original Dynkin diagram can be decomposed with respec t  to the type E into the 
diagrams Eij. 

We will say that the decomposit ion of the Dynkin diagram with respec t  to the type E is consistent  with 
the decomposition of the cr i t ical  point with respec t  to the type X, if, for every i, the set  ( E i , , , . . . ,  E~,j~) is a 
set  of Dynkin diagrams of cr i t ica l  points of the types (X~,, . . . . .  Xi,j~) corresponding to the i - th  cr i t ical  value. 

Simple cr i t ical  points (points of types Ak, Dk, E6, ET, E 8) are  defined in [1]. 
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§2.  F O R M U L A T I O N  OF T H E  R E S U L T S  

THEOREM 1. Assume that the cr i t ical  point 0 of the function f can be decomposed with respect  to the 
type X. Then there exist  a distinguished basis and a proper  parti t ion E of this basis such that the decomposi-  
tion of the Dynkin diagram with respec t  to the type E is consistent  with the decomposition of the cr i t ical  point 
with respect  to the type X. 

THEOREM 2. The simple cr i t ical  point 0 of the function f can be decomposed with respect  to the type 
X if and only if there exist a distinguished basis and a proper  part i t ion E of this basis such that the decompo- 
sition of the Dynkin diagram with respec t  to the type E is consistent  with the decomposition of the cri t ical  
point with respec t  to the type X. 

THEOREM 3. A simple cr i t ical  point can be decomposed with respec t  to the type X = (X 1 . . . . .  Xk) 
if and only if it can be decomposed with respec t  to the type (X 1 . . . .  , Xk-2, X'), X' being decomposable with 
respec t  to the type (Xk-1, Xk). 

Theorem 2 permits  one to establish that some decomposition of a simple singulari ty is realizable.  In 
order  to do this, s tar t ing f rom the original  d iagram (from a standard diagram of Ak, Dk, Ek, for example) 
and changing the homotopic c lasses  of the paths of the distinguished basis,  it is necessa ry  to convert  to other 
diagrams and investigate their  parti t ions.  Theorem 3 shows that it is sufficient to study the decompositions 
into pairs of cr i t ical  values. 

A simple singular point abuts precise ly  those simple singular points, the canonical Dynkin d iagrams of 
which can be imbedded in the canonical Dynkin diagram of the original s ingular  point (V. I. Arnol 'd  [1], D. 
S iersma [9]). Using Theorem 2, one can obtain the following result ,  which belongs to Grothendieck (see [5]). 

THEOREM 4. Assume that, under some decomposition of a simple cr i t ical  point S, singular points of 
the types X1, . . . ,  Xk correspond to some cri t ical  value. Then the canonical Dynkin diagram for S can be 
decomposed into Dynkin diagrams of the singulari t ies Xi after elimination of some number  of ver t ices  with 
all of the edges going into them. The converse is also true. 

All decompositions of simple singularit ies into pairs  of cr i t ical  values are descr ibed by the following 
theorem. 

THEOREM 5. I. Assume that a cr i t ical  point of type X can be decomposed with respect  to the type 

(X1, X2). Then 

1) ~ (xl)  + ~ (x~) = ~ (xi ,  

2) there exist abuttings X --  Xi (i = 1, 2), 

3) if X is of type Dk, then there exists an i such that Ak-2 abuts Xi. 

II. All decomposit ions of simple singularit ies satisfying conditions 1), 2), and 3) are realizable except 
for the decomposition E 6 - -  (A 1, A 1) (A 2, A2), which is not. 

Remark. In te rms  of Dynkin diagrams,  conditions 2) and 3) are descr ibed by Theorem 4. Condition 2) 
means that the canonical d iagram of each Xi can be imbedded in the d iagram of X. Condition 3) means that 
the diagram of one of the Xi can be imbedded in the diagram of Ak-2. For  example, D 4 cannot be decomposed 
with respect  to the type (AIA 1) (A1A1), since the diagram of (A1A l) cannot be imbedded in the diagram of A 2 and, 
therefore ,  condition 3) is not fulfilled. 

The number of different ways of decomposing simple singularit ies into pairs  of cr i t ical  values is con- 
tained in the following table (# -< 8): 

2 3 4 5 6 7 8 
A~ t 2 5 9 t7 29 5t 
D~ 4 i0 22 38 74 
E~ t9 4t 75 

S. Zdravkovskaya [6] has investigated degeneracies of polynomials of one variable. For # -< 5, the num- 

ber of irreducible strata has been calculated. For p -> 5, the closure of the set of polynomials of type X need 

not be an irreducible variety. 
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§3. PROOFS 
f 

3.1. Proof of Theorem i. Assume that, under a deformation F, the function f can be decomposed with 
respect to the type X. Consider a minimal versal deformation G of f: 

G : ( C  a × C~, 0 x 0 ) - + ( C ,  0); ( x , ~ ) ~ G ( x , ~ ) .  

Then the de fo rma t ion  F is equivalent  to a de fo rma t ion  F '  induced by the versa1:  F'  (x, h) = G (z, k (h)), h ~ C .  
F ix  s o m e  sma l l  h 0. Then the funct ion go = G( ", },(hod has  k d i f fe ren t  c r i t i c a l  va lues  and the i - t h e r i t i c a l v a l u e  
is a t ta ined at the points  Xi,1, . . . ,  Xi,ji.  In the plane of va lues  of  go, d raw k non in te r sec t ing  c i r c l e s  Bi with 
c en t e r s  at the c r i t i ca l  va lues  of go- On the boundary  of each  c i r c l e ,  s ingle  out a point  di. Choose  a point  
~ E E \  ~ Bi such  that  Im z > I m u a n d V z ~  U Bi .  Then U B~ is conta ined in the ha l f -p lane  H = {z ~ El Ira z > 

Im u}. 

Consider the path 3/(t), t E [0, 1], in the base of the versal deformation of f such that T(0) = X(h 0) and, for 
all t E (0, 1], the function gt = G(., ~/(t)) has # different critical values contained In U Bi. Now, in the half- 

plane If, draw a system of noninterseeting paths 7ri in H \ [J Bi connecting the point u with di. Inside each cir- 

cle Bi, draw a system of nonintersecting paths ~ij connecting the point di with the critical values of gt. Num- 
ber the paths consecutively 1, 2 . . . .  , g, the number of 7rij U 7ri being larger than the number of nlm U ~z, if 

a r g  --j~-it=0< a rg -~ -  t=0 " In the case  i = l, the n u m b e r  of 7rij U 7ri is l a r g e r  than the n u m b e r  of ~rim U 7ri, if 

arg--~-[t=0 . .  a r g ~  t=0 " Then the paths  xij U 7ri give a d i s t inguished  bas i s  of the vanish ing  cyc les  in the 

homolog ies  of g~X(u). The c i r c l e s  Bi give a pa r t i t i on  of the c r i t i c a l  va lues  of the funct ion gt and, consequent ly ,  
a pa r t i t ion  E of the Dynkin d i a g r a m  c o n s t r u c t e d  f r o m  the 7rij U ~i. This pa r t i t i on  is p r o p e r .  

Note that, if the c r i t i c a l  points  c o r r e s p o n d i n g  to the c r i t i c a l  va lues  that  l ie in one c i r c l e  do not m e r g e  as 
t - -  0, then the i n t e r s e c t i o n  index of  the c o r r e s p o n d i n g  cyc le s  is equal to ze ro .  On the o the r  hand, the Dynkin 
d i a g r a m  of a s ingu la r  point  is connec ted  (see [4, 7]). F r o m  this ,  it follows that  the pa r t i t i on  E is cons i s t en t  
with X. T h e o r e m  1 is proved.  

3.2. Cons ide r  the base  Ct~ of the v e r s a l  de fo rma t ion  of the funct ion f. To the point  k E Ct~, the re  c o r r e -  
sponds the se t  of # c r i t i c a l  va lues  of the funct ion G(-, },) (taking the i r  mul t ip l ic i t i es  into account) .  With the 
point  k, a s soc i a t e  the po lynomia l  p(z) of deg ree  # with leading coef f ic ien t  one the roo t s  of which a r e  the c r i t i -  
ca l  va lues  of G(. ,  k). We will  obtain  the g e r m  of the mapping  ¢p : (C~, 0) --~(P, 0) ,  where  P ~ Ctt, the space  of 
po lynomia l s .  In P, t he re  is a na tura l  s t ra t i f i ca t ion :  The  s t r a t u m  S(~ 1, . . . ,  t~s) is the po lynomia l s  that  have s 
d i f fe ren t  roo t s  with mul t ip l ic i t i es  ~ ,  . . . ,  ~, (~, + t~2 -4- • • • + ~, = It). F o r  a s imp le  s ingu la r  point,  (p is a 
c h a r a c t e r i s t i c  ho lomorph ic  mapping,  and, f o r  the s t r a t u m  S(1 . . . . .  1), the mapping  ~v: (p-1 (S(1, 1 . . . . .  1) - -  
S(1 . . . .  , 1 )  is a cove r ing  (see [8]). 

3.3. P roof  of T h e o r e m  2. A s s u m e  that  f has  a s imp le  s ingu la r  point  of  mul t ip l ic i ty  # at  the or igin.  
Cons ide r  a q u a s i - h o m o g e n e o u s  v e r s a l  de fo rm a t ion  of f: 

i = l  

where  the el(X) a r e  monomia l s  that  define a bas i s  of the loca l  r ing  Q f  [af ter  f a c t o r i z a t i o n  with r e s p e c t  to the 
ideal  (0f/~xi)] (see [2]). Cons ide r  a lso  the Dynkin d i a g r a m  of the funct ion f and a p r o p e r  pa r t i t i on  E of this  
d i ag ram.  The d i a g r a m  is g iven by the se t  of paths  ~i(t) in the plane of va lues  of G(. ,  X0), whe re  k 0 does not 
be long to the b i fu rca t ion  se t  of the funct ions in C~. Let )'l ~ C# be such  that  G( . , k  l) is  of type X. Since G is a 
q u a s i - h o m o g e n e o u s  v e r s a l  de fo rmat ion ,  t h e r e  exis ts  a cu rve  k~(h) (h 6 C) such  that  k&(0) = 0, k~(1) = },~ and 
G( ' ,  kl(h)) is of type X for  any h ~ 0. T h e r e f o r e ,  in o r d e r  to p rove  T h e o r e m  2, it is suff ic ient  to find such a 
point  k~. 

In the plane of va lues  of G( ", k0), c o n s t r u c t  a s y s t e m  of paths  7i(~) such  that:  1) 7i(0) = ~i(1), 2) if the i - th  
and j - t h v e r t i c e s  of  the d i a g r a m  lie in one subse t  of  the pa r t i t ion  E, then 7i(1) = ~j (1), and 3) the paths  ~i do not 
mutual ly  i n t e r s e c t  and do not i n t e r s e c t  the paths r j .  

Such a s y s t e m  of paths ~i gives  a path ~/in the space  P, and ~/(~) ~ S(1, . . . ,  1) f o r  T ~ [0, 1). Now r a i s e  
the path ~/in P to a path k(t) in C~, such that  X(0) = ~0 (note that  ~(k 0) = ~(0)). Then  k(1) is the de s i r ed  point  hi. 
The p roof  is f inished.  

124 



3.4. A braid group of # filamentsacts transitively on the set of Dynkin diagrams of the singularity of f 
in the following manner. Let 7r i be a distinguished basis of paths giving some Dynkin diagram of the singular- 

ity of f, let the e i be the vanishing cycles corresponding to these paths, and let the tj (j = I,. o., 

It -i)be the standard generators of the braid group. The braid tj transforms the system of paths ~i into the 
I 

system ~i: 

where flj+l is the simple loop corresponding to ~j+l, From this, making use of the Pieard-Lefschetzformulas, 
we can describe the action of the braid on the vanishing cycles and, thus, on the Dynkin diagram: 

t~: (e~ . . . . .  e~) ~-  (e~ . . . . .  ej_~, ei+ 1, ej  + <e~, e j+l )e j+l ;  . . . .  e~). 

Proposition i. i) Let L be a subdiagram of a Dynkin diagram of f. One can transform the original dia- 

gram so that L remains a subdiagram and the vertices of L are numbered consecutively. 

2) Let (El, E2) be a proper partition of a Dynkin diagram of f and let the numbers of the vertices of E t 

be smaller than the numbers of the vertices of E 2. Then there exists a diagram of f with proper partition 

(El, E 2) such that the numbers of the vertices of E l are larger than the numbers of the vertices of E 2. 

The proof of this proposition is not complicated. We omit it. 

3.5. Proof of Theorem 3. Assume that f can be decomposed with respect to the type X = (X l ..... X'). 

Then there exist a distinguished basis and a proper partition E of this basis consistent with :~. Since X' can 

be decomposed with respect to the type (Xk-i, Xk), there exist a distinguished basis for X' and a proper parti- 

tion (Ek_ l, Ek) of this basis that corresponds to this decomposition. One can choose a distinguished basis for 

f in such a manner that the Dynkin diagram for X' is a subdiagram of the Dynkin diagram for f and the parti- 

tion E' into (Ek_ t, E k) is a subpartitien of the partition E-. Then, by Theorem 2, f can be decomposed with re- 

spect to the type X. 

Conversely, if f can be decomposed with respect to the type X, then there exist a distinguished basis and 

a partition E of the diagram consistent with X. By changing the distinguished basis, one can make the num- 

bers of the vertices of Ek and Ek_ i be consecutive, while, at the same time, the inner diagrams of the Ei do 

not change (item 3.4). Consider the partition (El ..... Eh-~, Eh-1 [J E~) of the diagram of f. The decomposi- 

tion of f with respect to the type (XI, .... Xk-2, X') corresponds to this partition and X' can be decomposed 

into (Xk-t, Xk). The theorem is proved. 

3.6. Proof of Theorem 4. Assume that after elimination of some number of vertices of the canonical 

Dynkin diagram of f, this diagram can be decomposed into Dynkin diagrams of the singularities Xi. Then, for 

some deformation, f can be decomposed so that singular points of the types XI, . .., Xk correspond to one 

critical value. This follows from Theorem 2 and Proposition i. Let us now prove the converse. 

Consider a root system R (of type Ait, Dit, or Eit) in the space RP and the Weyl group W(R). From each 
It root e l, . .., et~ that generatesthewhole Weyl group, one can construct a diagram L: Its vertices corre- 

spond to the roots of the set and two vertices are connected by straight (dotted) edges whenever tl~ scalar 

product of the corresponding roots is equal to -i (+i). These diagrams will be called the Dynkin diagrams of 

A# Dit, and Eit, respectively. If we reflect the ei in the mirror corresponding to ej, we obtain a new root set 

that generates W(R) and its Dynkin diagram tij (L). 

Assume that the subdiagram L' of the diagram L constructed from e2, . .., e~ is a canonical Dynkin 

diagram. Then one can reduce the diagram L to canonical form by reflecting e I in the mirrors of the ei (i -> 2). 

Indeed, consider the hyperplane H C R# generated by the vectors e2, .... eit. The reflections in the mirrors 

of e 2 ..... eit generate the Weyl group W(R ~ H) in the hyperplane H. The e i (i -> 2) are a system of simple 

roots of the root system H A R. Let el be the projection of e I on H and C be the closure of the Weyl chamber 

corresponding to the basis e 2 ..... eit. By reflection in the mirrors of the ei (i -> 2), the vector e I can be 

transformed into e I E -C. Then this sequence of reflections in the space RP transforms e i into e I. The roots 
! el, e2, . .., e# are a basis for the system R. Therefore, this sequence of reflections transforms the diagram 

L into a canonical Dynkin diagram (in the process, the diagram L' does not change at all). 

Assume now that under deformation of a singularity of f, critical points of the types X l , . .., X k corre- 

spond to one critical value. Then the diagram E = (E l ..... Ek) (the Ei are the connected components of E 

corresponding to the Xi) can be imbedded in some Dynkin diagram L of the singularity of f. We may assume 
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that  the Ei a re  canonica l  d i a g r a m s  of s imple  s ingu la r i t i e s .  We will  p rove  that  E can be imbedded in the 
canonica l  d i a g r a m  of f. Let  ~ be a v e r t e x  of L not lying in E. Then one can r educe  all of the connec ted  c o m -  
ponents  of {~} U E to canonica l  f o r m  by re f lec t ing  e~  in the m i r r o r s  of the roo t s  of E. In this p r o c e s s ,  the 
d i a g r a m  L will  t r a n s f o r m  into the d i a g r a m  L'  and {~} [2 E will  t r a n s f o r m  into E '  = (E~ . . . . .  E~,). Now choose  
an a '  ~ L ' \  E '  and do the s a m e  opera t ion .  Af te r  s e v e r a l  s teps ,  we obtain  the canon ica l  d i a g r a m  of f. Note 
that,  on each  step,  the s u b d i a g r a m  E did not change and, thus ,  it can  be imbedded in the canonica l  d i ag ra  m of f. 

§4. DYNKIN DIAGRAMS 

The proof of Theorem 5 is rather tedious, so we will only outline it. The proof is based on investigating 
the possible Dynkin diagrams of the singularities Ak and Dk (for the singularities E6, E 7, and E 8, the proof is 
carried out by checking out each case). We will present the corresponding assertions here without proof. 

A. Let el ..... e~+ i be a canonical basis in R li+l and ~i - ~j (i ~ j) be a root system of All. Consider a 
set of # roots {e i ..... eft } that generate the Weyl group of All. Every such set defines a Dynkin diagram. We 
will call the set of all such diagrams the Dynkin diagrams of A#. K, in the set, the root ei is replaced by -el, 
the corresponding vertex in the Dynkin diagram changes orientation: All simple edges emanating from it be- 
come dotted lines and vice versa. We will say that two diagrams coincide to within orientation of their ver- 
tices if one of them can be obtained from the other by changing the orientation of several if its vertices. 

The Weyl group of A# coincides with the permutation group of the set {i, .... # + i}. The transposition 
(i, j) corresponds to reflection in the mirror of the root ai - aj. Assume that the root set {e I ..... e~} gen- 
erates the whole Weyl group of A W Then the transpositions that correspond to reflections in the roots gen- 
erate the permutation group of the set {I ..... ~ + i}. Consider an oriented graph with g + 1 vertices num- 
bered 1 .... , # + i: i and j are connected by an edge going from i to j, if the root ai - aj is in the set {e i ..... 
ep}. Such a graph uniquely defines the original root set. Now neglect the numbering of the vertices of the 
graph. We obtain an oriented graph. Denote it by F. Denote the nonoriented graph corresponding to F by -F. 
The graph F has # + 1 vertices and I/ edges and is connected, since the set of transpositions generates a per- 
mutation group. Therefore, F is a tree. The graph Fdefines a Dynkin diagram of A~I. After its vertices have 
been numbered, it defines a root set. We associate the Dynkin diagram of this set with the graph D (obviously, 
the diagram does not depend on the manner in which the vertices of F were numbered). 

Let F I and F 2 be trees with oriented edges such that F i = F 2. Then the Dynkin diagrams corresponding 
to F I and F 2 coincide to within the orientation of their vertices. For any F, there exists an oriented graph F' 
such that F = F' and such that, for any vertex of F', all edges go into it or emanate from it simultaneously. 
All edges of the Dynkin diagram corresponding to F' are dotted. Therefore, every Dynkin diagram of A# coin- 
cides to within o r i en ta t ion  with a d i a g r a m  that  has  al l  edges  dotted.  

_Any d i a g r a m  of A~ with dot ted edges  can be obtained in the fol lowing manne r .  Cons ide r  an a r b i t r a r y  
t r ee  F with/~ edges .  A s s u m e  that  it has  k v e r t i c e s  out of which emana te  #i > 2 edges (i = 1 . . . .  , k). With each 
such ve r t ex  of F a s s o c i a t e  a comple te  g raph  with #i v e r t i c e s ,  all edges  of which a r e  dotted. We will  pas t e  two 
such comple te  g r aphs  toge the r  at one ve r t ex  if and only if the c o r r e s p o n d i n g  v e r t i c e s  of F a re  connec ted  by an 
edge.  

A bra id  g roup  acts  on the t r e e s  F with n u m b e r e d  edges :  tj : F ~ t: (r-), where  tj is a g e n e r a t o r  of the b ra id  
group.  The g r a p h  tj (F) can  be obta ined f r o m  F in the fol lowing manne r .  If the j and j + 1 edges of F do not in-  
t e r s e c t ,  in te rchange  the i r  number s .  If the j and j + i edges  have a v e r t e x  in common ,  then in tj(F),  the j edge 
connec t s  the two o ther  v e r t i c e s  of these  edges  of F and the j + 1 edge coincides  with the j edge of F. The r e -  
maining edges in tj(F) a re  the s a m e  as in F. 

P ropos i t i on  2. Let  F1 and F2 be two t r e e s  with n u m b e r e d  edges .  Then F1 can  be t r a n s f o r m e d  into ~2 by 
the ac t ion  of a b ra id  group.  

Let  f be a s ingu la r i ty  of type A#. A d is t inguished  bas is  of the van ish ing  cyc le s  g e n e r a t e s  a roo t  s y s t e m  
and the Weyl g roup  of A# in the homolog ies  of the nons ingu la r  f i be r  V ~- R#. In the space  R 1 × V, choose  a b a -  
s is  el . . . .  , ep+l such that  the roo t  s y s t e m  coincides  with the se t  of v e c t o r s  ai - ej (i ~ j). Then eve ry  d i s -  
t inguished bas is  of the vanishing cyc l e s  defines the g raphs  F and F. The i r  edges  a re  numbered  (in a manne r  
c o r r e s p o n d i n g  to the number ing  of the vanish ing  cyc les ) .  

P ropos i t i on  2 impl ies  that  any Dynkin d i a g ram with v e r t i c e s  n u m b e r e d  in an a r b i t r a r y  m a n n e r  is a 
Dynkin d i a g r a m  of the s ingu la r i ty  Ap. 
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Let  us p rove  T h e o r e m  5 in the c a s e  of Ap. A s s u m e  that  the d i a g r a m s  of (A, . . . . . . .  A~J and (A,,,, . . . ,  A~,k) 

can  be imbedded  in the canon ica l  d i a g r a m  of A# (that is ,  ~# i  q- s --  1 < ~  and ~ , ~  ÷ k - -  t < ~) and that  ~ ,~  -~- 

~ j  = a . To be defini te ,  l e t  s -> k. Divide the se t  of n u m b e r s  {1 . . . .  , p} into s + k non in t e r sec t ing  subse t s  

M s . . . . .  M,, M'I, . . . .  M~ in such a m a n n e r  tha t  e v e r y  subse t  Mi(M]) c o n s i s t s  of Pi(#]) consecu t ive  n u m b e r s  
and that  the n u m b e r s  of Mi a r e  l e s s  than the n u m b e r s  of  M] fo r  any j and i. We will  c o n s t r u c t  comple te  g raphs  
on the se t s  Ms U M~ . . . .  Mk U M~., M~+I . . . . .  M,. 

? 
Connect  an a r b i t r a r y  point  of M i with a point  of Mi+: (1 < i - ~  k - -  t )  by an edge. Let  S be the se t  of 

v e r t i c e s  of these  edges  lying in U M~ ~ In the se t  U M ~ \ S ,  choose  s - k points  (in the se t  U M ~ \ S ,  t he re  a r e  

~ --  (k - -  t) e l emen t s ,  and ~ , ~  --  (k --  l) > s - -  k ). Connect  each  of t hem with one of the v e r t i c e s  of Mi 

(k + 1 -< i -< s), by  an edge,  d i f fe ren t  points  being connec ted  with d i f fe ren t  Mi. We have cons t ruc t ed  a Dynkin 
I 

d i a g r a m  of the s ingu la r i ty  Ap. A pa r t i t i on  of the se t  {1 . . . .  , p} into U Mi and U Mj defines a p r o p e r  pa r t i t ion  
of the Dynkin d i ag ram.  Obviously ,  the pa r t i t i on  c o r r e s p o n d s  to the d e c o m p o s i t i o n  of A# with r e s p e c t  to the 
type (A~, . .A,,) (A , , , . . .  A~,~) . Hence,  by T h e o r e m  2, such a decompos i t i on  is r ea l i zab le .  

D. Let  the ¢i be a canon ica l  bas i s  in Pv u and ± el -~ ej (i #= ]) be a r o o t  s y s t e m  of Dp. An e l emen t  of the 
Weyl g roup  of D/z can  be c o n s i d e r e d  to be p e r m u t a t i o n  of  the ¢i with a change  of s ign of an even n u m b e r  of v e c -  
to r s .  Ref lec t ions  a r e  o r d i n a r y  t r an s pos i t i ons  and t r a n s p o s i t i o n s  tha t  change the s igns  of the p e r m u t e d  v e c -  
t o r s .  Cons ide r  a s e t  of /z roo t s  that  g e n e r a t e  the whole Weyl group.  C o n s t r u c t  the g r a p h  F:  connect ,  i, j 
{1, . . . .  #} by an edge going f r o m  i to j, if the roo t  ¢i - ¢j is in the set .  If e~ ~- ej (-- e~ - -  ej) is in the set ,  con-  
nect  i and j by a dotted edge and p lace  the s ign + (-) on it. F inal ly ,  neg lec t  the number ing  of the v e r t i c e s  of the 
g r a p h  so  obtained.  

Note that,  when the s igns  of the roo t s  of the se t  a re  changed,  we can  obtain any o r i en ta t ion  of the sol id  
l ines and any s igns on the dot ted l ines .  If the g raph  F is connected ,  it has  one and only one cyc le ,  s ince  the re  
a r e  # v e r t i c e s  and edges .  

P r o p o s i t i o n  3. A se t  of # roots  g e n e r a t e s  the Weyl g roup  of D/z if and only if the g raph  F is connected  
and t h e r e  is  an odd n u m b e r  of dot ted edges on the cyc le .  

In the s a m e  m a n n e r  as in the case  of A#, the g raph  F def ines  a Dynkin d i a g r a m .  F r o m  F, c o n s t r u c t  the 
g r a p h  F. Make all  edges  sol id  and neglec t  the o r i en ta t ion  and the s igns  on the edges .  

P ropos i t i on  4. The g raph  F defines a Dynkin d i a g r a m  to within the o r ien ta t ion  of its v e r t i c e s .  

C o n s i d e r  the se t  of all connec ted  g r aphs  F with # v e r t i c e s  and p edges .  Number  the edges  f r o m  i to p. 
The b ra id  g roup  ac ts  on the se t  of such  g raphs :  t.~: ]~ ~+ tj (F) . I f t he  j - t h a n d  (j + 1)- th edges  of F h a v e  two v e r -  
t i ces  in c o m m o n ,  then tj (-F) = T .  Othe rwise ,  t j(F) is defIned in the s a m e  m a n n e r  as in A. 

Let  f be a s ingu la r i t y  of type _~. Then a d i s t ingu i shed  bas is  of the van ish ing  cyc l e s  def ines  a roo t  s y s -  
t em of type D;, and, hence,  a g raph  F with n u m b e r e d  edges .  Under  the c i r c u m s t a n c e s ,  the number ing  of the 
edges  cannot  be a r b i t r a r y .  

P r o p o s i t i o n  5. Let  ~ be the g raph  c o n s t r u c t e d  f r o m  a d i s t ingu i shed  bas i s  of the van i sh ing  c yc l e s .  Then: 

1) When going a round  a cyc le  of the g raph  ~, the n u m b e r i n g  of its edges  m u s t  be monotonic .  

2) Let a cyc le  of F c o n s i s t  of l edges ,  n u m b e r e d  1 . . . . .  I. Then o ther  edges  do not emana te  f r o m  the 
v e r t e x  that  the edges  1 and l have in common .  

Making use of P ropos i t i on  5, one can show that,  if the Dynkin d i a g r a m  of Xi cannot  be imbedded in the 
canon ica l  d i a g r a m  of Ap_ 2 (for i = 1, 2), then Dp cannot  be d e c o m p o s e d  with r e s p e c t  to the type (X1, X2). On 
the o the r  hand, the p roof  of T h e o r e m  5 f o r  Dp can be c a r r i e d  out by c o n s t r u c t i n g  an a p p r o p r i a t e  d i a g r a m  of 
Dp and a p r o p e r  pa r t i t ion  of this d i a g r a m .  

The au thor  thanks V. I. A r n o l ' d  fo r  many  helpful  d i s c us s ions  and S. M. G u s e i n - Z a d y e ,  who expla ined to 
h im  what  all  the d i a g r a m s  of Ap look like. 

i. 

LITERATURE CITED 

V. I. Arnol'd, "Normal forms of functions near degenerate critical points, the Weyl groups of A k, D k, E k, 
and Lagrangian singularities," Funktsional'. Analiz i Ego Prilozhen., 6, No. 4, 3-25 (1972). 

127 



2. V . I .  Arnol 'd ,  "Normal  f o r m s  of functions in the neighborhood of degenera te  c r i t i ca l  points ,"  Ukrainsk.  
Matem. Zh., 19, No. 2, 11-49 (1974). 

3. A . M .  Gabri61ov, " In te r sec t ion  m a t r i c e s  for  ce r t a in  s ingula r i t i es , "  Funktsional ' .  Analiz i Ego Pr i lozhen. ,  
7, No. 3, 18-32 (1973). 

4. A . M .  Gabri61ov, "Bifurca t ions ,  Dynkin d i ag rams  and modali ty of isola ted s ingular i t ies ,"  Funkts ional ' .  
Analiz i Ego Pri lozhen. ,  8._, No. 2, 7-12 (1974). 

5. M. Demazure ,  "Class i f ica t ion  des g e r m e s  ~t point cr i t ique isol~ e t ' a  nombre  de modules 0 ou 1," Semi-  
na i re  Bourbaki,  26th y e a r  1973/1974, No. 443 (February ,  1974). 

6. S. Zdravkovska, "Topological classification of polynomial mappings," Ukrainsk. Matem. Zh., 2_55, No. 4, 
179-180 (1970). 

7. F. Lazzerri, "A theorem on the monodromy of isolated singularities," Singularities a Cargse, Asterisque, 

7, No. 8, 269-276 (1973). 
8. E. Loojenga, "The complement of the bifurcation variety O f a simple singularity," Invent. Math., 23__, 

No. 2, 105-116 (1974). 

9. D. Siersma, Classification and Deformation of Singularities, Academic Service, Vinkeveen, Amsterdam 

(1974). 

FUNCTIONS WITH ISOMORPHIC JACOBIAN IDEALS 

A. N. Shoshitaishvili 

§0. Let us consider a set of germs at 0 of functions F that are holomorphic at 0, i.e., F: C n ~ C, F(0) = 

0, andgrad F(0) = 0. Let us denote it by J. Let us consider a C algebra of formal power series C[[x i ..... 

Xn]]. For any F E J let us consider an ideal i(F) c C[[x i .... , xn]], spanned over the partial derivatives ~xi F, 
i= I, ...,n. 

For any integer k - 1 let us denote by Qk(F) the factor algebra C [[x, ..... x~]]/(i (F)UM~), where M is a 

maximal  ideal in C [[x l . . . . .  Xn]]. 

With the aid of a contact  group [1], we shall  p rove  in T h e o r e m  1 that  the image in k jets  of the se t  

wk(F) = {~ ~ J: the C-algebras Qk(F) and Qk(~) are isomorphic} 

is a manifold. 

Let us consider (2 (F) = C[[x~ ..... x~]]/i (F). We shall say that a germ G E J is Q equivalent to a germ 

F E J if the C algebras Q(G) and Q(F) are isomorphic. The set of germs that are Q equivalent to a germ of F 
will be denoted by W(F). 

Let F have finite multiplicity, i.e., dimcQ(F) < ~. In Theorems 2 and 3 we shall consider two classes 

of finite-multiplicity germs of functions. The first of them is a class of functions F E J such that W(F) coin- 

cides with the orbit of action of an R group, i.e., of a group of germs at 0 of holomorphisms h at 0, i.e., h: 
C n -* C n, h(0) = 0, that acts in J according to the law (h, F) ~ F o h. This class of functions coincides with R- 

equivalent functions (i.e., which lie in the same orbit of an R group) that are quasihomogeneous. The second 

class consists of functions F E J for which W(F) coincides with the orbit of action of an RL group, i.e., a group 
which is a direct product of an R group and a group p of germs at 0 of holomorphisms at 0, i.e., p: C -* C, 

p(0) = 0, that act according to the law ((p, h), F) ~ p o F o h. 

§i. Let us consider a function F ~ J. In C [[x, ..... xn]] let us define two subalgebras ak(F) and A ~ (F): 

a ~ (F) = {g  ~ M C C[[x~ . . . . .  x.]]: i (g) C (i (F) (J Mk)} ; Ak(F) is a l inea r  space  spanned over  ak(F) and i(F)" M. 

Let  us denote ak(F),  Ak(F), (i(F) • M)k the images  of the a lgebras  ak(F), Ak(F), i(F) • M under  a f a c t o r -  
ization mapping C[[x 1 . . . . .  x.]] --~ C [[xl . . . . .  x,~]]/M ~+~. 
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