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:' . x~'be a homogeneous polynomial of degree Introduction. Let /(x: ..... x~) = ~a~ ...... ~ x:.. 

d. Its discriminant A(f) is an irreducible polynomial with integer coefficients in the co- 
efficients aiz,...,in; its being zero means that the projective hypersurface given by f = 0 
has a singular point. The polynomial A(f) for n > 2 was first considered in 1841 by G. Boole, 
who found that its degree was n(d - i) n-l. Apart from that, little is known about the dis- 
criminants A(f). In the present work we study from a geometric viewpoint the set of monomials 

entering A(f). Namely, we consider the space R N, where N---- (n, -~ d---d I) , points of which are 

the collections q = (~(i: ..... in)) of real numbers, where (i: .... ,i n ) run through all se- 

quences of nonnegative integers with sum equal to d. To each monomial c~a[ (~ .... ['~) in 5(f) 

corresponds a point in the space R N . Let us define the polyhedron M cR N as the convex hull 
of all such points n (for which cD ; 0). We shall give a complete description of the vertices 
of the polyhedron M and of the coefficients cN. It turns out that the vertices of M corre- 
spond to certain triangulations of the (n - l)-dimensional simplex (the Newton polyhedron of 
a general polynomial of degree d). In particular , for n = 2 (i.e., for the classical discrim- 
inant of a polynomial of one variable) the polyhdron M is a "skewed" cube. 

In fact, we solve in this paper a more general problem that contains in itself the prob- 
lems concerning hyperdeterminants of cubic and multidimensional matrices and concerning the 
resultant of a system of polynomials in many variables. As regards the setting of the more 
general problem, see [2, 3] and Sec. i. The present short paper contains no proofs. The 
proofs of the results stated here as well as in the notes [2, 3], will be published later. 

i. Regular A-Determinants. Let A be a finite set of Laurent monomials in x:,...,Xn, 
which we identify with points of the lattice Z ~. Let us consider the space C A of Laurent 
polynomials that are linear combinations of monomials in A. The coefficients (a~)~A of the 
polynomials are coordinates in C A . In [2, 3] we introduce three rational functions one A, 
defined up to sign: the A-discriminant AA, the principal A-determinant E A and the regular 
A-determinant D A. 

The A-discriminant 5 A is defined to be [2] a nonzero polynomial in (a~)oaA with the in- 
teger coefficients, irreducible in the ring Z [(ao)] of such polynomials and having the fol- 
lowing property: if /~C A is a nonzero Laurent polynomial for which there exist nonzero num- 
bers x~ ), x (°) ~ C* such that / (x~) x$)) . .  <o) x(O)~ • .., . . . . . . .  = (O//~xi)(x: ........ i ~ 0 for all i, then AA(f) = 
0. In particular, it is not hard to see that if A consists of all homogeneous monomials in 
x I, .... x n of degree d (not containing negative powers), then gA(f) is the discriminant of the 
form f of Introduction. 

The polynomial E A was studied in [3]. In this paper we consider the function D A. With- 
out giving its definition here (see [2]), we observe that in a number of important particular 
cases D A coincides with h A (namely, in the case of smoothness of the toroidal manifold con- 
nected with A). In Proposition 1 we have collected all the important properties of DA, which 
are sufficient in order to understand the rest of the paper. 

Let ~cR ~ be the convex hull of the set A ~_Z ~. We say that the polyhedron Q is simple 
(or that it has simplicial corners) if every face F c Q of codimension i is contained in ex- 
actly i faces of codimension 1 (here i = 0, i, .... n). 

Proposition i. a) If the polyhedron Q is simple, then the rational function D A is a 
polynomial in (a~)~A with integer coefficients, which are all relative prime. 
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b) D A coincides with h A in each of the following cases: 

i) A consists of all monomials in xl,...,x n of degree d that do not contain negative 
powers [in the case D A is A(f) of Introduction, while Q is a (n - l)-dimensional 
simplex]. 

• Cd) _(I) 
2) A consists of polylinear monomials x~ ) • .x~ d in d groups of variables: xt~, il~ [0,11] , 

x!d) id~[O, Id] (in this case D A is the hyperdeterminant of a d-dimensional 

matrix [4], while Q is a product of d simplices of dimensions li ..... Id). 

If one so wishes, one can consider instead of D A the discriminant A A in one of the 
cases of part b). 

In the general case the decomposition of D A into irreducible factors, is described in 
[2]. Let us note that the condition of simplicity of the polyhedron, which ensures that 
D A is a polynomial, was missed in [2] (in the general case D A is not a polynomial). 

We shall assume in the following that the polyhedron Q is simple, and we shall write 
the polynomial D A in the form 

DA(/) = [I  (1) 
~1 ~A 

where *]~Z~ run through sum functionsA-+Z+. Let us denote by (A)~R x the convex hull 
of the set of N ~Z~,for which cq ~ 0 (i.e., the Newton polyhedron of the polynomial DA). 

2. Description of the Polyhedron M(A). We shall consider triangulations of the poly- 
hedron Q with vertices in A, that is, collections T of simplices in Q, such that all their 
vertices are in A, intersection of any two simplices is either empty or is a face common to 
them both, a face of any simplex in T is also included in T, while the union of all simplices 
in T coincides with Q. Moreover, we shall assume that the condition of regularity of tri- 
angulation [3, 5] is satisfied. We shall call a simplex o (of arbitrary dimension ]~U) 
massive if it is contained in a j-dimensional face of the polyhedron Q. We shall denote this 
face by F(a). 

If a lattice L is defined in a real affine space W, then we define a volume form on W, 
setting the volume of a standard simplex with vertices in L equal to i. For every face F c Q 
(in particular, for F = Q) we introduce a volume form Vol F on F, starting with the affinely 
generated lattice over Z by the set A n F. 

For each triangulation T of the polyhedron Q with vertices in A we define the integer 
valued function NT:A-+Z, by setting 

~r (~) = ~' (--  1) dim Q-dim a Volr(o) (a), 
o 

where  a r u n s  t h r o u g h  a l l  m a s s i v e  s i m p l i c e s  o f  t h e  t r i a n g u l a t i o n  T, h a v i n g  m as  a v e r t e x .  We 
c a l l  two t r i a n g u l a t i o n s  T and T' D - e q u i v a l e n t  i f  NT = ~T '"  

THEOREM i. Let the set A be such that the polyhedron Q is simple. Then: 

a) if T is a regular triangulation of Q with vertices in A, then for each ~ A  we have 

~r (~) > O; 

b) t h e  v e r t i c e s  o f  t h e  p o l y h e d r o n  M(A) a r e  e x a c t l y  t h e  f u n c t i o n s  nT f o r  a l l  r e g u l a r  
t r i a n g u l a t i o n s  T ( so  t h a t  t h e  v e r t i c e s  a r e  in  b i j e c t i v e  c o r r e s p o n d e n c e  w i t h  c l a s s e s  
o f  D - e q u i v a l e n c e  o f  r e g u l a r  t r i a n g u l a t i o n s  o f  Q w i t h  v e r t i c e s  in  A ) ;  

c )  f o r  a r e g u l a r  t r i a n g u l a t i o n  T t h e  c o e f f i c i e n t  CnT in  Eq. (1 )  i s  

64 (T) ~I Volt(a)(a)Volr(~)(~).~(o), 
o 

where  a r u n s  t h r o u g h  a l l  m a s s i v e  s i m p l i c e s  o f  t h e  t r i a n g u l a t i o n  T,~v (o) = ( - - t )  dimQ-dm~o, 
while 6A(T) = ±i. 

Remarks. I) The sign of 6A(T) equals l-leAnt (T), where F runs through all the faces of 
r 

Q; the signs of gARF are defined in [3]. 

2) For D-equivalent triangulations T and Z we have CqT = c~z. 



3. Combinatorial Description of D-Equivalence. We shall denote by <I> c Q the convex 
hull of a set I c Q. A subset Z c A is called a cycle if all its proper subsets are sets 
of vertices of some simplex, while it itself does not have that property (compare with [3, 
6]). In this case the polyhedron <Z> has exactly two triangulations with vertices in Z, 
which we denote by T*(Z); each simplex of the form <Z - {m}> is contained in exactly one 
of these (see [6]). We shall say that a triangulation T is supported by a cycle Z, if T 
induces on <Z> one of the triangulations T*(Z) and if the following condition holds: 

let <I> and <I'> be two simplices in the same triangulation <Z>; then for any subset J c 
A - Z, for which I U J is the set of vertices of a simplex in the triangulation T, I' U J 
is also the set of vertices of a simplex in T. 

Let a triangulation T be supported by a cycle Z and let it induce on <Z>, say, a tri- 
angulation T*(Z). Let us denote by sz(T) the new triangulation of the polyhedron Q obtained 
by deleting all the simplices of the form <f U J> with <1>~T+(%) and adding instead sim- 
plices of the form <I' ~ J> with<f'> ~ T-(Z) and the same J (see [3]). We say that T' = sz(T) 
is obtained by a rearrangement from T by a rearrangement along the cycle Z. We call a subset 
J c A - A subseparat'!n ~ (respectively, separating) for T and T' if there exists~Z, such 
that J U Z - {~} is the set of vertices of a simplex (respectively, maximal simplex) in T. 

Propositio n 2. Let T, E be two regular non D-equivalent triangulations of Q with ver- 
tices in A. The vertices qT, N~ of the polyhedron M(A) are connected by an edge if and only 
if there exist regular triangulations T', ~', which are D-equivalent to T, E, respectively, 
which are obtained one from another by a rearrangement. 

Proposition 3. If regular triangulations T and T' are D-equivalent, then T' can be 
obtained from T by a chain of rearrangements in such a way, that at each step we have a D- 
equivalent regular triangulation. 

For each subset I c A we denote by Aff(1) the affine subspace over Q generated by I. 
Aff (I) is equipped with a lattice Affz (I) , generated over Z by the set I. Let Ul, U 2 c 
Aff (I) be affine subspaces, dimU l + dimU 2 = dimAff(1) - i. Let us denote by p(Aff(1), 
UI, U 2) the volume [relative to the lattice Affz (1))] of a simplex o c Aff (I), such that 
o n U i is an elementary simplex with vertices in Af~ (1) ~ Ui [clearly, p(Aff (I), U~, U 2 is 
independent of the choice of o]. 

By Proposition 3, it suffices to describe the rearrangements that lead to D-equivalent 
triangulations. Let us state a useful sufficient condition of D-equivalence. 

Proposition 4. Assume that the polyhedron Q is simple and that for each its face F 
the set A n F affinely generates over Z the lattice Aff(A ~ F) N Zn. Let T, T' be regular 
triangulations of Q with vertices in A, and T' = sz(T) for some cycle Z c A. Triangulations 
T and T' are D-equivalent as long as every subseparating subset J c A - Z satisfies either of 
the two following conditions: 

a) there exists ~ J  such that P (All(J), ~, Aff(J--{~})) = i; 

b) there exists ~ J  such that every separating subset containing J necessarily con- 
tains ~, while all the simplices <Z-- {z} ~ J ~ ~>, z~Z, are massive, 

We observe that the assumptions we have made are satisfied in the case of Proposition lb. 

4. Example. Let A = {0,1 ..... d}~Z, that is, the space C A consists of polynomials 

/(x) = a 0 + . . . + adx a of one variable. Then DA(f) = AA(f) is the classical discriminant of a 
polynomial in one variable [7]. There are 2 d-1 regular triangulations of the interval [0, 
d] = Q. They are numbered by the sequences 0 = r 0 < r I < ... < rk_ l < r k = d; the correspond- 
ing triangulation consists of intervals [ri, ri+l] , i = 0, l,...,k - i. A monomial in AA, 
that corresponds by Theorem 1 to this triangulation, is 

(II "°-"'. Z - -  a~, a r l  ~ r 2  . . v k _  2 ~ v k _  1 u .vk  • 

None of these triangulations are D-equivalent. It is not hard to see that the poly- 
hedron M(A), which is the convex hull of these monomials is combinatorially equivalent to 
an (d - l)-dimensional cube (through its opposite faces are not, in general, parallel). 

We are grateful to A. G. Kushnirenko, S. Yu. Orevkov, and A. G. Khovanskii for useful 
discussions and to I. S. Losev and S. Yu. Orevkov for help in computer work. 
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INTEGRAL GEOMETRY AND MANIFOLDS OF MINIMAL DEGREE IN CP" 

A. B, Goncharov UDC 517.43 

i. INTRODUCTION 

I. An n-parameter family of submanifoldsB~CB, dimB=n, is said to be admissible if 
the value of any smooth function f at each point x can be reconstructed, knowing only the 
integrals of f over the submanifolds of the family passing through an infinitesimal neighbor- 
hood of the point x. (A rigorous definition will be given in Sec. 2.) 

The classical example is the family of all hyperplanes in R ~÷I or C ~. Its admissibility 
follows from the locality of the inversion formula for the Radon transformation (cf. Sec. 2). 

The goal of this paper is to construct a large class of admissible families of hyper- 
surfaces. In Sec. 7 we prove that in this way one gets all admissible families of curves 
on algebraic surfaces up to birational isomorphism. Explicit local inversion formulas are 
obtained. 

2. We recall that if X is a submanifold in CP~I which does not lie in a hyperplane 
(nondegenerate submanifold), then 

d e g X ~ c o d i m  X + 1, (I) 

where degX is the number of points of inte{section of X with a generic plane of complementary 
dimension. Indeed neither the degree nor the codimension changes under passage to a hyper- 
plane section so that arguing by induction one can assume that dimX = 0. In this case X is 
a collection of points not lying in any hyperplane. 

In 1885 geometer Federigo Enriques discovered that all nondegenerate irreducible sub- 
manifolds for which equality holds in (i) can be simply and beautifully described ([12], cf. 
also See. 3). 

Exampl e i.i. a) Let X d be an irreducible nondegenerate curve of degree d in CP d. Then 
4-I x~) (it is also it is projectively equivalent to the Veronese curve (xo:xl)~+(x~:xo x1:... : 

called a rational normal curve [ii, p. 196]). 

b) Del Pezzo proved [ii, p. 561] that any irreducible nondegenerate surface of degree 
n - 1 in CP n is either a Veronese surface 

(X 0 : X  1 :X2) ~ (X~ : XoX 1 : XoX 2 : X~ :XlX 2 :X~) ( 2 )  

in CPS, ora surface S k constructed as follows: 

We take two Veronese curves lying in crossing planes of dimensions k and n - k - 1 in 
CP n and we establish an isomorphism between them. The surface S k consists of lines joining 
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