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ESTIMATE OF THE NUMBER OF ZEROS OF AN ABELIAN INTEGRAL DEPENDING 

ON A PARAMETER AND LIMIT CYCLES 

A. N. Varchenko UDC 513.836+517.919 

I. Introduction 

We consider in the plane a polynomial function and a polynomial differential l-form w. 
Let us assume that with each number t from a certain interval there is associated a non- 
singular compact connected component ~(t) ("oval") of the t level line of the polynomial, 
which depends continuously on t. We consider the function on the interval defined by the 

formula t-+~ ~ . It is proved in this paper that the number of isolated zeros of this func- 
d 

tion and the multiplicities of the zeros can be estimated above in terms of the degree of the 
polynomial and the differential form. 

We consider a Hamiltonian system on the plane with polynomial-Hamilton and its poly- 
nomial nonconservative deformation depending analytically on a parameter. As a consequence 
of the estimate of the number and multiplicity of the zeros we get that the number of limit 
cycles of the deformation which arise from nonsingular ovals of level lines of the Hamil- 
tonian can be estimated above in terms of the degree of the Hamiltonian and the deformation. 

The problem of estimating the number of zeros of an Abelian integral which depends on a 
parameter in connection with estimating the number of limit cycles was repeatedly posed by 
V. I. Arnol'd starting in 1976, cf., e.g., [I, 2]. The author thanks V. I. Arnol'd, R. I. 
Bogdanov, A. M. Gabri~lov, Yu. S. II'yashenko, and A. G. Khovanskii for many helpful discus- 
sions. The results of the paper were announced at the International Congress of Mathemati- 
cians in Warsaw. 

I. Formulation of Results. We define the integral whose zeros we shall investigate. 
Let P(xl,...,x n) be a polynomial, 

n 

--- ~ Pj (xl . . . . .  x . )  d ~  A . . -  d~j . . .  A d ~  ( 1 ) 
j = l  

b e  a p o l y n o m i a l  d i f f e r e n t i a l  ( n  --  1 ) - f o r m  w i t h  r e a l  c o e f f i c i e n t s .  We c o n s i d e r  t h e m  a s  a 
function and a differential form on C n. Let us assume that some interval (a, b) ~ R has the 
following property: The function P is bounded on the preimage of some neighborhood in C of 
the interval (a, b), and is a topological (trivial) fibration. We consider the associated 
fibration over (a, b) with fiber //n-1 (p-1 (t), R) . All its fibers are canonically isomorphih. 
In each fiber there is defined the automorphism of complex conjugation, induced by the map 
(xl,...,x n) ~+ (xL ..... Xn). This automorphism commutes with the canonical isomorphism. Let 
us assume that there is given a section 6: t ~. ~ (t) ~ ffn-1 (p-1 (t), R) of the homology bundle, 
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where all the values of the section are canonically isomorphic. In addition, !et us assume 
that all values of the section are invariant or all values are antiinvariant with respect to 
the automorphism of complex conjugation. The object of investigation is the function I:(~, 
b) ÷ C, defined by the formula [(t)~ I ~. We note that the integral is well-defined (since 

the form restricted to a hypersurface is bounded). If the values of the section are in- 
variant, then the values of the function are real, and if the values of the section are anti- 
invariant, then the values of the function are purely imaginary. The integral mentioned 
earlier of a l-form over an oval is an example of such a function. 

It is well known (cf., e.g., [3-5]) that this function is analytic at interior points 
of the interval (a, b), and at its boundary points (finite or infinite) it splits into a 
series of the form 

where t is a local parameter at the boundary point, k(n) is a natural number whieh depends 
only on n, e runs through a finite set of rational numbers. 

BASIC THEOREM. For any natural number N there exist a natural number C(N) and a finite 
set S(N) of rational numbers with the following properties: if the degrees of the polynomials 
P, Pi,...,Pn are not gerater than N, then 

I. The number of isolated zeros of the function I on the interval (a, b) does not ex- 
ceed C(N). 

2. The multiplicity of each isolated zero is not greater than C(N). 

3. If the function I is not identically zero, then in the expansion (2) of the function 
I at a boundary point of the interval (a, b), the minimal exponent ~ + p among the 
nonzero summands is between--C(N) and C(N). Each ~ belongs to S(N) up to an inte- 
gral summand. 

The theorem is proved in Secs. 2, 3. 

Remarks. I) Point I is the basic point of the theorem. Its proof makes essential use 
of the ideas of the proof of Khovanskii's theorem on small terms [6, 7] and is based on a 
theorem of Gabriélov [8] on the boundedness above of the number of connected components 
of a semianalytic set depending on a parameter. To prove points 2 and 3 one uses the follow- 
ing argument. A solution of an ordinary linear homogeneous differential equation cannot have 
an isolated zero of order higher than the order of the equation. One proves that the func- 
tions under investigation are solutions of differential equations whose orders are bounded 
above. 

Throughout the entire proof we do not consider integral-functions separately but all 
integral-functions together, and the coefficients of the forms and polynomials are considered 
parameters. 2) The basic theorem is the transcendental analog of Bezout's theorem, cf. Secs. 
3 and 4. 

2. Limit Cycles. We consider a Hamiltonian system on the plane with polynomial Hamil- 
tonian H and a deformation of it which is analytic with respect to the parameter and poly- 
nomial in the phase variables 

Here H, P, Q are polynomials in x, y, the coefficients of the polynomials P, Q depend ana- 
lytically on the parameter e~(--i,i). 

By a family of ovals of a Hamiltonian, parametrized by the interval (~, b), we mean a 
map 6 of the interval which assigns to the number t an oval (i.e., a nonsingular eompact con- 
nected component) of the t-level line of the Hamiltonian, which depends continuously on t. 
Each oval can be included in a family. For a polynomial-Hamiltonian there area finite number 
of families, containing all ovals of all level lines of the Hamiltonian. Moreover, the num- 
ber of families can be estimated above in terms of the degree of the Hamiltonian, cf. [9]. 

99 



A deformation of a Hamiltonian system is said to be nonconservative along the family of 
ovals 6, parametrized by the interval (a, b), if the function I:(a, b) ÷ R, defined by I(t) = 

I dy--~dx, is not identically equal to zero. 

An o v a l  6 ( t )  of  a f a m i l y  i s  c a l l e d  a g e n e r a t i n g  l i m i t  c y c l e ,  i f  i n  a n y  n e i g h b o r h o o d  of  
i t ,  f o r  a r b i t r a r i l y  s m a l l  E one  c a n  f i n d  l i m i t  c y c l e s  o f  t h e  d e f o r m a t i o n  c o r r e s p o n d i n g  t o  ~.  

THEOREM ON LIMIT CYCLES. F o r  a n y  n a t u r a l  n u m b e r  N t h e r e  e x i s t s  a n a t u r a l  number  C(N) 
with the following property: if the degrees of the polynomials H, P, and Q are not greater 
than N and any family of ovals of the Hamiltonian parametrized by an interval is chosen, 
along which the deformation is nonconservative, then the number of generating ovals of the 
family does not exceed C(N), and each generating oval gives rise to no more than C(N) limit 
cycles of the deformation, corresponding to small values of the parameter ¢. 

As far as I know this is the first general result on the finiteness of the set of limit 
cycles. Cf. [I, 10-16, 24] for information on limit cycles. 

Proof. Let 6(t) be an arbitrary oval of the family. We consider, in a transversal to 
~(t), the Poincare map (z, ~) ÷ (~(z, ~), ~), where z is a local parameter on the transversal, 

is the parameter of the deformation, cf. [10, 24]. As parameter on the transversal we 
choose the Hamiltonian decreased by t, i.e., we set z = H -- t. According to Theorem 77 of [i0] 
and [24], ~(z, ~) = z + ~I(z + t) + ~2~(z, ~), where the function I is defined above, the 
function ~ is analytic in a neighborhood of the point z = ~ = 0. The limit cycles of the 
deformation given rise to by 6(t) are small solutions of the equation z = ~(z, ¢) for fixed 
g. Hence if 6(t) is a generating oval, then I(t) = 0; if I(z + t) = azk + o(zk), where a ~ 0, 
then ~(t) gives rise to no more than k limit cycles. Now the theorem follows from points I 
and 2 of the basic theorem. 

Remark. This argument does not estimate the number of limit cycles which arise from 
singular ovals which correspond to boundary points of the interval parametrizing the family. 

2. Integrals Depending on Parameters 

In this section we recount the elementary properties of integrals of a rational differ- 
ential form over cycles lying on algebraic varieties, depending algebraically on parameters, 
and the basic theorem is proved in Secs. 2 and 3. 

I. Properties of Integrals. We consider complex quasiprojective nonsingular algebraic 
sets X, A, and a rational map ~ of the set X onto the set A, which is regular on X. Let us 
assume that the map is a topological, locally trivial fibration. We denote by X(h) the fiber 
over ~ A . For a natural number r, we consider over the base A the associated bundle ~, 
with fiber Hr(X(h) , C) and the associated bundle ~* with fiber Hr(X(h), C). These bundles 
are naturally dual, have canonical holomorphic structures and holomorphic dual Gauss--Manin 
connections, cf. [3]. 

We denote by ~r the space of rational regular differential r-forms on X. We consider 
a form ~ r  , which is closed on any fiber of the bundle ~ (i.e., is relatively closed). 
The form defines a holomorphic section of the cohomology bundle ~*: s[~]:%~+ [~ Ix(~)]~H r 
(X(h), C). This section is called the geometric section of the form. 

Let A' be the closure of the set A in the corresponding projective space. We shall 
describe the behavior of geometric sections as the discriminant E = A' \ A is approached. 

Let D = { t ~ C  I I t  I < 1 }  be the disk, D" =D ~ {0} the punctured disk, y:D ÷ A' be a 
holomorphic map carrying the punctured disk into A. For any relatively closed form ~ 
and any covariantly constant section 6 of the homology bundle ~,, we consider the multivalued 
holomorphic function I:D" ÷ C, induced by the map y from the function <s[~],6>~( ~ , defined 
on A (here < > is the natural pairing). ~ 

THEOREM (cf. [3, 17]). There exists a positive number N with the following property: 
in any sector a < argt < b for any branch of the function I one has the estimate I = o(Itl -N) 
as t ÷ 0. 

In the standard way one can derive the corollary formulated below from the theorem (cf., 
e.g., See. 11 of [26]). Let D'~={(tl ..... tin) ~Cmlltjl<l, j=i ..... m} be a polydisk, y: 

D m ÷ A' be a holomorphic mapping for which ? ((D')m)~ A . On (D') m we consider the multi- 
valued holomorphic function I, induced by the map y from the function <s[~], 6>. 
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COROLLARY. In any polysector ~j < argtj < bj, j = 1,...,m, any branch of the funct_m I 

can be expanded in a series 

I = ~ ak,~tl ( in  t l )  ~1 .~ . . . . . .  ~o~ ~' . . . t , n  [inure) . (3 )  

I n  t h i s  s e r i e s  ~ = ( ~ l , . - . , ~ m ) ;  k = ( k l  . . . .  , k m ) ;  f o r  a n y  j t h e  e x p o n e n t  ~ j  r u n s  t h r o u g h  a 
finite set of numbers with the property: exp (2~i~j) is an eigenvalue of the linear operator 
Mj defined below; kl,...,k m are nonnegative integers; each kj is less than the size of the 
Jordan block of the operator Mj, which is maximal among the blocks which correspond to the 
eigenvalue exp (2~i~j); the coefficients ak,e:Dm + C are functions which are holomorphic in 

the polydisk D m. 

Definition of the Operator Mj. We consider a closed real curve in (D') m, which goes 
around the hyperplane tj = 0 counterclockwise. The map y carries this curve into a curve 
which lies in A. To the new curve corresponds the monodromy operator of the Gauss--Manin con- 

nection of the bundle ~,. This is also Mj. 

Remarks. I) The eigenvalues of the indicated monodromy operators are roots of I, the 
size of the Jordan blocks does not exceed constants which depend on the dimension of the 
fibers of the map ~ [3, 18-20]. Hence in (3), all ~j are rational numbers, and all kj are 

less than the constants mentioned. 

2) If the differential form w depends holomorphically on parameters, then the coeffi- 

cients ak,e also depend holomorphically on the parameters. 

2. Algebraic Sections. In this paragraph and the next we recount the information used 

in the proof of the basic theorem in Secs. 2 and 3. 

A holomorphic section s of the bundle ~* is said to be algebraic, if for any eovariant 
constant section 6 of the bundle ~, and any analytic curve y:(D, D') ÷ (A', A) the multi- 

valued function <s, 6> o y:D" + C in each sector of the disk D grows no faster than a suitable 
power of the function as the variable tends to the center of the disk. 

Theorem 2.1 asserts that geometric sections are algebraic. It is easy to see that for 
algebraic sections the assertion of Corollary 2.1 about expansion in a series (3) holds. 

A collection of algebraic sections is said to be an algebraic frame, if one can find 
a point of the base at which the values of the sections form a basis for the fiber of the 

bundle. 

By a resolution of singularities of the pair A', 2 is meant a proper morphism ~: A"-+ A' 
of a nonsingular A", which is an isomorphism over A and for which ~-i(~) is a divisor with 
normal intersections. According to [21] a resolution of singularities exists. We call a 
meromorphic function on A quasirational, if, lifted to a resolution of singularities of the 
pair A', E, i.e., A", it becomes a meromorphic function on A". 

In this paragraph and the following we assume that A is irreducible and there exists 
an algebraic frame in the bundle ~*. 

LEMMA I. Let s be an algebraic section, sl,...,s~ be an algebraic frame, al,...,a~ be 
coordinates of the section s in the frame. Then the coordinates are quasirational functions. 

Proof. That the coefficients are meromorphic on A is obvious. Let ~: A"-+A' be a 
resolution of singularities, tl,...,t m be the coordinates of a local chart on A", in which 

~-1(~)C{tl... tm=O}. We shall prove that the functions alo~ ..... a~ o ~ are meromorphic 
in this chart. Let el,...,e~ be a covariant constant (multivalued) frame of the bundle ~*. 
In this frame the sections s, sl,...,s~ acquire (multivalued) coordinates, which, on being 
lifted to A", can be expanded in the chosen chart in a series of the form (3). We calculate 
ajo ~ according to Cramer's rule as particular suitable determinants. Each of the deter- 
minants can be expanded in a series of the form (3), and upon passage around a coordinate 
hyperplane it is multiplied by the determinant of the corresponding monodromy operator, so 
to a suitable power it is an analytic function. This proves the lemma. 

LEMMA 2. Let H be the closure in A' of the zeros (or poles) of a quasirational function. 
Then His an algebraic set. 

In fact, by Hironaka's theorem [21] there exists a resolution of singularities ~: A'~ 
A', in which A" is projective. Then ~-I(H) is algebraic. A proper morphism carries 
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algebraic sets into algebraic sets (cf. [22, Chap. AG]). 

LEMMA 3. Let sl,...,s k be algebraic sections and let there exist a point of the base 
at which the values of the sections are linearly independent. Then the set on which the 
values of the sections are linear dependent is contained in a proper algebraic subset of the 
base. 

The lemma is an easy consequence of Lemmas I, 2. 

3. Differential Equations. Let A be imbedded in GP M, v be a rational vector field in 
CP M, which is regular on A and tangent to A, s be a holomorphic section of the bundle 7*. 
We associate a differential equation with the pair s, v. Namely, we consider on A the fol- 
lowing section of the bundle ~*:s, VvS, (Vv) is,..., where V is differentiation in the Gauss-- 
Manin connection. Let r be the maximal number with the property: One can find a point of the 
base at which the values of the sections s, Vvs,...,(Vv)r-ls are linearly independent. For 
this r there exist unique meromorphic functions fl,...,f r on A for which 

(Vv) r8 + /1 (Vv) r-1S + . . .  + I ~  = O. (4 )  

We say this is the equation associated with s, v. By the singular set of an equation we mean 
the union of the discriminant ~ and the closure of the subset of A on which the sections s, 
VvS,...,(Vv)r-ls are linearly dependent. It is easy to see that the poles of the functions 
fl,...,fr belong to the singular set of the equation. 

LEMMA I. Let us assume that s is a nonzero algebraic section. Then the singular set 
of (4) is contained in a proper algebraic subset of A' 

Proof. Each section (Vv)Js is algebraic. This can be derived easily from Corollary 
2.1 with the help of the resolution of singularities. Now cf. Lemma 2.2.3. 

Let us assume that there is given a regular rational map 4:A' + F, whose fibers are 
nonsingular curves. We denote by ~(T) the fiber over the point T~F • Let us assume that 
the rational vector field v is tangent to the fibers of the map 4- We consider Eq. (4) as- 
sociated with the field v and the holomorphic section s of the bundle ~*. We denote by H(y) 
the intersection of the singular set of (4) with the fiber A(y). 

LEMMA 2. Let H(y) be a proper subset of A(y). We consider on the curve A(y) the ordi- 
nary differential equation 

(Lv) r g + /~  IA(v) ( L J  -~ g + "" + / r  ]*(v) g = O, (5 )  

where y is the unknown function, L v is differentiation along v. Then all solutions of this 
equation consist of (multivalued) functions of the form <s, 6>IA(y), where ~ is a covariant 
constant section of the bundle ~,. 

The lemma is obvious. 

If s is an algebraic section, then all singular points of (5) are regular. 

LEMMA 3. Let s be a nonzero algebraic section. Then under the hypotheses of Lermna 2 
there exist a proper algebraic subset A CF, a finite set S of rational numbers, and a nat- 
ural number C, which have the following properties: 

I. ~ (?)CA (?) is a proper subset for any point ? ~F ~ A. 

2. Let ?~F \ A, %~U (?) , t be a local parameter on the curve A(y) at the point i, 
6 be a covariant constant section of the bundle ~,. Then in each sector a < argt < b each 
branch of the function <s, 6>IA(y ) can be expanded in a series 

(6) k, ~,  p~ ~ ] ~ ak ,  ~, p 
g~s p=o 

Moreover, if the branch is not identically equal to zero, then in this series the exponent 
+ p, which is minimal among the nonzero summands, lies between --C and C. 

Proof. Let N' be a proper algebraic subset of A' containing N, N'(?)~---~' ~ A (?). Ac- 
cording to [9], there exists a proper algebraic subset A CF with the property: the map 4, 

restricted to the pair of sets ~-I(F~A),~-I(F \ A) ~ H' , is a topological locally trivial 

bundle pair over P\ A withfiberA(y), N'(y). We shall prove the lemma for this A. Point I is 
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obvious. Under change of the point ?~F \ A the points of the set H'(y) change contin- 
uously without merging. To passage around a fixed point of the set H'(y) there corresponds 

precisely one monodromy operator of the Gauss--Manin connection on the bundle ~, (up to linear 
equivalence). According to Corollary 2.1, this gives the existence of the set S. We shall 

prove the existence of the number C. The singular points of (5) belong to H'(y) and are 
regular. At an arbitrary point of H'(y) we form the characteristic equation of the singular 

point of (5) to determine the minimal exponent in (6). The roots of the characteristic equa- 
tion are rational numbers; hence under change of y and motion of the point of H'(y) they are 

unchanged. Consequently, the C sought exists. 

LEMMA 4. Under the hypotheses of Lemma 3, the function <s, 6>IA(7 ) cannot have an iso- 

lated zero of multiplicity greater than r -- I outside H(y). 

The proof is obvious. 

4. Proof of Points 2 and 3 of the Basic Theorem. We describe a family of algebraic 
varieties, to subfamilies of which we apply the results of Paragraphs 2.1-2.3. This family 

will be denoted by ~:X ÷ D. 

We consider the space of polynomials in xl,...,Xn, having complex coefficients and de- 
gree no higher than N. We denote the affine space of their coefficients by CA. We denote 
the polynomial corresponding to e~CA by Pa. We consider the space of polynomial differ- 

ential (n -- 1)-forms in Xl,...,Xn, whose coefficients P1,...,Pn [cf. (I)] are polynomials of 
degree no higher than N with complex coefficients. We denote the affine space of the collec- 
tion of coefficients of the polynomials PI,...,Pn by CB. We denote the form corresponding to 
b~CB by ~b" In the space C n x CB x CA × CB x C we consider the algebraic subset X = 
((x, b', a, b, t) IPa(x) = t, b' = b} together with its natural projection ~ onto the set D = 
CA × CB × C. We denote the fiber over d = (a, b, t) by X(d); X(d) is the level t hypersur- 

face of the polynomial Pa. 

Let E~CA X CB be an irreducible algebraic set. According to [9], there exists a 
nonsingular quasiprojective A C-rE X C, which is dense in E x C and has the following proper- 
ties: The map ~ restricted to v-iCA) is a topological locally trivial bundle and the set ~-i 

(A) is nonsingular. 

Let us assume that the fiber of this bundle is not empty (i.e., the polynomials corre- 
sponding to E are not constant). We consider over A the associated bundles ~,, ~* with fibers 
Hn-1(X(d) , C), Hn-l(X(d), C), respectively. We single out the section s of the bundle v*, 
defined by the formula s: d~(a,b, t)~ [~b Ix(~)]~Hn-~(X (d), E). It is easy to see that s is a 
geometric section. In the bundle ~* there exists a geometric frame. In fact, an arbitrary 
polynomial differential (n -- 1)-form in C n, considered as a form on C n × CB x CA × CB × C, 

becomes relatively closed upon restriction to X. Consequently, such a form defines a geo- 
metric section of the bundle ~*. From such sections one can compose an algebraic frame, 
since by Grothendieck's theorem [23] the cohomology of a nonsingular affine variety is gen- 
erated by closed polynomial differential forms. 

Let E' be a projective algebraic set containing E as an open, everywhere dense subset. 
Then A' = E' × CP I is the closure of the set A. We denote by v the rational vector field on 
A', equal to ~/~t, where t is a coordinate on the affine part of the second factor. Let @: 
A' + E' be the natural projection. 

Obviously the lemmas of Paragraph 2.3 are applicable to the objects A, ~*, ~,, s, A', 
~, v. As a consequence of the lemmas we get points 2 and 3 of the basic theorem. 

3. Boundedness Above of the Number of Zeros 

In this section we prove the following theorem. Let us assume that there is given a 
system of equations depending on parameters on a real cube. Let us assume that the functions 
appearing in the system can be expanded in series of the form (3) and depend analytically on 
the parameters. Let us assume that the set of parameters is compact. Then the number of con- 
nected components of the set of solutions of the system is uniformly bounded above. From 
this theorem one derives point I of the basic theorem. Generalizations are given in Paragraph 
3.4. 

I. Formulation. We set I = [0, I], I' = (0, I]. Let =i, .-., ~ ~R • On the set 
(I') × I m with coordinates tl,...,tn, al,...,am we consider the system of equations 
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In ,  in  ~ ,  tn, ai . . . . .  am) = 0 ,  ] = 1 . . . .  , r, w he r e  ~ ( ~  ui, vl, fj (ti~' . . . . .  t i%, ln  h, h,  • • -, ~,n . . . . . . . . . . .  % • s 
1 vn ' ~ ,  ai, am) i s  a p o l y n o m i a l  i n  t h e  v a r i a b l e s  u ,  v ,  whose c o e f f i c i e n t s  a r e  a n a -  ~1, . . . .  Un~ • • "~ 

l y t i c  f u n c t i o n s  of  t h e  v a r i a b l e s  t ,  a ,  d e f i n e d  i n  a n e i g h b o r h o o d  of  t h e  s e t  I n X f m ~ R n  X R m. 
C o n s i d e r i n g  a a s  a p a r a m e t e r ,  we g e t  t h e  s y s t e m  of  e q u a t i o n s  f ( t ,  a )  = 0 on ( I ' ) n ,  w h i c h  
d e p e n d s  on  t h e  p a r a m e t e r  a .  

THEOREM. T h e r e  e x i s t s  a p o s i t i v e  number  C w i t h  t h e  p r o p e r t y :  F o r  a n y  a ~ 7  '~ t h e  num-  
b e r  of  c o n n e c t e d  c o m p o n e n t s  o f  t h e  s e t  o f  s o l u t i o n s  of  t h e  s y s t e m  f ( t ,  a)  on ( I ' )  n i s  n o t  
g r e a t e r  t h a n  C. 

The p r o o f  i s  a n a l o g o u s  t o  t h e  p r o o f  of  K h o v a n s k i i ' s  t h e o r e m  on s m a l l  t e r m s  [ 6 ,  7 ] ,  w h i c h  
K h o v a n s k i i  e x p l a i n e d  t o  me. O n l y  a t  t h e  c o n c l u d i n g  s t e p ,  i n s t e a d  of  B e z o u t ' s  t h e o r e m  ( i n  t h e  
c a s e  of  s m a l l  t e r m s )  one  u s e s  t h e  t h e o r e m  of  G a b r i ~ l o v  [8]  f o r m u l a t e d  b e l o w .  When I a c -  
q u a i n t e d  K h o v a n s k i i  w i t h  t h e  t h e o r e m ,  he i n f o r m e d  me t h a t  s e v e r a l  y e a r s  b e f o r e  he a l r e a d y  
knew a g e n e r a l i z a t i o n  of  i t ,  c f .  [ 2 5 ] .  

2. P r o o f  of  t h e  T h e o r e m .  I t  s u f f i c e s  t o  p r o v e  t h e  f o l l o w i n g  lemma.  

LEMMA 1. Let r (the number of solutions) be equal to n. Then there exists a positive 
C with the property: For any a~f m the number of nondegenerate solutions of the system of 

equations f(t, a) is not greater than C. 

In fact, we consider the analytic set 

r 

Xa, e, 6 = ( t ,  /~) ~ ( [ , ) n  X S '  2 ~2 u~ = ~ (ts t]) , 
2=i j= l  

where a~I ~, e, 6~R are parameters. It suffices to prove that for all a, ~, 6 the number 

of connected components of the set Xa,u, 6 is uniformly bounded. We consider the function 
ga,e,~,b:Xa,e,d ÷ R, equal to the square of the distance to the point b~[ nX[, We consider 
b as a parameter. It is easy to see (with the help of Morse's theorem) that the bounded- 
ness of the number of components follows from the assertion: There exists a positive number 
C with the property: for any a and almost all m, 6, b, the number of nondegenerate critical 
points of the function ga,~,6,b is not greater than C. It is easy to see that a nondegener- 
ate critical point is a nondegenerate solution of a system of equations of the same form as 

the system f(t, a) if r = n. 

To prove Lemma I it suffices to prove the following Lemma 2. On the set R k × I n × I m 

with coordinates ul,...,uk, ti,...,tn, ai,. .,am, we consider the system of equations hj 
(ul,...,Uk, ti,...,tn, al,...,a m) = 0, j = l,...,n, where hj is a polynomial in the variables 
u, whose coefficients are analytic functions of the variables t, a, defined in a neighborhood 
of the set I n X I'~R n X R m • Considering a as a parameter, we get the system of equations 

h(u, t, a) on R k × I n , depending on the parameter a. 

LEMMA 2. There exists a positive number C with the following property: For any a~I 'n 
the number of connected components of the set of solutions of the system of equations h(u, t, 

a) = 0 is not greater than C. 

Lemma I is reduced to Lemma 2 by the process indicated in [6], considering the fact that 
the functions t a, in t satisfy the equations t dy = ay dt, tdy = dt, respectively. Lemma 2 in 
its own right can be derived easily from the following theorem of A. M. Gabri~lov. 

THEOREM (cf. [8]). Suppose given a semianalytic subset X C I  ~ ~ F ~. We denote by X a 
the set X ~ (I n X {a}). Then there exists a positive number C with the following property: 
For any a~f m the number of connected components of the set X a is not greater than C. 

3. Proof of Point I of the Basic Theorem. We reduce the assertion of point I to the 
form: the number of solutions of a suitable system of equations depending on a parameter is 
uniformly bounded above. We begin with constructions analogous to the constructions in Para- 

graph 2.3. 

We consider the space of polynomials in xl,...,Xn, having real coefficients and degree 
no higher than N. We denote the affine space of their coefficients by A. We consider the 
space of polynomial differential (n -- 1)-forms in xi,...,x n, whose coefficients PI,...,Pn 
[cf. (I)] are polynomials of degree no higher than N with real coefficients. The affine 
space of the collection of coefficients of the polynomials Pi,.-.,Pn will be denoted by B. 
A and B are the real parts of the spaces CA, CB, respectively, defined in Paragraph 2.3. 
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In C n × CA × C we consider the algebraic subset X = {(x, ~, t) iPa(x) = t} and its natu- 

ral projection ~:X + CA x C. 

Let E CA be an arbitrary real irreducible algebraic subset. By CE we denote the 

smallest complex algebraic subset of CA, containing E. According to [9], there exists a 

nonsingular quasiprojective CA cCE x C, dense in CE × C and having the properties that 

the map ~ restricted to ~-I(CA) is a topological locally trivial bundle, the set ~-I(CA) is 
nonsingular, the set A=CA N (E × R) is nonsingular. Let us assume that the fibers X(1) 

of this bundle are not empty. 

We consider the bundle ~ I=-~(A): s-1(A) -* A and the associated bundles ~,, w* with fibers 
Hn_l(X(%) , C), Hn-I(X(A), C), respectively. An arbitrary form ~ C B  and covariant con- 
stant section 6 of the bundle ~, define on A a function f~.~: ~+ <s[~](~), 6 (~)>~ where s[~] 
is the geometric section of the form ~. This function is generally multivalued and complex- 

valued. 

For any point %~(a, t)~ A the fiber X(%) is invariant with respect to complex conju- 

gation (xl,...,Xn, ~, t) ÷ (~1,...,~n, a, t). The involution of conjugation induces an in- 
volution in Hn-I(X(A) , R). The invariant and antiinvariant subspaces (Inv and Ant) of this 
involution are preserved under parallel translations in the Gauss--Manin connection. 

Let us assume that ~ B  and the values of the covariant constant section 6 at all 
points belong to the invariant or antiinvariant subspaces Inv or Ant. In this case we call 
the function I~, 6 an Abelian function on A. An Abelian function assumes only real or pure 
imaginary values and is an analytic function on A. We shall indicate its behavior upon ap- 
proaching the boundary of the set A. 

Let E' be a real projective algebraic set containing E as an everywhere dense subset. 
Then A is everywhere dense in A' = E' x RP. We set E --- A' ~ A. Let ~: A"--> A' be a reso- 
lution of singularities of the pair A', E; % be a point of the divisor ~-I(E). We consider 
a local analytic chart with center at X and coordinates tl,...,t m in which ~-1(~)C{tl... ~ 
0}. We single out an octant in this chart (i.e., we fix the signs of the coordinates). We 
lift an arbitrary Abelian function to A" and we fix an analytic branch of it in the chosen 
octant. 

LEMMA 1. The branch can be expanded in a series 

s~,~o~= ~ ~,~I t~l~'(ln I t~l)~.., lt~t~(lnit~l) ~. 

In this series ~ = (~l,...,~m), k = (kl,...,km); the exponents ~l,...,~m run through a finite 
set of rational numbers, which does not depend on the choice of Abelian function; kl,...,k n 
are nonnegative integers, which do not exceed constants depending only on n; the coefficients 
ak, e are analytic functions in a neighborhood of the point (0,...,@), which depend analyti- 
cally on the form ~ B  and invariant section 6. 

The lemma is a consequence of (3). 

On A' we consider the family L of all lines of the form (a, RP), where a~E'. It is 

easy to see that to prove point I of the basic theorem it suffices to prove the following 
lemma. 

LEMMA 2. There exists a positive number C, depending in general on E, which has the 
following property. Let Z~L be a line which does not lie in E, I be an Abelian function. 
On g ~ (~ ~ ~) we single out a (single'valued) analytic branch of the function I. Then this 
branch has no more than C isolated zeros. 

Proof of the Lemma. We must show that the restriction to a line depending on a para- 
meter of a function depending on a parameter has small zeros. A line depending on a para- 
meter can be given as the set of zeros of a system of rational functions depending on a para- 
meter. Thus, the lemma asserts that a system of equations depending on a parameter has small 
zeros if the functions which appear in the system are rational or Abelian. To prove this it 
suffices to lift all the functions of the system to a resolution of singularities ~: A"--> A' 
and to prove that locally on A" the lifted system of equations has small zeros. 

One makes the local estimate as follows. We cover A" by a finite number of local ana- 
lytic charts {Uj}, having the properties: 
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I) Each of the charts is a compact semianalytic set; 

2) each of the charts either does not intersect ~-I(E), or the intersection of the chart 
with the set ~-I(E) belongs to a union of coordinate hyperplanes of this chart. 

We divide the charts into charts of the first or second kind according to the second 
property. By Gabri~lov's theorem there exists a natural number N with the following proper- 
ties: 

3) For any line I EL and any chart U of the first kind, the set ~-i(I) N U has no 
more than N connected components; 

4) let U be an arbitrary chart of the second kind, tl,...,tm be its local coordinates; 

then for any line l~ L the set 9 -I (1) ~ {(tl, ~.., tm)~U I t1" ....t~=~=0} has no more than N 
connected components. 

Now for any line l~L, any chart U of the covering, on each of the connected components 
mentioned the number of isolated zeros of an arbitrary Abelian function is bounded uniformly 
with respect to the parameters according to Gabri~lov's theorem if this is a chart of the 
first kind, and according to Theorem 3.1 and Lemma 1, if this is a chart of the second kind. 
This proves the local boundedness of the number of zeros. 

Refinement. For the reference to Gabri~lov's theorem or Theorem 3.1, we need the com- 
pactness of the space of parameters. In our case the space of parameters is the direct prod- 
uct of the space of differential forms and the space of sections. Multiplication of a sec- 
tion or form by a nonzero number does not decrease the number of zeros of the corresponding 
Abelian function. Hence as space of parameters it suffices to take the direct product of 
spheres with center at the origin in the space of forms and in the space of sections. This 
proves the basic theorem. 

4. Abelian Functions. By Bezout's theorem on an algebraic variety the number of iso- 
lated zeros of a system of rational functions of fixed degree is uniformly bounded above with 
respect to the coefficients of the functions. 

Principle. Assertions of the type of Bezout's theorem hold on a real algebraic variety 
for systems of equations in which rational and Abelian functions appear. Here one should 
consider the degree of an Abelian function to be the degree of the polynomial differential 
form, the integration of which gives the function. 

The basic theorem is an example of such an assertion. The problem (due to which the 
principle, interpreted literally, is not true) is the possible infinite-valuedness of Abelian 

functions. For the validity of an assertion of the type of Bezout's theorem it is necessary 
that only a finite number of branches of each of the Abelian functions should participate in 
the system of equations. For example, one branch of the Abelian function participates in the 
equations of the basic theorem, since the Abelian function is considered on an interval and 
an interval is simply-connected. Another method to avoid infinite-valuedness is to take real 
components of the Abelian functions. 

We consider a real projective irreducible algebraic set A and a real quasiprojective 
nonsingular connected set X, a rational map ~:X ÷ A which is regular on X. Let us assume 
that the image z = ~(X) is open in A and nonsingular, and the map ~:X ÷ ~ is a smooth bundle 
with compact n-dimensional fibers. We single out in one of the fibers one of the connected 
components. Let us assume that it is orientable. We orient the component and extend the 

orientation by continuity to an orientation of the neighboring components of neighboring 
fibers. We get a multivalued finitely-sheeted family y:~ ÷ y(~) of oriented nonsingular 
connected components of fibers depending continuously on a parameter % ~  . We consider on 

X a rational regular differential n-form m. We call the function Im: %~-~ I m an Abelian 
~(~) 

function (of a component) on A, and the map ~:X ÷ H we call the normalization (of the func- 
tion). The integral which occurs in the definition of nonconservativity in Paragraph 1.2 is 
an example of an Abelian function. 

By the degree of the Abelian function I~ we mean the degree of the form w. By the de- 
gree of the form we mean the minimum of the degrees of rational forms in the ambient projec- 
tive space to X whose restrictions to X are equal to ~. By the degree of a rational form in 
projective space, written in terms of homogeneous ordinates, we mean the maximum of the de- 
grees of the denominators of its coefficients. For example, the form xdx/y 2 has degree 2. 
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We give an example of an assertion of the type of Bezout's theorem. 

THEOREM. Let us assume that on A there are given normalizations ~j: j ÷ ~j Q A, j = 
1,...,k, and natural numbers p, q, N. Then there exists a positive number C with the follow- 
ing property: if lj is an Abelian function of degree no higher than p with framing ~j:X i ÷ 
~i, J = 1,...,k and Pl .... ,PN are polynomials in x~,.., x k with real coefficients of degree 
not higher than q, then the set of solutions of the system of equations 

Py ( I i  . . . . .  I~) ~ O, ] = I . . . . .  N ,  

defined on H~ ~ IIj , has no more than C connected components. 

We call a point a solution, if suitable values of the functions 11,o..,I k at the point 
are a solution of the system of equations P(x) = 0. 

The proof is analogous with the proof of point I of the basic theorem: One resolves the 
singularities of the set ~ and its boundary, and then applies Lemma 3.3.] [i.e., (3)], 
Theorem 3.1 or Gabriglov's theorem to the resolution. 

Remark. As A. G. Khovanskii noted, in this argument it is not important that the func- 
tions Ii,...,I k are integrals; for example, they could be solutions of systems of differen- 
tial equations with regular singularities [for which (3) is valid]. 
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INTEGRAL FORMULAS AND INTEGRAL GEOMETRY FOR ~-COHOMOLOGIES IN CP n 

S. G. Gindikin UDC 514.376.43+517.986.64 

Let D be an (n -- q)-linearly concave domain in the complex projective space CP n, that 
is, through every point of D there passes a complex q-plane lying entirely in the domain. 
In [I] there is constructed the Radon integral transform of the q-dimensional cohomologies 
Hq(D,O(--n--I))_~_H(~.~)(D) (integration over q-planes in D) (see also [2]*). Its real 
analogue was studied in [3] (see also [4]). An inversion formula for this transformation 
was obtained, and it was shown that for q = n -- I (such domains are called linearly concave) 
the Radon transform coincides with the Fantappie indicatrix. The inversion formula has an 
important corollary: There exists a fibering P(D) ÷ D such that the restrictions of holo- 
morphic (n + q)-forms on F(D) to a cross section of the fibering give representatives of all 
the cohomology classes H(n,q)(D). This reduction to holomorphic forms is very useful in ap- 
plications. 

The present paper is devoted to the derivation of integral formulas for Hq(D, © (--s)), 
I ~ s ~ n, to the construction of an analogue of Fantappie's indicatrix for these cohomologies 
(for q = n -- I it coincides with the classical analogue), to proving that it coincides with 
the Radon transform, and to the derivation of an inversion formula from these results. The 
useful modifications of the Cauchy--Fantappie formula are oriented towards bounded domains in 
which there is a fixed affinization. In [I] the need to work with these formulas led to a 
whole series of technical difficulties, since for q > 0 the (n -- q)-linearly concave domains 
are unbounded. In the global formula constructed here the affinization varies-from point to 
point of the boundary. It is important that this formula gives immediately a holomorphic 
continuation of the class of cohomologies to the fibering of F(D) over D. The formulas we 
obtain appear fairly unwieldy, but if we segregate the explicit expression for the coeffi- 
cients (with numerous factorials and powers of 7), then their structure is sufficiently ob- 
vious: an addition of terms connected with the variation of the affinization along the bound- 
ary and necessary for the invariance of the closedness of the kernel. It is essential that 
the kernels are the residues of forms of a simple form, and only in the calculation of a 
residue do the additional structures (an affinization variable) appear. In the majority of 
arguments it is convenient to consider forms up to taking a residue. It should be borne in 
mind that the case s = n is simpler than the general one: in this case the kernel does not 
depend on the affinization (since the pole singularity is of the first order). 

I wish to thank G. M. Khenkin for many discussions of questions touched on in this 
paper. From him I understood the idea of representing the kernel of an integral formula 
in the form of a residue form; this eliminated certain additional structures. We obtained 

*The choice s = n + I in the coefficient bundle ~(--s) is not essential. 
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