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i. lhtroduction 

We consider the ring of functions that are defined on the complement M of the union of 
a finite set of hyperplanes in real affine space, and that have integer or constant values 
on each connected component. In this ring, which we denote by P, there are distinguished 
multiplicative generators, namely, Heaviside functions of hyperplanes: for each hyperplane 
there is a fixed function that is 1 from one side and 0 from the other. Any element of the 
ring is a polynomial in the Heaviside functions. The filtration of the ring in terms of the 
degrees of polynomials, denoted by {pk}, k > 0, brings to P properties near to those of the 
ring of cohomologies of the complement M C o7 the union of complexified hyperplanes in the 
complexified affine space. 

The ring H*(M C) has been described by Arnol'd [i], Brieskorn [2], and Orlik and Solomon 
[3]. Orlik and Solomon [3] drew attention to the fact that the dimension of H*(M C) is equal 
to the number of connected components of M C. In the present article we offer an explanation 
of this by comparing the rings P and H*. The ring P is commutative and is equipped with an 
increasing filtration {pk}. The ring H* is anticommutative and is endowed with a graduation 
{Hk}. We give certain properties of P and state the known analogous properties of H*. 

It may be that P and H* are included in a one-parameter family of rings that has inde- 
pendent interest. 

Our study was carried out in connection with an investigation of general hypergeometric 
functions, and is devoted to geometrical aspects of this theory (see [4-10]). 

The authors thank V. I. Arnol'd for useful discussions. 

i. Definition. We consider a finite set fo linear functions {fi}, i ~I, on an n- 
dimensional affine space V defined over a field R. Let S denote the union of the hyper- 
planes A i = {v~V:fi(v) = 0}, i~ I. We call S and {fi} a configuration of hyperplanes. 
We consider the ring P(S, Z) of integer-valued functions on M = V \ S that are constant on 
each connected component. We consider in P certain multiplicative generators, namely, 
Heaviside functions; these are functions xi, i ~I, defined by xi(v) = I if fi(v) > 0, and 
xi(v) = 0 if fi(v) < 0. Every x~ P(S, Z) can be written as a polynomial in the {xi}, i ~I, 
with integer coefficients. 

For x ~P(S, Z) we call the minimum of the degrees of polynomials in{xi} that represent 
x the de~re~ of x. 

We define an increasing filtration 

O ~ P ° ~ _ P ~ _ . . . ~ P ,  

where pk is the subspace of functions representable by polynomials of degree not higher than 
k. In particular, p0 consists of the constant functions. Obviously, pk.p~Cpk+~. We call 
the filtration {pk} a degree filtration. 

~xampl ~. Consider a configuration of lines {Ai}, i ~I, on a plane. The degree filtra- 
tion in P consists of three terms: p0 (the constant functions), P~ (linear combnations of 
Heaviside functions), and p2 = p. Assume that any three lines do not intersect at a single 
point. A basis over Z for the ring consists of the constant function equal to i, the Heavi- 
side functions, and all monomials xix ~ for which the lines Ai, Aj intersect. The dimension 
of p0 is i, that of p1/p0 is the number of lines, and that of P27P I is the number of points 
of intersection of the lines. 
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We say that a function x~P has zero index at the intersection of two lines if the anti- 
symmetrized sum of its four values at the four components of the complement that come to the 
point is equal to zero. A function x~P has degree !l if and only if it has zero index at 
every point of intersection. 

2. Properties of the Ring P. THEOREM i. pn = p, that is, any piecewise constant func- 
tion on the complement of a union of hyperplanes in n-dimensional affine space is a poly- 
nomial of degree no higher than n in the Heaviside functions of the hyperplanes. 

Let V C denote the complexification of the space V, Ai, C denote the complexification of 
the hyperplanes Ai, i~ I, S C denote the union of the hy~erplanes {Ai,c}, i~- I, and M C = 
V C \ S C. Theorem i is the analogue of the assertion: H (M C) = 0 for k > n. 

A configuration S on V naturally cuts a new configuration S U on each affine subspace 
U c V. S U consists of the hyperplanes {A N U:A~S, U~ZA} defined by the linear functions 

{filu}, i ~I. 

If the affine subspace U is not contained in S, then there is defined the natural homo- 

morphism JU: P(S) ÷ P(S U) such that a function from P(S) is restricted to U \ S U. 

Any nonempty intersection F of the hyperplanes of a configuration is called a rib. We 
denote the codimension of a rib by r(F). In particular, a hyperplane is a rib of codimension 
i. We denote the set of all ribs by ~. 

We call an affinte subspace U c V of dimension d a subspace of general position relative 
to a configuration S if U is transversal to all ribs, and intersects all ribs of codimension 
not greater than d. 

THEOREM 2. If U ~ V is a subspace of general position, then the homomorphism JU, 
restricted to ~k(s), defines for k ! d an isomorphism of pk(s) and pk(Su). 

This is the analogue of Brieskorn's Theorem [2]: if U C c V C is a sufficiently general 
affine subspace of dimension d, then for k ! d the map HK(Mc) + Hk(Mc D U C) is an isomorphism. 

Let F be a rib of a configuration, I F c I be the set of all indices i for which F~A i. 
We denote by S F the configuration formed by the hyperplanes {Ai}, i~I F, that is, that 
contain F. We say that S is a localization of S at the rib F. We consider the ring 
P(S F, Z) of the configuration S y. There is a natural embedding P(S F, Z) c P(S, Z) defined 
by the restriction to M of functions from P(S F, Z). Its image is the subring generated by 
functions {xi} , i~I F. The embedding preserves the degree filtration. 

THEOREM 3. The natural map 

® ~'~ (s~)/~ ~-~ (s~) - .  ~ (s)/P>~ (s) 
F ~  .~ 

r ( F ) ~ k  

is an isomorphism for any k > 0. 

COROLLARY I. If the hyperplanes of a configuration intersect normally, then the number 

dimzpk(s)/pk-1(S) is equal to the number of ribs of codimension k. 

Let ~F/~ = Fc ~ U A~.c. By Brieskorn's Theorem [2] the natural map G H~ (M~, Z)-+ 
F~ ~ 

~ I F  r(F)=~ 

~ (~c ,  Z) i s  an i somorph i sm  f o r  any  k > 0. Theorem 3 i s  ~he a n a l o g u e  o f  ~ r i e s k o r n ~ s  

Theorem. 

COROL~RY 2. dimzP ~ (S, Z)/P ~-~ (S, Z) : dimzH ~ (Mc, Z) f o r  k ~ 0. 

The c o r o l l a r y  i s  e a s i l y  o b t a i n e d  by i n d u c t i o n  on t h e  d i m e n s i o n  o f  t h e  e n v e l o p i n g  s p a c e  
u s i n g  an o b s e r v a t i o n  o f  O r l i k  and Solomon,  n ~ e l y ,  dimzCn(S)  = dimzH*~(Mc), Theorem 3 a n d  

B r i e s k o r n '  s Theorem. 

Remark 1. From t h e  c o r o l l a r y  i t  f o l l o w s ,  i n  p a r t i c u l a r ,  t h a t  t h e  n ~ b e r  ~ ( - - i )~d imzP ~= 
~'~0 

( S ) / p k - z ( S )  i s  e q u a l  t o  t h e  n ~ b e r  o f  bounded c o n n e c t e d  components  o f  t h e  s e t  M ( s e e  t h e  
c o m b i n a t o r i a l  f o r m u l a e  f o r  dim Hk(Mc) and f o r  t h e  n ~ b e r  o f  b o n d e d  components  i n  [3 ,  1 3 ] ) .  [~ ~ 

2 .  I f  k and  i a r e  p o s i t i v e ,  t h e n  k c a n  be  w r i t t e n  i n  a n a t u r a l  way a s  k : ~ ' ~ )  @ 

+ + (7)  " ' "  , where  n i > n i -  ~ > . . .  > nj  ~ j ~ 1. F o l l o w i n g  [14]  we d e f i n e  
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÷') 
\~+~] ~ +...+ ~ , 0 < ~ > = 0 .  

An integer-valued vector (k0, kl, .... k d) is called an M-vector if k 0 = i and 0 ! kk+1 ! 

ki <i> for i ! i ! d - i. It follows from [15] that the sequence of numbers dimzpk(s)/pk-1(S), 
k ~ 0, is an M-vector. 

We call a monomial xil...Xik ~p admissible if dfil A ... A dfik ~ 0. The support of 

an admissible monomial is a k-dimensional simplicial cone multiplied by an (n - l)-dimensional 
affine space. 

COROLLARY 3. The set of admissible monomials generates P as a module over Z. 

3. Dual Degree Filtration. We consider the ring P(S, Z) of a configuration of hyper- 
planes in n-dimensional affine space as a linear space over Z. We define on the dual space 
P* the decreasing filtration 

• ~ O~P~P~_~.. .~p~=p* 

by the condition P~ = Ann pk-~ We call the filtration (P~} a degree filtration. 

We give another construction for this filtration. We shall find a finite set of vec- 
tors in P* called flag cochains. Each flag cochain has a degree. Then P~ coincides with 

the linear hull of all flag cochains of degree not less than k. We turn to the construction. 

The connected components of the set M are called domains. Domains are n-dimensional 
polytopes (not necessarily bounded). The open faces of any dimension of these polytopes 
are called the faces of the configuration. In particular, domains are n-dimensional faces. 
The zero-dimensional faces are called vertices. 

Let F~_~F~_~+I~_...~F ~ = V be a sequence of ribs of a configuration S, where the 

dimension of the rib Fj is j, and the coorientation of Fj in Fj+~ is defined. We call this 

sequence a flag of ribs of degree k, and denote it by F. Let ~ be an (n - k)-dimensional 

face of a configuration S that lies in Fn_ k. The flag F with the face A is called dis_____tin___~ 
guished. 

With a distinguished flag there are connected 2 k domains such that A is in the closure 
of each of them. In fact, there are 2 k domains to which one can go from ~ by moving a small 
distance along Fn_k+ ~ on one side or the other, etc. up to a translation from Fn_ i on one 
side or the other. To each such domain there corresponds an ordered sequence ~ of length k 
that consists of plus or minus signs: at the j-th position there is a + or - depending on 
whether the translation into Fn_k+~ is in accordance with or against the coorientation of 

-- -- ~ 

Fn_k+j_ ~ in Fn_k+ j. We denote t~e domain with the index e by ~ (see Fig. i). 

By the flag cochain of a distinguished flag we mean the vector ~F,A~P* defined by the 

formula ~.~(x)-----~(--l)~(~)x(A~), for x~P, where ~(~) is the number of minus signs in 

the sequence ~. We call the number k the degree of the flag cochain. 

THEOREM 4. The linear hull of the flag cochains of degree not less than k coincides 
with Ann P~-Z. 

Theorem 4 can be used to define the degree of a given function x ~P; see the example 
in Sec. i.I. 

4. Relations between Heaviside Functions. In this section we assume that V is an n- 
dimensional linear space, {fi}, i~I, are linear functions on V, and all the hyperplanes 
{A i} pass through the origin. 

Let alfred-... ~ a~/4 be a linear relation, J+ be the numbers of all the linear functions 

occurring in the relation with positive coefficients, and J_ be the numbers with negative 
coefficients. 

THEOREM 5. The Heaviside functions of a co~figuration {fi}, i~ I, satisfy the 
following relations: 
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~+~ .~ 

d _ _ ~  ~'A 

\ 

.l.÷ 

Fig. i 

x ~ - - x ~  =: 0, i ~ _ I  (i) 

for any linear dependence al/~,q-.., q-a~fi, = 0 , 

II II II II x =O. (2) 
j~J+ k~J_  j~J+ ~ J -  

I f  i n  a l i n e a r  r e l a t i o n  a l l  t h e  c o e f f i c i e n t s  a r e  n o n z e r o ,  t h e n  i n  ( 2 )  t h e r e  i s  a p o l y -  
n o m i a l  o f  d e g r e e  s - 1 t h a t  h a s  e x a c t l y  s m o n o m i a l s  o f  d e g r e e  s - 1o The r e l a t i o n  ( 2 )  i s  
t h e  even  a n a l o g u e  o f  a r e l a t i o n  o f  O r l i k  and Solomon [3]  f o r  d i f f e r e n t i a l  f o r m s .  Namely ,  
we c o n s i d e r  t h e  d i f f e r e n t i a l  fo rms  m~ ~ d/~/2n]/-- lf~.. I f  f j m ,  . . . ,  f j s  a r e  l i n e a r l y  d e p e n d e n t ,  
t h e n  

s 

~ (-  i/%;, A. . .  A % A  %--- o. 
l = l  

THEOREM 6. The relations (i), (2) determine P. More precisely, if y is an ideal in the 

ring of polynomials Z[Xi; i ~ I] generated by the left-hand sides of the relations in Theorem 
5, then the natural homomorphism Z[Xi; i ~ I]/~+ P is an isomorphism. 

Theorem 6 is the even analogue of the theorem of Orlik and Solomon [3] that describes the 
ring H*(Mc, Z). Namely, we consider the exterior algebra of the vector space with the basis 

e i, i ~ I; we consider the ideal generated by the elements ~ (~/-~A. • • ~]~. • • ~is ' where 
~=i 

(~] ...... ~&) ~ {/~), ~ ~ I , is an arbitrary subset of linearly dependent elements. Then the 

factor-algebra of the exterior algebra with respect to this ideal is naturally isomorphic 
to H*(Mc, Z). Under isomorphism an element e i goes into the cohomology class of the form 

~i" 

We consider in Euclidean space with the coordinates {xi}, i~l, the cube bounded by 

the hyperplanes x i = 0, x i = i, i~ I. With the configuration {fi} there is connected a 

subset of vertices of this cube. Namely, for each connected component M0 of the set M we 
distinguish the vertex of the cube at which x i = i if fi(M0) > 0, x i = 0 if fi(M0) < 0, 
i~l. Let X denote the set of all such vertices of the cube. It is clear that the ring 
of integer-valued functions on X is isomorphic to P. Theorem 5 shows the system of equa- 
tions that distinguish X as a subset of Euclidean space. Namely, if we consider in Eucli- 
dean space the system of equations in Theorem 5, then the set of solutions to it coincides 
with X. 

We give a basis of P over Z. A subset J = (Jl .... , Jk) c I is called a cycle if the 
covectors fjl, ''', fjk are linearly dependent, but this is not so for any proper subset of 
J. 

We fix a linear ordering on I. A subset J c I is called an open cycle if there is an 
index JoE1 such that (J0, J~, ..', Jk) is a cycle and J0 is less than any element in J. 

With each subset J ~ I we associate a monomial xjm...Xjk ~P. To the empty subset 
there corresponds i ~P. 

THEOREM 7. The system of all monomials that correspond to subsets of I not containing 
open cycles is a basis over Z for P. Moreover, the system of all distinguished monomials 
of degree not higher than k is a basis in pk, k ~ 0. 
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Theorem 7 is the analogue of Theorem A.I in [7], which goes back to [ii]. By Theorem 
A.I, the system of differential forms~jt/k.../~ ~i~ for all subsets J c I not containing 

open cycles, is a basis in H*(Mc, Z). See also this theorem in [12]. 

6. Comparison with Cohomologies. In this section we define a noncanonical linear 

map ~k: pk + Hk(Mc, Z) whose kernel coincides with pk-1. Zk is defined by the choice of the 
coorientation of all ribs of codimension k. 

We fix the coorientation of all ribs of codimension k. We define the image of a mono- 

mial x = xil...xi£,£ ! k. We put ~k(X) = 0 if £ < k or if £ = k and dfil/~ ... /~dfik = 0. 

If l = k and d/~,~ . . . /~ d/~--/=O , then we set ~ (x) = ~---~ [~i/~. • • /~ ~] , wherethe plus sign 

is taken if the fixed coorientation of the rib fi i = ... = fik = 0 coincides with the co- 

orientation defined by the form dfil/~ .../~dfik; otherwise the minus sign is taken. 

THEOREM 8. ~k can be properly extended to a linear map pk ÷ Hk(Mc, Z) whose kernel 

coincides with pk-Z. 

We define ~k geometrically. We put ~k(X) = 0 if £ < k or if £ = k and d]~,/~.../~ 

d/~ = 0 If £ = k and d / ~ / ~ . . . / ~ d ] ~ = / = O  , then we put ~k(X) equal to the following 

linear function on Hk(Mc, Z), namely, the index of the intersection of the classes in 
Hk(MC, Z) with a noncompact (2n - k)-dimensional cycle {u ~ Mc Ifh (u) ~ 0 ..... f~ (v) > 0}, 

whose orientation is defined by the complex orientation on {v ~ Mc I/~ (u) = 0 ..... /~ (u)= 0} 

and the fixed earlier coorientation of the rib {v ~ V I/~ (v) = 0 ..... /~ (u) = 0} in V. 

7. Ring of Functions That Are Constant on Faces. Let S be a given configuration of 
hyperplanes in n-dimensionalreal affine space V. We consider the ring Q(S, Z) of integer- 
valued functions on V that are constant on each face of S. We consider in the ring Q the 
multiplicative generating functions (Heaviside functions) xi, Xi, i~I, defined by the 
condition: xi(v) = 1 if fi(v) > 0, xi(v) = 0 if fi(v) ! 0; Xi(v) = 1 if fi(v) = 0, Xi(v) = 
0 if fi(v) # O. 

In other words, the {x i} are the functions defined by the conditions of subsection i.i; 
the {X i} are the characteristic functions of the hyperplanes of the configuration. Every 
x~Q(S, Z) can be written as a polynomial in the {xi, Xi} , i~I, with integer coefficients. 
By the degree of a function x~Q(S, Z) we mean the minimum of the degrees of the polynomials 
in {xi, X i} that represent x. We define the degree filtration O~Q°~Q~...~Q, where 
Qk is the subspace of functions representable by polynomials of degree not higher than k. 

The properties of the ring Q and its filtration are analogous to those of the ring P. 
We discuss in detail the analogues for Q of Theorems 1-4. It is not difficult to produce 
the analogues of Theorems 5-8. 

8. Chains. An integer linear combination of faces is called an integer chain. An 
integer linear function on the linear space of chains is called an integer cochain. The 
functions in Q(S, Z) are in (i, i) correspondence with the chains of a configuration: x~Q 
+ Zx(A)h, where the summation is over all faces A of the configuration. The functions in 
P(S, Z) are in (i, i) correspondence with the n-dimensional chains of a configuration; this 
correspondence is linear. 

Offr account is presented in the geometrical language of chains and cochains. 

Let Ck(S ) be the linear space of integer ~-dimensional chains over Z, ck(s) be the 
comp Ck(S) be the subspace linear space of integer k-dimensional cochains over Z, and C k (S) c 

of integer linear ccmb~ations of bounded k-dimensional faces. 

The degree and dimensional filtrations in the space of chains C. (S) = ~ C~ (S) that 
k=O 

are defined below occupy a key position in this article. 

We set D~ (S) = Co(S) @ C~ (S) @ . . . ~ C~ (S), k ~ O. Then 0 ~ Do (S) ~ D, (S) ~ . . . < D~ 

(S) = C. (S) ; we call this filtration a dimensional filtration. 
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We say that a configuration S~ is embedded in a configuration S 2 if the union of the 
hyperplanes of Sl is contained in the union of the hyperplanes of S2. Any face of S~ is 
represented, as a set, in the form of a sum of faces of S=. Thus there is defined a natural 
embedding of chains C,(SI) C~ C,(S=) that preserves the dimensional filtration. 

Example. Let V be one-dimensional, S~ be the point a, and S= the two points a < b. 

Then the face {v c V:a < v} of S~ is the sum of three faces of S~, namely, {v~V:a < v < b} 
+ {b} + {v~V:b < v}. 

A configuration for which all the hyperplanes pass through a single point and intersect 
normally is called elementary. 

Let S~ be elementary and consist of k hyerplanes. Clearly, k < n. Assume that S~ is 
- -  

embedded in $2. The images of the faces of the construction of S~ in C,(S=) are called the 
elementary chains of degree k of S=. The elementary chain of degree 0 is the whole space V. 

Example. A hyperplane and the open half-space bounded by a hyperplan e are elementary 
chains of degree 1. A vertex of a configuration is an elementary chain of degree n. 

We define the subspace W k c C,(S) as the linear hull of the elementary chains of degree 
< k, 0 < k < n. Then 
- -  - -  - -  

0 CI_ ~¥0 ~ V~ ~... ~ VF~ ~ C~ (S~. 

We call this filtration a degree filtration. 

We set g~D = D~/D~, ~V~g~D = (~V~ ~ D~ + D~)/D~_~, gr~V~D =Vf~gz~D/PV~_~g~D. gr£D 

is canonically isomorphic to C£(S), {Wkgr£D}, k ~ O, is the degree filtration induced on 

gr£D, and {grkWgr£D}, k ~ O, are its factor-spaces. 

It is not difficult to see that Theorems 1-8 are assertions about the induced degree 
filtration on grnD. See Sec. 4 for generalizations of Theorems 1-4; generalizations of 
THeorems 5-8 are easily produced. 

9. Remarks. Theorems 1-4 are proved in Sec. 4, and Theorems 5-8 in Sec. 5. 

We give in the supplement a multidimensional generalization of the theorem on the expan- 
sion of a rational function into the simplest fractions, which are conceptually connected with 
the geometrical constructions of this article. 

2. Chains of a Configuration 

In this section we assemble the combinatorial information in preparation for the proof 
of the theorems. 

i. Cones and Corners. A configuration is called regular if it has at least one vertex, 
and centralif its hyperplanes have a nonempty intersection. Any chain of a regular central 
configuration is called a linear cone, and any chain of a nonregular central configuration a 
corner. A corner has the form of the direct product of a line and the chain induced from the 
given configuration on a hyperplane of general position. 

A cone with vertex v in a configuration S is any chain of the configuration S v regarded 
as a chain in S. A corner with a rib F of S is any chain of the configuration S F regarded as 
a chain in S. We recall that S v, S F are localizations of the configuration at the ribs v, F. 

2. Linear Function and a Configuration. A face of a configuration is said to be bounded 
above relative to a linear function ~ defined on V if the face lies in a suitable half-space 
# < const. A skeleton of a configuration S relative to # is the set of all faces that are 
bo]nded above; we denote it by S~. Let C,(S#) stand for the space o~ integer linear combina- 
tions of faces from S~. 

An affine localization SV,~ of a configuration S relative to v~V and a linear function 
~ is the configuration cut out on the level hyperplane {.x~V:~(x) = ~(v) - i} from the con- 
figuration S v (Fig. 2). 

Let F be a bounded face of SV,#. We consider' the cone with vertex v and direction F 
from which the vertex v is discarded. We denote this set by K(r, v). The map p: F ~ K(r, v) 
defines a monomorphism of the space c~°mP(SV,#) into the subspace of chains of S v that are 
bounded from above. ' ~ 
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Fig. 2 

$o-. ~ 

• 

A linear function on V is said to be a function of general position relative to a vertex 
v__of a configuration S if it is nonconstant on the ribs of positive dimension that pass 
through v. It is a function of general position relative to S if it is nonconstant on all : 
ribs of positive dimension and has pairwise distinct values at the vertices. 

LEMMA i. Let # be a function of general position relative to a vertex v. THen p 

Romp defines an isomorphism ~ (S~,~)~-C~+I(S~) 

3. Bolted Configurations. A configuration is said to be bolted if each of its 
hyperplanes intersects each rib of positive dimension. We state the following obvious 
properties. 

LEMMA 2. i. Let S be a bolted configuration, and U be a hyperplane that intersects 
all ribs transversally. Then S U is bolted. 

2. Let S be an arbitrary configuration, and # be a function of general position rela- 
tive to a vertex v. Then SV,# is bolted. 

3. Let S be a bolted configuration, and F be a rib of S. Then S F is bolted. 

4. Let S be a bolted configuration and ~ be a linear function that vanishes on a hyper- 
plane A~ S. Then ~ is a function of general position relative to all vertices of S that 
do not lie in A. 

4. Distinguished Substars (cf. [9]). Let fl ..... fN be an ordered set of linear 

functions on an n-dimensional affine space V, and S be the configuration defined by them. 
We define a linear ordering of the vertices of S as follows: v < w if for some k (fj(v)) 2 = 

(fj(w)) 2 for j < k, and (fk(v)) 2 < (fk(w)) 2. The set of all bounded faces for which a given 
vertex is a distinguished vertex is called the distinguished substar of the vertex. The 
multiplicit? of a vertex is the dimension of its distinguished substar. We describe the dis- 
tinguished substar of a vertex of a bolted configuration. 

Let v be a vertex of a configuration S. For any face F v of S v we can find a unique 
face F of S whose germ at v coincides with the germ of F v at v. The faces F v, F are said 
to be mutually induced at v. 

LEMMA 3. Let v be a vertex of an ordered bolted configuration, and let f~(v) > 0. 
Then a face F belongs to the distinguished substar of v if and only if F is induced frond 
face of S v that is bounded above relative to fl. 

The proof i'm obvious. 

Similarly, let v~A~ ~ A~ ~ ... ~ A~_I, /~ (u)~O We consider the configuration 
~ cut by A~ ~ . .. ~ A~_~ from S. 

LEnA 4. A face F bel~ngs to the distinguished substar of a vertex v if and only if 
F is induced from a face of S v that is bounded above relative to fk" 

COROL~Y. I~n ~ bolted regular configuration there is exactly one vertex of zero 
multiplicity. 

5. Euler Characteristic of Certain Chains. Let F be a face of a configuration S, F* 
be the cochain equal to I on F and to 0 on the remaining faces, and d(F) be the dimension 
of the face. The cochain X = E(-I)d(F)F*. where the s~ is over all faces, is called the 
cochain of the Euler characteristic. 
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Let A be the chain that is e~ual to the sum of all the bounded faces of S. Let F be a 
rib of S, F a nonclosed face of S ~, and A F be the chain equal to the sum of all the bounded 
faces of S that lie in F. 

THEOREM 9. Let S be a regular bolted configuration. Then X(A) = 1 and X(A F) = 0. 

Proof. This is by induction on the dimension of a configuration. If dim V = i, then 
the theorem obviously holds. We assume that the theorem has been proved for bolted configura- 
tions in a space of dimension not greater than n - i, and prove it for dimension n. Here it 
is enough to analyze the case d(F) = n. 

We enumerate the hyperplanes of S so that first come those on which lie the (n - l)- 
dimensional faces of the polytope F. 

We prove that X(A) = i. Let A(v) be the distinguished substar of the vertex v. We 

have A=~A (v) . For the unique vertex v of multiplicity 0 we have v = &(v) and X(A(v)) = 

i. We prove that X(A(v)) = 0 if the multiplicity of the vertex is positive. In fact, in 
this case, by Lemmas 1-4 the k-dimensional faces of the distinguished substar for k > 0 are 
in a (i, i) correspondence with the (k - l)-dimensional bounded faces of a suitable bolted 
configuration in a space of dimension less than n. It follows from the induction hypothesis 
that the Ehler characteristic of the distinguished substar is 0. 

We prove that X(A F) = 0. Let AF(v) denote the sum of the faces of the distinguished 

substar of a vertex v lying in F. We have Ar ~ ~,Ar (~ , where the sum is over all vertices 

lying in the closure of the set F. If a vertex v belongs to the interior of F, then its 
multiplicity is positive, its distinguished substar coincides with AF(v), and by what was 
proved earlier, X(AF(v)) = 0. We prove that X(AF(v)) = 0 when v belongs to the boundary of 
F and AF(v) is nonempty. IN this case v does not belong to the first hyperplanes from S, 

AF(v) consists of faces of positive dimension. Suppose, for definiteness, that f~(v) > 0. 
By Lenm~as 3 and i the faces of AF(v) are in (i, i) correspondence with the bounded faces of 
the affine localization S v,f~ on the hyperplane /f= {z~ V I A (z) = ~ (v)--~} that lie in a 

certain set F(v) defined by v and r. We describe F(v) and show that Theorem 1 can be applied 
to it; thereby we shall prove-Theorem 1 for dim V = n. 

Suppose that in a small neighborhood of v the face F is defined by the inequalities 

f~,>0, fl,>0, . ..,/~0. Here the hyperplanes A~ ...... A~S ~ , and v belongs to 

A = A~, Q ... ~ A~.. Then F(v) is distinguished on H by the conditions /~,>0 ..... /~0 . 

The set A contains F, which lies in A~. Therefore, F(v) is bounded by hyperplanes that have 
a nonempty intersection in H, and so is the union of the nonclosed faces of the configuration 

(S~.~*) ~H_ It follows from Theorem 1 for r(v) on H that x(A F (v)) = 0. 

3. An Expansion into Cones 

i. THEOREM 10. Let # be a linear function of general position relative to a configura~ 
ation S, and A be the chain of the faces that are bounded above. Then A can be represented 
as a sum of the cones of S that are bounded above: 

(3) 

where the summation is over all the vertices of the configuration. The expansion (3) is 
unique. In (3) the dimension of each cone is not greater than the dimension of A. 

Proof. The values of the function at the vertices define an ordering of the vertices. 
In a neighborhood of the greatest vertex v of the chain A the chain A has the form of-a cone 
K v of S v that is bounded above. We subtract this cone from A. We proceed similarly with 
the remainder of the chain A - K v. The uniqueness of the representation is obvious. 

For a description of the cones K v in (3) in terms of the behavior of the chain A in a 
neighborhood of v see Sec. 3.5. 

COROLLARY. The natural map (~ C,(SF)--~C.(S). is an epimorphism. 
F~ ~ 
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Proof. By using Theorem i0 it is not difficult to show that each face of a configura- 
tion S is a sum of cones (if it has a vertex), or a sum of corners. 

Let I(S) denote the subspace of chains that is generated by the corners of the configura- 

tion. I~ other words, I(S) is the image of the natural map 0 C, (SF)--+C.(S) The F~ 
r(F)<n 

dimensional filtration induces a filtration on I: I£(S) = I(S) N D£(S), £ ~ 0. Let CI(S) 

denote the factor-space C,(S)/I(S). The dimensional filtration CI£(S) = (D£ + I)/I is 
defined on CI(S). 

THEOREM Ii. Let ~ be a linear function and A a chain of dimension not higher than Z, 
£ ~ 0. Then we can find a linear combination ZF a of corners, each of which has dimension not 
higher than £, such that A - ECa is bounded above relative to ¢. In other words, the natural 
map C£(S#) ÷ CI£(S) is an epimorphism. 

Proof. Let t o be such that for any t > t o the hyperplane of level t of # intersects 
all ribs of S transversally. We consider the configuration S U cut on the hyperp!ane U = 

{x ~ V:~(x) = to}. 

Let F be the cone of S U with the vertex v. Then we can find a corner ~ of S whose inter- 
section with U gives F. A rib of ~ is one-dimensional and passes through v. Similarly, 
let F be a corner of S U. Then we can find a corner ~ of S whose intersection with U gives ~. 
The intersection of a rib of ~ gives a rib of F. 

Let ~ be the original chain and ~ 0 U its intersection with U. By the Corollary to 
Theorem i0, ~ N U is representable as a linear combination of corners and cones of SU: 

~ ~ U = AFa. Let ~ be a corner of S for which F~ = ~ ~ U. It is not difficult to see 

that the chain A - E~a is bounded above. 

2. Skew Cochains. A cochain of a configuration is called localized at a given vertex 
if it is zero on any face not in the star of the vertex. A cochain is said to be skew if 
it is zero at any corner of the configuration. 

Many skew localized cochains can be produced. 

Let ~ be a linear function on V. We say that the cochain X~= ~ (-- ~) ~(~)F~ is 
P*; ~(r)~o 

associated with ¢. The value of this cochain on an arbitrary chain is equal to the Euler 
characteristic of the part of the chain that falls in the half-space # ! 0. By the Euler 
cochain of a configuration S we mean that cochain associated with a linear function of 
general position. The set of E~ler cochains is finite. 

THEOREM 12. An Euler cochain is zero at any corner. 

Proof. Let X~ be an Euler cochain and A a corner with the rib F. It is enough to 
consider the case when & is a face of dimension n of S F. 

Let F be a face of S that lies in A ~ {q ! 0}. Suppose that the maximum of ~, which is 
bounded on the closure of F, is attained at the vertex v. We denote by A(v) the sum of all 
such faces. Then X(A) = Z ×(A(v)). We prove that X(A(v)) = 0. 

v 
If v belongs to the interior of the set A, then A(v) consists of all faces of the star 

of the vertex v on which ~ attains its maximum at v. Such faces of positive dimension are 
in (i, i) correspondence with the bounded faces of the affine localization SV,~. Now 
the equality X(A(v)) = 0 follows from the first part of Theorem 9. 

If v belongs to the boundary of A, then X(A(v)) = 0 follows similarly from the second 
part of Theorem 9. 

3. Linear Combinations of Euler Cochains. Let ~ be a function of general position, 
and t~ < t~ < ... < tN/be its critical values, that is, values at the vertices of S. We 

consider the E~ler cochain X~-t. It is unchanged for t~[t~,t~+,), X~-t------0 for t < t~. If 

v is a vertex at which #(v) = t, then we put X~,~ = X~-~+~--X~-t-e, where e is a small positive 

number. X¢,v is a cochain localized at v. M~re precisely, %~.~ = Z (--i)d(r)F* , where the 

summation is over all the faces Of the star of v on which ¢ attains its maximum at v. That is, 
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in the sum we take all the faces that go from v to the side of decrease of ~. We call the 
cochain ×~,v the local Euler cochain with center at v. 

THEOREM 13. Let u, v be distinct vertices of a configuration S, K u the cone of S 
with vertex u, and ×~,v the local Euler cochain with center v. Then ×~,v(Ku) = 0. 

Proof. In a neighborhood of v the cone K u looks like a corner. Therefore, by Theorem 
12 we have ×~,v (Ku) = 0. 

4. There Are Sufficiently Many Euler Cochains. THEOREM 14. Let A be a nonzero chain 
of a configuration S that is bounded above relative to a function ~ of general position. 
Then we can find a linear combination of Enler cochains whose value on A is nonzero. 

COROLLARIES. i. A nonzero chain bounded above cannot be a linear combination of 
corners, that is, the natural map C,(S~) + CI(S) is an isomorphism. 

2. Every skew cochain is a linear combination of Euler cochains. In other words, the 
Euler cochains generate the dual space of CI(S). 

Proof. This is by induction on the dimension of the configurations. If dim V = i, 
then the theorem obviously holds. We prove the inductive step. 

We expand A as a sum of cones bounded above relative to ¢: A ~K~ We distinguish 

a vertex v at which a zone is nonzero. By Theorem 13 it is enough to prove the existence of 
a linear combination of local Euler cochains with center v whose value of K v is nonzero. 

If the vertex v occurs in K v with the coefficient k, then X-~.~ (K~) = k. If X ~ 0, 

then the theorem is proved. Therefore we assume that the coefficient of v is zero. 

Let X~,v be a local Euler cochain. The isomorphism of Lemma 1 carries it into a cer- 

tain cochain ~ on the bounded chains of the localizations SV,¢. 

LEMMA 5. ~ is the Euler cochain of S v,¢ associated with the linear function ~ - ~(v) 
that is bounded on the space of the affine localization. 

Proof. This is obvious. 

We return to the cone K v. It induces in SV,¢ a nonzero bounded chain K. By the induc- 
tion hypothesis, for S v,¢ we can find a linear combination of Euler cochains of it that is 
nonzero on K. This, together with Lemma 5, proves the theorem. 

5. Characterization of the Cones in an Expansion (3). Let ¢ be a linear function of 
general position on S, A a chain that is bounded above, and A = E K v be an expansion as a 

v 
sum of cones of S that are bounded above relative to e. 

THEOREM 15. i. For any local Euler cochain X~,v with center v we have X~,v(A) = X~,v(Kv). 

2. Let K be a cone of S that is bounded above relative to ~. Assume that Xe,v(A) = 
X~,v(K) for any local Euler cochain X~,v with center v. Then K = K v. 

The first part of the theorem follows from Theorem 13, and the second from Theorem 14. 

6. Combinatorial Connectedness (a Corollary of Theorem 14). Let ¢l, ¢2 be linear 
functions of general position. The next two assertions follow from Corollary i. 

COROLLARY 3. C,(S#i) and C~(S~) are canonically isomorphic. 

Let S be a central regular configuration with vertex v, and ¢~, ¢2 be linear functions 
of general position. 

COROLLARY 4. ~com~ ~'i), ~* (S~, ~om~ (S~.~) are canonically isomorphic. 

Example i. Let S be a regular central configuration, and ~ a function of general posi- 
tion. We give the form of the isomorphism ~: C,(S¢) ~ C,(S_¢): a cone going downwards relative 

to ~ is turned by the addition of corners into a cone going upwards. 

THEOREM 16 (cf. [9,. Theorem 7]). Let F ~C,(S¢) be a k-dimensional face. Then 

~(A) = (-l)k~, where ~ is the closure of the reflection of F in a vertex v (Fig. 3). 

Example 2. We consider in R s the configuration that consists of four planes through 
the origin and in general position. If ¢ is a function of general position then S v,¢ is a 
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Fig. 3 Fig. 4 

plane configuration consisting of four lines in general position. For suitable ~i and #= 
the configurations SV,#1 and SV,#= are shown in Fig. 4. We indicate the isomorphism~of the 
bounded chains: F ~ -F*, CF ~-CF* ~ C, EF ~ -EF* - E, CEF ~ CEF* - CE, where CF, CF*, EF, EF* 
are intervals, and CFE and CFE* are open triangles. The remaining faces go into themselves: 
A ÷ A, etc. • 

4. Dimensional and Degree Filtrations 

comp i. Expansion into Simplexes. THEOREM 17. If S is a bolted configuration, then C, (S) 
has a basis of open simplexes of various dimensions. This basis has the property: the expan- 
sion of a given chain of c~°mP of dimension not higher than ~ in this basis contains simplexes 
of dimension not higher than ~. 

Proof. This is by induction on the dimension of the space. For dim V = 0 the unique 
face is a point. Let dim V = n > 0. We order the hyperplanes of the configuration. Let 
A be the hyperplane with the smallest number. By the induction hypothesis there exists a 
basis in c~°mP(SA). We complete it to a basis for c~0mP(S). Let v be a vertex outside A. 

We include the O-dimensional chain v in the basis. Let ~ be a linear function for which 
#(A) = 0 and ~(v) > 0. We consider the affine localization SF,~. Its hyperplanes are 
ordered. We choose by the induction construction a simplified basis in c~°mP(SV,~). With 

each element F of this basis we link the simplex K(F), which is the cone with vertex v, direc- 
tion F and base lying in A; K(F) does not include v and the lower base. It is easy to see 

that the basis in c~°mP(SA ) together with the simplexes constructed for all verticles outside 
A forms a basis for cG°mP( ~ .S) with the property in the theorem (see the proof of Theorem I0). 

THEOREM 18. For any configuration S of hyperplanes, C,(S) has a basis of elementary 
chains. This basis has the property: a chain of dimension not higher than £ is expanded 
as a sum of elementary chains of dimension not higher than £. 

Proof. This is carried out by induction on the dimension of the configuration, and 
follows easily from Theorem 17 (cf. Theorems I0 and Ii and Lemma i)o 

2~ 

I. 

2. 
~ , > 0 .  

3 .  

Properties of Dimensional and Weighted Filtrations in Chains. 

W n = C,(S). 

D E is the linear hull of elementary chains of dimension not higher than £ for 

If Sz c S2 and i:C,(S~) ÷ C,(S2) is the natural embedding, then i(Wk(S~)) c Wk(S2) 

and i(D£(Sz)) c D£($2 ) for k, £ ~ 0. 

4. Wk(S) coincides with the image of the natural map 

• 

® C, (SO ~ C, (S), 
~ L ,  r(F)~k (4) 

where S F is the localization of S at the rib F, and r(F) is the codimension of this rib. 

5. If U c V is a subspace and JU: C,(S) + C,(S U) denotes the natural epimorphism, 
then ju(Wk(S)) = Wk(SU). 

Property 3 follows from the definition of a filtration, and Properties i and 2 from 
Theorem 18. 

We prove Property 4. Clearly, Wk(S ) lies in the image of the map (4). By Property I, 
C,(S F) = Wr(F)(SF). Hence Wk(S) coincides with the image of the map (4). 
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Property 4 can serve as a definition of a degree filtration. 

We prove Property 5. Every elementary chain of degree k in C..o(S U) is the image of 
an elementary chain of degree k in C,(S). Hence ju(Wk(S)) D Wk(Su~" The image of an 
elementary chain of degree k is a face of the configuration on U that consists of not more 
than k hyperplanes. It follows from Property 4 that this image belongs to Wk(SU). 

6. If A~W k ~ D£, then A is representable as a linear combination of elementary 
chains of degree not higher than k and of dimension not higher than £. 

Proof. This is by induction on the dimension of the configuration. For n = 0 the 
property is true for any k and £. Let n > 0. Let # be a linear function of general posi- 
tion relative to the configuration S. Let t o be such •that for any t ~ to the hyperplane 
of level t of ~ intersects all ribs transversally. We consider the configuration S u cut 
on the hyperplane U = {x~V:~(x) = to}. Then the chain A ~ ~ has dimension !£ - I. 

Suppose that k < n. Then A ~ U ~ 14r~ (Su) ~ Dz_I (Su) By the induction hypothesis, 

A ~ U = ~amA~. , where ~ ~ Z, {Am} ~ 14/~ (Su) ~ D~_~ (Su) are elementary chains. For each 

elementary chain A m there is an elementary chain ~m ~ ~r~ (S) ~ Dt (S) for which ~m ~ U = Am. 

The intersection of the chain ~ := A--Eam~m and U is empty. By Theorems 12 and 14, 

~ = 0. Thus Property 6 is proved. For k = n this property follows from Theorem 18. 

7. W k 0 D£ = 0 for k ~ £ < n. 

8. Let U c V be a d-dimensional subspace of general position relative to S. Then the 
homomorphism Ju: C,(S) ÷ C,(S U) lowers the dimension of every chain by n - d, and for any 
0 ~ k and £ ! d defines the isomorphism 

W~ (S) ~ O~÷~_~ (S) ~ W~ (Su) ~ O~ (Su). 

Proof. It is enough to analyze the case when U is a hyperplane. It clearly follows 
from the generality of U that D£+~(S) + D£(S U) and Wk(S) ÷ Wk(Su). We prove that jUIWn_~ 

does not have a kernel. For if A~Wn_I(S) belongs to the kernel of JU, then A = A+ + A_, 

where the A+ lie on different sides of U. It follows from Theorems i0, 13 and 14 that A+ = 
-- • 

A_ = 0. Thus, JU defines an embedding V¢~ (S) ~ D/+ x(S) C~ W~(Su) ~ D~(Su) for k ! n - i. 

If A ~ W~(Su) ~ D t(Su) , then by Property 6 we can find a ~ VC~(S)~Dt+,(S) for which 

jU(~) = ~. This proves Property 8. 

9. Under the conditions of Property 8, JU defines an isomorphism gr ~+n-aD (S)--~ 
W~grtD (Su) for any 0 ! k, Z ! d. 

Property 9 follows from Property 8 since W~ grin D = W~ ~ Dm/l~r~ ~ Dm-x • 

i0. For any k ~ 0 the natural map 

® W~ (Sr)/W~_x (S F) ~ W~, (S)/W~-I (S) 
F ~  " 

r(F)=~ 

is an isomorphism. 

Proof. Let ~ be a linear function of general position. By Theorems 10-14 we have 

C.(S~) = ~ C. (S~) By Corollary 1 of Theor~ 14 this equality implies Property i0 for 
F ~  

r(F)=n 
k = n. The c a s e  f o r  an a r b i t r a r y  k r e d u c e s  t o  t h e  one we have  a n a l y z e d  by u s i n g  P r o p e r t y  8. 
The s ~ o  a r g ~ e n t  p r o v e s  t h e  n e x t  p r o p e r t y .  

11. FOr any k,  £ ~ 0 we s e t  

D t g r ~ W  = D z l~ W~/D t A W ~ l .  
Then the natural map 

O Dt gr~ W (S r) -~ Dt gr~ W (S) 
F ~  

r(F)~ 
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is an isomorphism. 

12. A chain of Wk(S) is uniquely defined by its general section of dimension k. More 
precisely, if U c V is a subspace of general position relative to S, dim U = k, and c ~ Wk(S) 
is a chain for which c ~ U = 0, then c = 0. 

Property 12 follows from Property 8. 

13. Let U~, U~ c V be subspaces of general position relative to a configuration S, and 
dim Uz = dim U 2. Then C,(SU~) is canonically isomorphic to C,(SU2). The isomorphism is 

defined by Property 8. 

We call this isomorphism a combinatorial connectivity. In [9], combinatorial connec- 
tivity is defined in a near situation. 

3. Ring P(S~ Z) Defined in the Introduction. Properties i, 9, and i0 give Theorems 
1-3. 

4. Dual of a Degree FiltratioD. We define a degree filtration in C*(S) by the condi- 
tion W K = Ann Wk_ ~. We have 

O ~ W  ' ~ W  ~ - ~ . . . ~ W  ° =  C*(S). 

We give another construction for this filtration. Let x(S) c C*(S) be the linear hull of 
the Euler cochains. Let U~, ..., Un_1, U n = V be affine subspaces of V of dimension I, .., 

n - i, n, respectively. We assume that each of them is in general position relative to the 
configuration S. Let jk:C*(SUk) ÷ C*(S) be the natural monomorphism. 

THEOREM 19. For any k ~ 0 we have 

w ~ (s) = z (s) + 1,_1 (z (s~,~_~)) + . . .  + y~ (z (sv~)). 

Theorem 19 follows from the corollary to Theorem 14 and Property 8. 

Flag Cochains. 

LEMMA 7. An arbitrary flag cochain of degree n is a linear combination of Euler cochains. 

Proof. This is by induction on the dimension of the configuration; we have to do down 
to the affine localization of the O-dimensional rib of a flag, and to use Lemma 5. 

LEMMA 8. The flag cochains of degree n generate the space dual to C,(S)/(Cn-I(S)+Wn-z 
(c,(s))). 

Proof. This is by induction on the dimension of the space. Let ¢ be a linear function 
of general position. By Theorems 10-14 it is enough to prove that the flag cochains of degree 
n generate cn(s¢). Moreover, it is enough to consider the case when S is a regular central 
configuration. Let v be a vertex of it. We go to the affine localization SV,~. Then 

_ _  C c°mp C n (S~)~'~ n-1 (S ~'~) The flag cochains of degree n on S go into flag cochains of degree 

n - 1 on SV,¢. By the induction hypothesis, for a nonzero chain of cc°mP(SV,¢) we can find 
n-I 

a flag cochain of degree n - 1 that is nonzero on it. This proves the lemma. 

Proof Of Theorem 4. Theorem 4 for k = n is the same as Lemma 8. The proof for an arbi- 
trary k follows from the lemma and Property 9. 

5. COMPARISON WITH COHOMOLOGIES, AND RELATIONS 

io Comparison with Cohomologies. Let S be a configuration of hyperplanes in a real n- 
dimensional affine space V. 

Each oriented n-dimensional face A ~Cn(S) defines a cohomology class [4] ~Hn(Mc, Z) 
that is equal to the index of the intersection with a noncompact cycle of A (we assume that 
M C is complex oriented). 

We fix an orientation on V, and so on each n-dimensional face. We define a linear map ~: 
in(S) + Hn(MC, Z) that associates with the linear combination Za~A a of faces the class 

Zaa[~]. 
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To describe the kernel of ~ we consider the natural isomorphism i: Cn(S) + grnD. 

THEOREM 20. ker ~ = i-~(Wn_~grnD). 

Proof. With each. flag E= {Fo~F~ ... ~F~} of degree n we associate the homology 

class in Hn(M C, Z) of the torus defined as follows. Let g~ ..... e n > 0. In C n with the 

coordinates z~, ..., z n we consider the torus T(e) = {z~cn: Izjl = gj}. We fix its orien- 

tation. We map R n with the ~oordinates z~, ..., z n affinely onto V so that the standard 

flag {z~= .... z~ = 0}~{z~ = ... = z~ = 0}~_...~ {z~ = 0}~ ~ is mapped onto the flag 

F. We consider the complexification cn + V C of this map. For 0<e~e~ . ..~en~l 

the torus T(g) is mapped into MC, and defines a homology class that does not depend on g. 
We denote it by T F. 

LEMMA 9. We consider the cochain on Cn(S) equal to the index of the intersection with 
T F. Then to within a multiplicationby !l this cochain is equal to the flag cochain OF. 

The proof is obvious. 

Let L denote the linear hull of the classes T F obtained for all possible flags F of 
degree n. By Lemmas 8 and 9 we have dimz L =dim C n (S)/i-~(Wn_tgrn D), In view of Corollary 

Z) = dimz Cn(S)/Z-I(Wn-I grn D) Hence we obtain Theorem 20 and the assertion 2, dimzHn(Mc, 

L = Hn(M C, Z). 

Example. 

j = i ..... n. 

We consider in R n the configuration of coordinate hyperplanes Aj = {zj = 0}, 

We orient R n by the form dzl A ... Adz n. M consists of 2 n octants. The 

space Cn(S)/i-1(Wn_~grn D) = grnWgrnD is one-dimensional and generated by the positive octant 

{z~ 9 0, .... z n > 0}. Under the map z the positive octant goes into the cohomology class 

of the form (--I) ~(~)/~ ~/~ • • • A ~ , where ~ = dz/2~]/r-----Iz~.. 

We mention a useful consequence of Theorem 20. Let # be a linear function of general 
position. Then the map n, defined on Cn(S~), gives an isomorphism of the bounded-above n- 
dimensional chains of the configuration and the spaces Hn(MC, Z). 

Proof of Theorem 8. For k = n Theorem 8 follows from Theorem 20, the preceding example, 
and Properties i0 and ii. The case k < n follows from the k = n case by using Property 9. 

2. Relations. Proof of Theorem 5. The assertion reduces to the case of the cycle 
/:~...,1~_~, /~ =--(/~.+... +f~=~) for which we have x:...x k = 0 and (x: - l)...(x k - I) = 0. 

Proof of THeorem 6. By Theorem 5 it is enough to prove that dim Z[x]/~= dim H*(Mc). 

The relations xi ~ = x i annihilate the monomials in which there is at least one variable of 
degree greater than i. We need to prove that all relations on the remaining monomials can 
be derived from (2). Under the isomorphism ps/ps-1 ÷ HS(Mc) the relation (2) goes into a 
homogeneous relation of degree s - i: 

~ ,  A . . .  A ~ -  ~I A ~o~, A . . -  A ~oi, + . . .  + ( -  t)'-~ ~ ,  A ' .  • A ~%_~. (5) 

By [3], the exterior algebra spanned by the {~ie~) and factorized by (5) for all cycles 
isomorphic to H*(Mc). Hence Z[x]/~ has the required dimension. 

Theorem 7 follows from Theorems 6 and 8 and the theorem on bases in [7, ii, 12]. 

is 

6. SUPPLEMENT. EXPANSION IN THE SIMPLEST FRACTIONS 

Theorem 18 on the expansion in simplicial cones has an elementary analytical analogue, 
namely, a generalization of the theorem on the expansion of a rational function in the 
simplest fractions. 

i. The Expansion. We consider a rational function E = P/Q on an n-dimensional linear 
space V, where P and Q are polynomials. We assume that Q is expressed as the product of 

polynomials of degree I:Q= ~]~. Let zl .... , z n be linear coordinates in V. 
~1 
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THEOREM 21. R is representable as 

..~ = ~ ( t l )  c¢ . . . .  (tn) O~n .zJf,(z , 
t, o~ 

( 6 )  

where either ~j ~ 0 and tj = zj, or ~j < 0 and tj is a polynomial of the first degree in zj, 

~j+~, o.., z n with i as the coefficient of zj, and the At, ~ are numbers. This representation 
~s unique. 

Proof. We restrict R to each line parallel to the z~ axis and expand in the simplest 
fractions in z~. This yields a representation 

= 7, + 
i~1  --~i~P<O l 

where Bp, i and C~ are rational functions of z2, o.., Zn, and the denominator in each of them 

is a product of polynomials of the first degree. This representation is unique° Then we 
proceed similarly for each of the functions Bp, i, C~. 

Examplie. I/(zi -- Z3) (Zl -- Z2) (Zl -- Z2 -- Z3) = I/(Zl -- ZS) (Z3 -- g2) (--Z2) -~ I/(Zl -- Z2) (Z2 -- ZS) (--Z3) ~ I/(Z I - -  

z~ - -  z~) z~z~ = t l ( z l  - -  z~) (z~ - -  z~) ( - - ~ )  + ~1(~ - -  z~) ( - - z~)  z~ + t / ( z ~  - -  z~) (z~ - -  z~) ( - z ~ )  ÷ ~ / (z~  - z~ - -  z~) z~z3. 

Theorem 21 is near to Theorem 5.2 in [7]. 

Suppose that all the linear functions {fi~i} are homogeneous and the set t~, ..., t n 

occurs in (6) with negative ~i, ---, ~n- We indicate the connection between t~, ..., t n 

and the covectors {fi~I}" t~ is proportional to one of the {fi~I}- We project the other 

covectors in {fi~I} along t~ onto the hyperplane in V* orthogonal to the vector (I, 0, .... 0). 

We obtain a set of covectors {g}. Then t 2 is proportional to one of them. We project the 

remaining covectors of {g} along t 2 onto the (n - 2)-dimensional plane orthogona! to the 
plane in V spanned by (i, 0, .... 0) and (0, i, 0 ..... 0). We obtain a set of covectors 
{h}o Then t 3 is proportional to one of them, and so on. 

If the set {fi~l} of covectors is closed under these projection operations, then in 

(6), for ~j < 0 the polynomial tj is proportional to one of the {fiel}. The following are 

examples of such families. 

i. Type A. Q is the product of powers of the polynomials zj - Zk, j < k. 

2. Type B. Q is the product of powers of the polynomials zj, zj ! Zk, j ! k. 

2. Appendix. We consider the linear map h: R N + R n that sends the j-th basis vector 

into a vector hj. We assume that all the hj lie in the half-space x~ > 0, where x~ ..... x n 

are coordinates in R n. We define on R n a function U such that U(x) is the (N - n)-dimen- 
sional volume of the intersection of a fibre over x and the positive octant in R N, where 
the form of the volume is taken to be the special form of the volume on R N and R n. As 
regards this function see [7]. 

THEOREM 22. For the set {hj!N} of general position 

~ q  (~ ,  . . . .  ~._~, x) ~-~ ~ ...... ~_~ (~) 
U (~) = 

........ h -  ' ( 7 )  
s n~(s~,...,sn_ 1} 

s ~ s j  l ~ s n ~  N 

where (vz, ..., v n) is the determinant whose columns are v~, ..., v n, where Zs ..... %_~ 

is the characteristic function of the simplicial cone generated by the vectors hs~. h~,,s ..... ', 

hs., .... s,~ , where hs~ .... ,Sp for p > 1 is the projection of hp along {h~, ..., hp_~} onto the 

coordinate plane {(0 ..... 0, ip, 0, .... 0), ..., (0 ..... 0, i)}, taken with the sign for 

which the p-th coordinate is positive. 
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In particular, for n = 2, Xj is the characteristic function of the cone generated by 
the vectors hi, (0, i). 

For an arbitrary n and N = n, (7) becomes 

u (x)= :S x . . . . . . .  ~ . _ , ( x ) / ( h ,  . . . . . .  h,3. 
s~S n 

In this case U(x) is piecewise constant and proportional to the characteristic function of 
the cone generated by the vectors hl, ..., h n. 

Remark. If in (7) we discard X, then the sum vanishes identically. For example, for 
n = 2, fj = (i, a j) we have 

~ (x~ - ~x~) ~-~ 
O. 

i=Z ( a l - -  ai) . . .  (ai_ 1 -  ai)  (a¢+ 1 -  a ~ ) . . .  (a N - -  ai) 

To prove  the  theorem i t  i s  enough to  c o n s i d e r  the  Laplace  t r a n s f o r m  of  U(x) ( s e e  [ 7 ] ) ,  
expand t he  r e s u l t ± n g  r a t i o n a l  f u n c t i o n  in t he  s i m p l e s t  f r a c t i o n s ,  and to  t ake  the  i n v e r s e  
Laplace  t r a n s f o r m a t i o n  of  the  t e rms .  
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