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INTRODUCTION 

The two-dimensional inverse problem of reconstructing the general (without the hypoth- 
esis of continuous symemetry) SchrSdinger operator L----- ~ (0~- iA~)~ q - u on the basis of 

data, "collected" from the family of eigenfunctions of one energy level L~ = z0~, was first 
considered in 1976 in [i] for the periodic case. From [2] the idea arose of a profound con- 
nection of this problem with integrable problems of the theory of solitons in dimension 2 + 
i. [3-5] are devoted to the development of this approach in the periodic case and later 
[6, 7] in the rapidly decreasing one. The contemporary stage of research began with [3, 4] 
in 1984, where, in the periodic case, the group of reductions Z~ X Z~ was explicitly found, 
singling out those data of the inverse problem from which one gets purely potential self- 
adjoint operators (i) 

n =  2, L - - - - - - 5  + u, ~---- ~, L~F = soT, A s  = 0 .  ( t )  

The analog of these results, it is true only for rapidly decreasing potentials of suf- 

ficiently small norm (of type ~ I e (z).l ~ (i q- I z I )~' ~z ~, ~ ~> 2~j), was found in [4] together 

with the group of reductions Z~ X Z~, singling out operators of the form (i), where u(x, y) ÷ 
x = + y~ ÷ ~. Here [6, 7] used a number of important technical considerations from [8]. In 
both problems, the periodic and the rapidly decreasing, at the base lie the manifolds F and 
DKN of eigenfunctions of the following form: 

L~' =~r,. t~(~, ~) : e~(~'~) ( i +O(r-~)i. , (2) 
~ ~ n--i~ f---- ( ~  . . . . .  k~) = $ + ~ ,  ~ ~ ~, ~ := ~ 

( i n  the  r a p i d l y  dec rea s ing  case ,  the  man i fo ld  of  Faddeev f u n c t i o n s ,  " the  f ami ly  F" of  [8]) 

L W  = s~F, ~F ( . . . ,  x I J-  T:  . . . .  ) = e~ i r i  q] (.~) ( 3 )  

(in the periodic case, the complete complex collection of functions of Bloch-Floquet type, 
first studied in [i], "the family DKN" of Dubrovin-Krichever-Novikov). 

The family F is nonanalytic in the variable kj for n > i. Only the one relation 

k ~  ~v(~,~) : 0  (4 )  

holds, from which the analyticity in the family of one-dimensional directions follows. Most 
recently the characterization of analytic properties of the family F ~(~, ~) is finished 
[9, 20], but only using large energies s = k 2 for all ~ ~ 2 (cf. also [15, 16]). 

The family DKN is holomorphic in all variables pj, but multivalued: the complete collec- 
tion of these functions is formed of a single funccion ~/ (~. $~), meromorphic on a complex n- 
dimensional "manifold of quasi-impulses" ~ ~ W first introduced in [i] [locally .f-' ~ (p~ ..... 
Pn)] together with a "scattering law," a meromorphic function 

~: W - ~  C. ( 5 )  

Some theorems (however insufficient for inverse problems), justifying the ~existence of the 
manifold W, were proved in [19]. The analytic properties with respect to k or ~ of complete 
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n-dimensional complex families of functions F and DKN contain strongly redundant information 
about the operator L for e~2; a detailed description of this information would be quite 
useful. 

Problem. How can one single out a minimal collection of information about the analytic 
properties of the families F and DKN, independent and sufficient for reconstructing the 
operator L with the help of an effective procedure? 

For n = 2 this problem, as already said above, can be solved by collecting data from 
one energy level T = T 0 for both families F and DKN in a large class of operators L; appa- 
rently this class is dense among all potential operators L with smooth periodic real poten- 
tial, according to a conjecture of Novikov. 

The present paper is devoted to the solution of the following problem. 

Problem. How can one characterize the collection of data of the inverse problem for 
one energy level T = T0, in order that the value of T 0 be below the ground state (lower bound- 
ary of the spectrum Tmin), T 0 < Tmin? We do not assume the norm is small. 

For the periodic case in the admissible class of "algebrogeometric" or "finite-zoned 
for one energy" operators L a sufficient test for the inequality T 0 < emi n was found in [3], 
but the idea of the proof (still unpublished) was unclear and has nothing in conm~on with the 
idea of this paper (below), which is general for the periodic and rapidly decreasing cases. 
In the rapidly-decreasing case emendS,,0 always; [7] concentrated only on "physical" energies 
g0 > 0 for potentials of sufficiently small norm. The only paper [6] devoted to the case 
T 0 < 0, only discussed a collection of special examples of potentials, where always e0 = emi n 
and the rate of decrease is sluggish (~r-l). 

i. Formulation of Results. Data of the Inverse Problem 

In what follows let n = 2 and e = g0. We denote by F the collection of functions of the 
families F or DKN of one energy T = T 0. The data of the inverse problem are the following: 

A. Periodic Case. Let the genus g(F) be finite and r be nonsingular. Then the surface 
F has two distinguished "infinite" points ~z and ~2 with local parameters w I = k[ I and w 2 = 
k~ I, group of reductions Z~ X Z~ with generators: ~ (holomorphic) and • (antiholomorphic) and 
collection of poles, a divisor ~ of degree g, ~ ~ QI + ... + Q~, Qj~F. 

The collection (F, ~,oo~, w~, ~, ~, s,T) is called the "data of the inverse problem." It 
satisfies the requirements 

g = 2h, ~ (o¢~) = oo~, a (k~) = --ku, • ('~1) = ~2,  ( 6 )  

• (k~)~  ~ ,  • ( ~ ) :  ~ ,  ~ ~ ~ ~ K ~ ~O 1 ~ ~ 2 '  ~' a = l ,  2, 

where  t h e  symbol  ~ means l i n e a r  e q u i v a l e n c e  o f  d i v i s o r s ,  K i s  t h e  d i v i s o r  o f  z e r o s  o f  h o l o -  
m o r p h i c  1 - f o r m s .  The f u n c t i o n  ~ (x, y, ~ )  i s  n o r m a l i z e d  by t h e  c o n d i t i o n W ( 0 ,  ~ ) = i ,  i t  h a s  
~ as the divisor of its poles, and asymptotics at the points ~a 

~ = e~'~( l + O (Wl)), ~ --~ ¢~1' Z : X +  iy ,  ( 7 )  

• : e ( - ~ ) ~ + ~ ( i  + O(w~)), ~--> ~ ,  ~ = x - -  iy. 

A collection of data satisfying (6) and (7) defines exactly two real potentials -~ = i, 2 

L ~  = ~o~, L = - - 0 ~ +  u~, eo = ~ o ( r , ~ ) ,  

u~ : - -20~ in 0 (uz + ~ + ~o (~)) ,  ( 8 )  

u~ = - -20~ In 0 ( u z -  a~ + i~o .(~)), 

h e r e  0 (q )  i s  t h e  P r y m ' f u n c t l o n  w i t h o u t  c h a r a c t e r i s t i c s ,  d e p e n d i n g  on h = g / 2  v a r i a b l e s  ( c f .  
[~ ,  5 ] ) .  The mos t  u s e f u l  f o r m u l a s  f o r  e0(F, ~) a r e  found  in  [ 1 0 ] ,  u s i n g  n o n l i n e a r  e q u a t i o n s  
w i t h  r e s p e c t  t o  a scheme o f  t h e  t y p e  o f  [ 1 1 ] .  I n  [~ ,  6] o n l y  one  p o t e n t i a l  u 2 ( z ,  $) i s  g i v e n  
e x p l i c i t l y .  Ta imanov  and N a t a n z o n  g a v e  a r e f i n e m e n t .  N e c e s s a r y  and s u f f i c i e n t  c o n d i t i o n s  
f o r  t h e  s m o o t h n e s s  o f  t h e  p o t e n t i a l s  u~ ,  u2 h a v e  n o t  y e t  been  found  ( t h e y  can  h a v e  a p o l e ) .  

For  t h e  d i s t i n g u i s h e d  c a s e  g0 < Cmin, i . e . ,  f o r  V ~ _ Z , ( R  ~) 

( ( L - -  ~ o ) ~ , ~ ) ~ >  C I~  I ~, 

it is necessary to take the data [4]: the antiholomorphic involution ~: r + F has exactly 
g + I = 2h + i fixed ovals ~,...,~n,...,~n, ~ ~/~ = i~ ~/6 = i such that 
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a(a~)  ~- aj+~, j = 1 . . . . .  h, a ( b )  = b. ( 9 )  

Here the divisor of poles ~ = Q~-~ . . . + Q,,~ is such that,(9) lies on the oval aj, j = 1 .... , 
2h. 

THEOREM 1 [4]. If the collection of data satisfies (6), (7), and (9), then the poten- 
tial u~ is smooth (without poles) and e 0 < emi n. 

Probably these conditions are also necessary. The proof which the authors of [3, 4] 
had in mind was unclear and based on the connection of this family for given g; one can get 
the rest by deformation with respect to the parameters from finite-zoned potentials of the 
form u(x) + v(y). A simple explicit proof will be given below. 

B. Rapidly Decreasing Potentials. Let e = e 0 < 0 and suppose given a family F of func- 

tions • (z,~, k),k~= ~0 =--4x~- We introduce the parameter ~ by the formula k = (k~, k~), z = 
x+ iy 

k~ = ~ (Z + ~/~), k~ = - -~  (~ - -  ~/~). ( ~ 0 )  

X ( z , Z , ~ , % ) =  e - ~ ) T  i s  b o u n d e d  a s  [ z  [ ~ .  We i n t r o d u c e  

i ~ e~[(,/~_~)z+(£_,/z~]u(z ' l)X(z, ~, ~,~)dzd~, ( 1 1 )  u (~, ~) ~- ~ 

w h e r e  L = - - 0 5 +  u ( z , ~ ) ,  L ~  = ~0~. 

S u p p o s e  f u r t h e r  ~ = ~, ~o = - - 4 .  The  q u a n t i t i e s  ( ~ ,  T,  X) h a v e  t h e  p z o p e r t i e s  ( c f .  [7]  
f o r  ¢0 > 0;  p a s s a g e  t o  n e g a t i v e  ¢0 d o e s  n o t  c h a n g e  t h e  a r g ~ e n t s  o f  [7]  i n  t h i s  p o i n t )  

0 ~ ( ~ ,  ~ Z, Z~ __ ~ ( Z ,  X)~(~ ,  ~, l~Z, i /Z) ,  ( 1 2 )  
OX 

where 
--,~ __ sgn ([ t [~ - -  t) U ,-/%, -,[h. 

T (z, 
uX 

The group of reductions is as follows 

u (li~ I/k) = ~ (~, i), u (-If~, -I/k) = v (~, i). (13) 

One of the reductions differs in sign from [7], since g0 < 0. Obviously we have 

X(Z,~, 1/~, l /k) = ~ ( Z , ~ ,  k , i ) ,  % - ~ 1  as k ~ 0 ,  oo. ( 1 4 )  

L e t  
T (Z, ~, z, Z) --- T (t ,  ~) exp [(Z - -  I/X) z -5 ( t /Z - -  ~) ~]. 

The  e q u a t i o n  o f  g e n e r a l i z e d  a n a l y t i c i t y  f o r  X on t h e  s p h e r e  EP  1 

0Z(z, ~ l, X) --T(~, ~, z, 5)~(z, ~, Z, ~) (15) 
of 

follows from (12) and (14). Following [7], one can jus t i fy  (12)-(15) for potentials  of small 
norm. 

The function ~ has asymptotics at the points (~, ~) = (0, =) comDletely analogous to 
the periodic case (7) for the choice of local parameters % k[ I, I/% k-* ~ ~ ~ • 

The relations of (13) are the analog of the group of reductions Z~ X Z z of [3]. The 
family F is nonanalytic with respect to I~CP*: instead of analyticity on the surface for 
DKN-families we have (12) on the Riemann sphere. (T is something like continuous "density 
of handles.") 

Definition. The function T(%, ~) or U(%, ~) is called "the collection of data of the 
inverse problem" for g0 < 0. 

THEOREM 2. Suppose given a continuous function U(I, ~) on CP ~ such that 

1 i) ~-2(~, X)~(D), p>~, (16) 

D here is the unit disc I% I~. I; 

2) U(%, ~) has the properties of reduction (13). 
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Then there exists a unique function ~(z, ~, X, ~), satisfying (12) with the conditions 
(14), and an operator L = -3~ + u(z, ~) such that 

a) LW = e0~, 8 0 < S m i n < O ;  

b) u ( z ,  ~) i s  a c o n t i n u o u s  p o t e n t i a l ,  w h i l e  u ( z ,  z) * 0 as  Izl ÷ ~; 

e) i f  U(X, ~) d e c r e a s e s  f a s t e r  t h a n  any power o f  X as X ~ O, t h e n  t h e  p o t e n t ± a 1  u ( z ,  ~) 
~s i n f i n i t e l y  d i f f e r e n t i a b l e ;  

d) i f  t h e  p o t e n t i a l  u ( z ,  ~) found by s o l v i n g  t h e  i n v e r s e  s c a t t e r i n g  problem a c c o r d i n g  to  
t h e  scheme i n d i c a t e d ,  d e c r e a s e s  as  r = [z[ ~ ~ f a s t e r  t h a n  r - 2 - ¢ ,  t h e n  t h e  f o l l o w i n g  
r e l a t i o n  h o l d s  on t h e  unSt  c i r c l e  

U (~, ~) --ih~ (~, ~) = C = coast, (17)  

where IX[ : I, 

~ (z, i) = ~ I! c (~, ~) T (~., ~) ( ~ -  z)-~ ~ ~ .  
Theorem 2 does not assume any smallness of the norm. 

Remark i. If u(z, ~) decreases faster than r -2-n-g as r + ~, then n more relations 
appear for I~ I = i. These relations are found by the same scheme as (17) (cf. below). For 
example, for n = 1 we have 

--%~ ~-~U(%,~)--h~(~,~)--~A-I-B£ ~, I~l-----i, (18) 

where A and B are constants, Ik I = i, for h~ one has the formula [the difference on the right 
side of (18) is continuous for IXl = I] 

~, (~, ~)i= ~,.~ - 

¢~ ~- . ,~ .~  c., ~)1 ~(~/~, ~/ .)+ ~c., ~)~ (~/~, ~/~)c~(~, ~)+c)  dg d~. 
JJ  ~ - ~  

Problem.  S tudy  t h e  s i n g u l a r i t i e s  o f  T(X, ~) f o r  ~0 ) ~min- i h a t  do t h e y  look  l i k e  upon 
motion with respect to the energy ~ upon passage through a point of the discrete spectrum? 
What are the special properties of the singular level e 0 = 0? 

The answers to these questions will be given in a following paper. Some formulations 
are given at the end of this paper. 

2. Proofs of the Basic Theorems 

The idea of the proof of both Theorems 1 and 2 is quite transparent: the main point in 
it is the observation that that the eigenfunctions of both families F and DKN, ~(z,~, ~), for 
points ~ on the contour b~F (Theorem i) and the function ~(z, ~, X, ~) for points X on the 
contour IXl = 1 (Theorem 2) are real and strictly positive (below) 

~ R ,  ~ > 0 ,  x , g ~ _ R  ~. (19) 

Using (19), one can extract the proof of the theorems from the following lemmas, repro- 
ducing some elementary arguments from the famous book of Courant and Hilbert [12], although the 
lemmas in [12] are not formulated in this form. 

LEMMA i. Let u(x I ..... x n) be a smooth real potential in R n such that u >const for 
Ixl 2 > r 0 and one can find a smooth real positive solution • of the equation 

LW = - - A ~ +  u~ = So~, ~ . ~ 0 .  

Then for emi n one has (21) and e0-<~emin, always, where Cmin is the level of the ground 
state of the operator L in ~z(R~). 

Proof. Let S be a domain in B '~ , containing a ball of large radius r + ~. The energy 
emi n is defined as the limit of the minima of the functionals 

min f l(IV~,'+u~)dnx=minsmi.(S), f.~.I~dnx=l, ~[0s=O,  T~>~O 
S,~'~" S 

as r + ~. Let T = ~, where N = 0 on the boundary @S,~ ~0~ We have the chain of equalities 

+ f ( -  + I. 
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= ~ - - .  f [ , l a q w -  z (qvq~v  ~)  - ~ , ~ a v  + u ~ 2 1  d-x = = B  

=f.  + =I. ll  l, +  oS. 
From this we get 

--~--I ~ d x + ~  o, (21)  ~ m i , ( S ) = S . ~ . g l V  • ~ ~ , 

where T i s  an e i g e n f u n c t i o n  o f  t h e  g round  s t a t e  o f  t h e  domain S. Lemma 1 i s  p r o v e d .  

LEI~IA 2. Suppose  unde r  t h e  h y p o t h e s e s  o f  Lemma 1 t h e  p o t e n t i a l  u i s  r a p i d l y  d e c r e a s i n g  
in  R n and ~ does  n o t  c o i n c i d e  w i t h  an e i g e n f u n c t ± o n  o f  t h e  g round  s t a t e  i n R  " .  Then e0 < emin- 

P r o o f .  Under t h e s e  c o n d i t i o n s  one can t a k e  S = R'~; l e t  ~ be an e i g e n f u n c t i o n  o f  t h e  
ground state L T = gminT. We know that T.~0 and T~..~--_Z~(R~). From the chain of equalities 
(20) we get (21) 

÷ I 
Lemma 2 f o I l o ~ s  f rom t h i s .  

L E ~  3. ~nder  t h e  h y p o t h e s e s  o f  L e n a  1 l e t  t h e  p o t e n t i a l  u be p e r i o d i c  in  ~ and • 
be a smooth p o s i t i v e  e i g e n f u n c t i o n  ~ ~ ~0~, ~h~ch i s  nok a g round  s t a t e .  ~hen ~ < amin. 

P r o o f .  Le~ S m be a p a r a l I e l o g r ~  in  W ~ ~ i t h  s i d e s  ~ h i c h  a r e  m u l t i p l e s  o f  t h e  b a s i s  ~ec -  
t o r s o f t h e  l a t t i c e  ~ , ' ' ' , ~ n  ~ i t h  m u l t i p l i c i t i e s  m~, . . . ,m  n, m i n ( m a , . . . , m  n)  ~ ~. ~ f ~ c t i o n  
~ o f  t h e  g round  s t a t e  ~n N~ ~s p e r i o d i c  ~ i t h  p e r i o d s  T~ . . . .  , T~, ~ 0  and ~ . ~  ~ .  Le t  
S~ be an e l e m e n t a r y  c e l l ;  f o r  t h e  a r e a  S m ~e h a u e ~ S ~ =  m ~ . . . . . m ~ l S ~ l .  

~he g round  s t a t e  i s  c o ~ o n  f o r  a l l  t h e  domains  S m and c o i n c i d e s  ~ i t h  ~ ,  wh~le i t  i s  a 
g round  s t a t e  in  ~ .  S i n c e  ~ i s  p e r i d i e ,  in  t h e  c h a i n  o f  e q u a l i t i e s  (20)  t h e r e  a r e  a l s o  no 
b o u n d a r y  t e rms  f o r  t h e  domains  S m. From t h i s  ~e ha~e f o r  Sa 

+ S %. 

Here ~ ~s n o r m a l i z e d  in  t h e  domain S~. 

L e n a  3 ~s p ro~ed .  

L ~  4. Le t  t h e  p o t e n t i a l  u be r e a l ,  smooth ,  and q u a s ~ p e r ~ o d i c ,  and ~ be a g round  
s t a t e  o f  t h e  o p e r a t o r  L ~ i t h  t h e  s ~ e  grou~ o f  p e r i o d s  as  u.  I f  t h e r e  e x i s t s  a smooth  pos~-  
t i r e  s o l u t i o n  • ? 0 o f  t h e  e q u a t i o n  L~ ~ e ~ ,  ~ h e r e  • does n o t  c o i n c i d e  ~ t h  ~ ,  t h e n  eo < 

~min" 

~he p r o o f  a l s o  f o l l o w s  q u i c k l y  f rom t h e  c h a i n  o f  e q u a i i t i e s  ( 2 0 ) ,  ( 2 1 ) ,  where  ~ n s t e a d  
o f  t h e  ~ n t e g r a l  o v e r  t h e  c e l l  S~ one t a k e s  t h e  Bohr mean. 

No~ ~e p r o c e e d  ~o t h e  p r o o f  o f  ~heorems 1 and 2. One has  t h e  f o l l o w i n g  

B a s i c  L e n a .  I f  t h e  h y p o t h e s e s  o f  ~heorems 1 and 2 h o l d  f o r  t h e  d a t a  o f  t h e  i n v e r s e  
p rob l em,  e ~ g e n f u n c t i o n s  • (~ ,~ ,~ )  and • (~,~, ~,~) o f  b o t h  f ~ m i l i e s  F and D ~  a l ~ a y s  e x i s t ,  
have  no ~e ros  and p o l e s  f o r  a l l  ~ o u g s i d e  t h e  o v a l s  a j  and a l l  X; f o r  ~ b  and ~ 1  = 1 
t h e s e  f u n c t i o n s  a r e  r e a l  and o f  f i x e d  s i g n .  

P r o o f .  ~nder  t h e  h y p o t h e s e s  o f  ~heorem 1 ( p e r i o d i c  and q u a s i p e r ~ o d ~ c  c a s e )  t h e  f u n c t i o n  
• i s  g i u e n  by an e x p l i c i t  f o r m u l a  o f  [3]~ and unde r  t h e s e  c o n d i t i o n s  t h e  d ~ v ~ s o r s  D a r e  non-  
s p e c i a l ;  in  c o m p l e t e  a n a l o g y  w i t h  n = 1, f o r  r e a l  (x~ y)  t h e  f u n c t i o n  g has  ~ero  and p o l e s  
o n l y  f o r  ~ a ~  ( f o r  n ~ 1 t h e  o v a l s  a j  c o r r e s p o n d  to  f ~ n i t e  gaps  and t h e  o ~ a l  b t o  an i n -  
f i n i t e  gap f o r  L = - a ~  + u ) .  ~he f u n c t i o n  g i~ r e a l  f o r  a l l  ~ a ~  or  ~ b ,  as f o l l o w s  f rom 
khe r e d u c t i o n s  Z~X ~ .  ~he ~e ros  o f  ~ ha~e t h e  form ~ j ( x ,  y)  and run  t h r o u g h  t h e  o ~ a l s  a j  
f o r  a l l  x ,  y ,  i f  g (0,0,  ~ ) .  The s ~ t u a t i o n  h e r e  i s  ~ d e n t i c a l  t o  t h e  o n e - d [ m e n s l o n a l  c a s e  
(el.  [ ~ ] ) .  

~he p r o o f  in  t h e  r a p i d l y  d e c r e a s i n g  c a s e ,  ~ h e r e  t h e r e  a r e  no o b v i o u s  one -d~mens~ona l  
a n a l o g s ,  ~s more o r i g i n a l .  ~he e q u a t i o n s  o f  t h e  a - p r o b l e m  ( 1 2 ) ,  (15)  in  ou r  c a s e ,  by v i r t u e  
o f  t h e  r e d u c t i o n s  ( 1 3 ) ,  (14)  a r e  l o c a l  in  X ~ i t h o u t  t r a n s l a t i o n s  o f  a p o i n t  and co~nc~de p r e -  
c i s e l y  ~ i t h  t h e  B e l t r ~ i  e q u a t i o n  f o r  g e n e r a l i z e d  a n a i y t i c  f u n c t i o n s  on e P ~ .  ~he p rob lem 

23 



(15), as follows from the theory of generalized analytic functions [14], has a unique smooth 
solution X, for all z = x + iy. Moreover, the function X has no singularities on CP ~ . It 
follows from this by the argument principle for the number of zeros of analytic functions 
without singularities, that X has no zeros on CP ~ with respect to X. By the uniqueness of 
the solution, X satisfies the reduction (14). Consequently, X, ~ are real for IXI = i. The 
basic lemma is proved. 

Remark. The functions .~tF (z, 3, ~) ]d$P I and ~ ~ (z, ~, ~, ~)]d~ ~. ~row in all directions 
6 l l ~ = l  I x l ~ +  lu 1 ~ .  

The p r o o f  o f  Theorem 1 f o l l o w s  q u i c k l y  from t h e  b a s i c  l e n a  w i t h  L e w e s  1-4.  

From t h e  b a s i c  l e n a  t o g e t h e r  w i t h  L e n a  2 a l l  ~he p o i n t s  o f  Theorem 2 ~xcep t  t h e  smooth-  
n e s s  and r a t e  o f  d e c r e a s e  o f  t h e  p o t e n t i a l  u ( z ,  ~) a l s o  f o l l o w .  

Proof of Point c) of Theorem 2. We see that all th~ derivatives of X(z, z, X, ~) with 
respect to z and ~ are continuous and bounded functions of the variable ~. We shall verify 
this fact by induction on the order of the derivative. 

The function X satisfies the integral equation 

X(z, ~, ~, ~ ) = t  + ~ ?  (E, ~, z, ~)X (z, ~, 1~,  I/E), (22)  

where 

• 

-- 

We differentiate (22) n i times with respect to z and n 2 times with respect to z. As a 

result we get 

--'0~ ~(~,~,Z,I)~O~*X (z,~, ~ ,  + )  + Fn~n~(z,i, E, ~), (24)  0~a?x (~, ~, ~, ~) --~ ~ 

g~=~(~, ~, x,;~) = ~ ~#~(~, %, ~, ~ ) ( x -  ~f~) , , (~/~-  ~)~0~'-~,~;-"~x(~. ~, ,i,&, ~/~). (25) 
~',, ~'~ 

~ t + ~ 0  

A l l  th~  d e r i v a t i v e s  o f  X which appear  in  (25)  have  lower  o r d e r .  S i n c e  F (~, %, z, ~) de-  
c r e a s e s  r a p i d l y  as  X + 0, ~,  t h e  o p e r a t o r  ~f~F (~, E, z, ~)(~ --  1~) ~ (t/~ --  %)~, i s  compact  f o r  a l l  
k~,  k~ in  t h e  space  o f  c o n t i n u o u s  f ~ c t i o n s  o f  X. Thus,  t h e  f u n c t i o n  F ..... (z, ~, ~, ~) i s  con-  
t i n u o u s  and bounded in  X. Using t h e  absence  o f  n o n t r i v i a l  s o l u t i o n s  o f  th~  homogeneous aqua-  

~ ~ 

t i o n ,  we g~t  th~  c o n t i n u i t y  and boundedness  in  X of  0z O 5 %. 

Thus we have p roved  t h a t  X(z, ~, X, ~) i s  a smooth f u n c t i o n  of  z.  Using t h e  absence  
o f  z e r o s  o f  X, p roved  e a r l i e r ,  we g e t  t h e  smoothness  o f  u ( z ,  ~) .  

P roo f  o f  P o i n t  d ) .  Now we g i v e  t h e  p r o o f  o f  p o i n t  d ) .  L e t  t h e  a s s ~ p t i o n s  of  p o i n t  a)  
h o l d .  Then X(z,  ~, X, X) i s  bounded on t h e - w h o l e ,  space  o f  z ,  X and f o r  l a r g e  z ,  t e n d s  to  1 
u n i f o r m l y  in  X. We i n t r o d u c e  t h e  a d d i t i o n a l  f u n c t i o n  

~ ' 
h (l, ~, ~, ~) = ~ ~ ~ e-['~f]u (z, ~) % (z, ~, ~, Y) dz dL ( 26 ) 

The f u n c t i o n  h (l, [, ~, ~) i s  c o n t i n u o u s ,  bounded,  and even L i p s c h i t z  in  l, E w i t h  e x p o n e n t s  
¢~, e~,  where z~ < z ,  z2 < 1. For  I = ~ - - t / %  we g e t  t h e  f u n c t i o n  U(k,%) 

U(X, % ) = ~ ( Z - - ~ / L % - - ~ 1 ~ ,  Z , D .  (27)  

The f o l l o w i n g  e q u a t i o n  f o r  h f o l l o w s  f rom (12) :  

Oh(Lt'~'~) =T(~'  ~)h( l ~ - -~ ' '  + ~ - -~ '  r '  ' ) (28)  

( t h e  a n a l o g s  o f  (28) f o r  t h e  m u l t i d i m e n s i o n a l  c a s e  were a c t i v e l y  used  in  [9,  15, 16 ] ) .  

In  p a r t i c u l a r ,  f o r  t h e  f u n c t i o n  ~a (X, ~) = h (0, O, ~, ~) we g e t  

0~ (k, ~) = T (E, ~) U ('1~, t/k). (29)  0% 
. ~ . 
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On the other hand, for I~ [ = I U (~, ~) ---- ~ (%, ~). Integrating (29), we get 

- = o.st, (30) 

The proof of Theorem 2 is finished. 

Remark 3. Suppose the data of a rapidly decreasing inverse problem T(%, ~)depend on 
an infinite collection of additional variables tl,...,tn, .... , where the dependence is given 
by the formula 

~ 

12 I ) ] T (~, ~. t~ . . . . .  t . . . . .  ) = T (~ ~) exp (2u)~+~ ~2j+1 + ~2j+1 ~2j+1 ty . (31)  
j=l 

Then the function v(z,~,t~ ..... t ..... ) = u(z,~,t~ ..... t ..... )-- ~ satisfies a hierarchy of 
(2 + l)-dimensional nonlinear equations found by Veselov and one of the authors (cf. [5]). 
In particular, the first of these equations has the form 

v t=~v  ~ ~v ~ O(vw) + ~(v~), (32 )  
~ w : - - 3 & , ,  v = ~ .  

Ne n o t e  t h a t  t h e  r e d u c t i o n s  (13)  and r e l a t i o n s  (17)  a r e  i n v a r i a n t  w i t h  r e s p e c t  t o  t r a n s -  
f o r m a t i o n  (31). 

Supplement i. Two limiting cases of the scheme recounted are of interest. 

I. Scattering Data for Zero Energy. Let ~0-+0, 9+ =×k, .~_ --U(u%), a 0 =--4× ~. As g0 + 0 
the contour I~ I = 1 contracts to a point, which we denote by B0, and the Riemann sphere of 
the spectral parameter splits into two S+ and S- with coordinates ~+ and ~-, respectively, 
which intersect at the point B0, ~+ = ~_ = 0. The reductions (13) become the relations 
U(-~) = ~(~) and U(~+) = U(~_). The equations of the inverse problem acquire the form 

~ ( ~ , 7 , ~ , ~ ± )  
=T(p±,9±)W(z, 5, B~,9~), (33 )  

~ 

where 

T (~, ~±) -=- _~_ U (~±, ~±)!(~±), (34) 
-- 

'F(z, ~, p±, ~)=e+~±z±, ~±~oo, z_~L z+=z. 

If one requires the ~ -integrability of the function T(~, ~) with p > 2 in a neighbor- 
hood of 0 along with sufficiently rapid decrease at infinity, then the proofs of the non- 
singularity of the potential and the absence of a discrete spectrum proceed exactly like the 
corresponding arguments in Theorem 2. However here we get potentials which are not in gen- 
eral position. 

II. Limit Passage to a Parabolic Operator. Let ~ =--~-+--oo, the function T(%, ~) 
be concentrated in a neighborhood of the points % = ±i of size of order ~/~, % = ~, ~Y= y/×, 

~ : × (%q-i). Then as m-+oo the function ~(X, Y, ~, ~) : e2~Y~ (x, y, %, ~ goes to an eigenfunc- 
tion of the parabolic operator 

L~ = --O~ + 40~ + u (X, r ) ,  (35)  

L~W~ (X, Y, ~, ~) = 0. (36)  

The i n v e r s e  s c a t t e r i n g  p rob l em f o r  t h e  o p e r a t o r  Lx was a c t i v e l y  s t u d i e d  in  c o n n e c t i o n  
w i t h  t h e  t h e o r y  o f  t h e  KP ~I  e q u a t i o n  ( c f .  [17,  18] ,  e t c . ] .  The f u n c t i o n  ~ s a t i s f i e s  t h e  
~ - e q u a t i o n  

o ~ ( x ,  Y, ~, ~) _ T~(~, ~) T~(X,  Y, ~, ~). ( 3 7 )  
~ 

The r e d u c t i o n  U(iff~, ~/~) = ~ ( ~ , ~ )  goes  t o  t h e  r e d u c t i o n  T~(~, ~) ~ - -T~(~,  ~), which c o r r e -  
sponds  t o  t h e  r e a l i t y  o f  t h e  p o t e n t i a l  u(X,  Y) ,  t h e  r e d u c t i o n  U ( - - t / ~ , - - t / ~ )  = U (~, ~ goes  t o  
a r e l a t i o n  c o n n e c t i n g  t h e  s c a t t e r i n g  d a t a  o f  t h e  o p e r a t o r  Lz and i t s  a d j o i n t .  R e l a t i o n s  o f  
t h i s  t y p e  in  t h e  t h e o r y  o f  KP ~ were  d i s c u s s e d  in  [ 1 8 ] .  

J u s t  as  in  t h e  t h e o r y  o f  t h e  S c h r S d i n g e r  o p e r a t o r ,  a p p l i c a t i o n  o f  t h e  t h e o r y  o f  g e n e r a l -  
i z e d - a n a l y t i c  f u n c t i o n s  l e t s  one p r o v e  t h e  n o n s i n g g l a r i t y  o f  t h e  p o t e n t i a l  u(X,  Y) w i t h o u t  
a s s u m p t i o n s  a b o u t  t h e  s m a l l n e s s  o f  t h e  norm T~(V, ~ ) .  T h i s  f a c t  was n o t  p r e v i o u s l y  n o t e d  in  
t h e  l i t e r a t u r e  a l t h o u g h  t h e  l o c a l  form o f  Eq. (37)  o f  t y p e  (15)  was u sed  in  [ 1 8 ] .  
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If the potential u(X, Y) decreases sufficiently rapidly at infinity, then there arise 
relations of the type of (17), (18) on the data of the inverse problem. These relations for 
KP are now being investigated by V. Bakurov in the L. D. Landau Institute of Theoretical 
Physics (ITF). 

Supplement 2. Negative energies of higher ground state. For energies of higher ground 
state the situation is more complicated. Let the energy ~0 not be a level of the discrete 
spectrum of the operator L = -A + u. The eigenfunctions ~(z, ~, X, ~) defined above of the 

family F for ~ = e0 < 0 and "data of the inverse problem" T(X, X) are introduced as before 
and have group of reductions (13), (14), however both functions T and • are no longer smooth 
in the whole h-plane. As comparison with [9, 20] shows, these functions in the situation of 
general position have a collection of poles along the curves Fj: 

~s (~ ~) ----- 0, ~ =- ~ / / s  (L ~) + To, /~ ~ fs, ~ = ~-~//s (~, ~) + ~o, (38)  

where T_z, To, ~-z, ~0 are smooth functions. 

As before, wherever T is smooth, the function ~ satisfies (15), i.e., is generalized 
analytic 

a~/~ = T~. (39) 

The collection of curves Fj in the X-plane is invariant with respect to the group of 
reductions (13). In the case of general position we have 

] a/j/a~] =/= O, if /j : 0, (40) 

For e > emin, by virtue of Sec. 2 of this paper, the function ~(z, ~z X, XI necessarily 
has zeros for IXI = i and some values of z. For all z the zeros of ~(z, z, X, X) lie in a 
compact part of the h-plane. It is easy to see that the manifold of poles F = UFj is compact 
and independent of z. 

It follows from (15) that all the zeros of ~, situated outside the manifold of poles F, 
have positive multiplicity. Hence, for those z for which ~ has zero outside of F, the func- 
tion ~-I necessarily has zeros on curves of r of positive multiplicity. As z + ~ the zeros 
of ~ of positive multiplicity go to zeros of ~_i of negative multiplicity. We denote the 
zeros by 77 (z,i) (their dependence on z will be investigated in later papers): 

~_~=0 for ~ = ? ~  (z,~), 1~=0 .  

From (15) and the expansion (38) the following equation T~ follows easily: 

1 af~ ~_, e-2~g(~,, ~). T_~ a~ ~-~ 

It follows from this in particular that one has the restriction 

I T_, I = a/~l~Z ¢= O, I~ = O. ( 4 1 )  

The most natural position is a "nest" 

[0~_P_~_~+~...~_~-,~_S~F~-..~r~], 

where S z is the unit circle Ikl = i, all the Fj are invariant with respect to the transforma- 
tion X + X, r-j is obtained from Fj by the transformation k ÷ i/~. Apparently the rotation 
number of the function T_~ z 0 along the contour Fj is equal to I. In a following paper we 
publish the results of investigation of the inverse problem, based on the solvability of (15) 
under the conditions (38), (41), and the supplementary condition (43). 

One has the following 

LEMMA 5. In order that (15), in a neighborhood of each point of the contour rj have a 
collection of solutions locally, depending on two real valued functions of one variable (a 
point of the contour), it is necessary and sufficient that in addition to (41) the following 
relations (43) hold. 

Suppose given in a neighborhood of the curve Fj a semigeodesic coordinate system (~, B), 
where ~ is the distance to Fj, ~ is the natural parameter on rj, the lines ~ = const are line 
segments perpendicular to Fj. Considering (38) and (41) we get 

, , 

V = exp lZg (fi)][~-~ (fi)/a + ~o (~) d- ~ (~)~ + 0 (=~)], 

~ = exp [Z (2g (~) + 6 (~))1 [--1/2~ ~- ~o (~) ~- z~ (~)= ~- 0 (=~)l, 
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dE exp [ih (~)]- (dg + i d~) for ~ :~: O, (42) 

where g(~), h(~), and T-L(3) are real functions. Then in order that an arbitrary solution of 
(15) in a neighborhood of each point of the contour Fj depend on two real functions of one 
variable, it is necessary to require that one have 

Re *0 (3) : :  K (3)/'4, K (3) =: - -  (ael~/a3, e~), (43) 
~ a ~ ( ~ )  i aK(~) 

:' h n v l ( 3 )  .... 2 0~2 + 4 ~ ' 

e~  b e i n g  a t a n g e n t  v e c t o r  ~o F j ,  e~  a n o r m a l  v e c t o r ,  e~  × e~ = 1. A r b i t r a r y  f u n c t i o n s  on 
w h i c h  a l o c a l  s o l u t i o n  d e p e n d s  a r e  $ -~ (3 )  a n d  Im %(3). I f  ( 4 3 )  d o e s  n o t  h o l d  t h e n  a l o c a l  
s o l u t i o n  o f  (15) d e p e n d s  on only o n e  r e a l - v a l u e d  f u n c t i o n .  

I t  i s  a p p a r e n t l y  n e c e s s a r y  t h a t  ( 4 3 )  h o l d  f o r  a s o l u t i o n  o f  t h e  i n v e r s e  p r o b l e m .  I ~  
( 4 3 )  d o e s  n o t  hold, t h e n  t h e  i n v e r s e  p r o b l e m  w i l l  g e n e r a l l y  n o t  b e  s o l v a b l e  f o r  e n e r g y  l e v e l s  
o u t s i d e  t h e  d i s c r e t e  s p e c t r u m .  

LITERATURE CITED 

i. B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, "Schr~dinger's equation in a periodic 
field and Riemann surfaces," Dokl. Akad. Nauk SSSR, 229, No. i, 15-18 (1976). 

2. S. V. Manakov, "The method of the inverse scattering problem and two-dimensional evolu- 
tion equations," Usp. Mat. Nauk, 3--1, No. 5, 245-246 (1976). 

3. A. P. Veselov and S. P. Novikov, "Finite-zone two-dimensional SchrSdinger operators. 
Distinguishing potential operators. Real theory," Dokl. Akad. Nauk SSSR, 279, No. I, 
20-24 (1984). 

4. A. P. Veselov and S. P. Novikov, "Finite-zone two-dimensional SchrSdinger operators. 
Potential operators," Dokl. Akad. Nauk SSSR, 279, No. 4, 784-788 (1984). 

5. S. P. Novikov and A. P. Veselov, "Two-dimensional SchrSdinger operator: Inverse scatter- 
ing transform and nonlinear equations," in: Solitons and Coherent Structures, North- 
Holland, Amsterdam (1986), pp. 267-273 (for the 60th birthday of Martin Kruskal). 

6. P. G. Grinevich and R. G. Novikov, "Analogs of multisoliton potentials for the two-di- 
mensional SchrSdinger operator," Funkts. Anal. Prilozhen., 1__9, No. 4, 32-42 (1985). 

7. P. G. Grinevich and S. V. Manakov, "The inverse problem of scattering theory for the two- 
dimensional SchrSdinger operator, the ~-method and nonlinear equations," Funkts. Anal. 
Prilozhen., 2--0, No. 2, 14-24 (1986). 

8. L. D. Faddeev, "Inverse problem of quantum scattering theory. II," in: Current Problems 
of Mathematics [in Russian], Vol. 3, VINITI, Moscow (1974). 

9. R. G. Novikov and G. M. Khenkin, "Solution of the multidimensional inverse problem on 
the basis of generalized scattering relations," Dokl. Akad. Nauk SSSR, 292, No. 4, 814- 
818 (1987).  

i0. I. A. Taimanov, "Effectivization of theta-functional formulas for two-dimensional 
SchrSdinger operators, finite-zoned at one energy level," Dokl. Akad. Nauk SSSR, 285, 
No. 5, 1067-1070 (1985). 

ii. B. A. Dubrovin, "Theta-functions and nonlinear equations," Usp. Mat. Nauk, 3__6, No. 2, 
11-80 (1981) .  

12. R. Courant and D. Hilbert, Methods of Mathematical Physics [Russian translation], Gos- 
tekhizdat, Moscow (1951). 

13. S. P. Novikov (ed.), Theory of Solitons: Method of the Inverse Problem [in Russian], 
Nauka, Moscow (1980). 

14. I. N. Vekua, Generalized Analytic Functions [in Russian], Fizmatgiz, Moscow (1959). 
15. A. J. Nachman and M. J. Ablowitz, "A multidimensional inverse-scattering method " Stud. 

Appl. Math., 7-1, No. 3, 243-250 (1984). 
16. R, Beals and R. R. Coifman, "Multidimensional inverse scattering and nonlinear partial 

differential equations," in: Pseudodifferential Operators and Applications. Proc. Symp. 
Notre Dame, Ind., April 2-5, 1984. Providence, R.I. (1985), pp. 45-70. 

17. M. J. Ablowitz, D. Bar Jaacov, and A. S. Focas, "On the inverse scattering transform for 
the Kadomtsev-Petviashvili equation," Stud. Appl. Math., 6--9, No. 2, 135-143 (1983). 

18. V. D. Lipovskii, "Hamiltonian structure of the Kadomtsev-Petviashvili II equation in 
the class of decreasing Cauchy data," Funkts. Anal. Prilozhen., 2--0, No. 4, 35-43 (1986). 

19. P. A. Kuchment, "Floquet theory for partial differential equations," Usp. Mat. Nauk, 
3._.~.7, No. 4, 3-52 (1982) .  

20. R. G. Novikov and G. M. Khenkin, "~-equation in the multidimensional inverse scattering 
problem," Usp. Mat. Nauk, 4--2, No. 3, 93-152 (1987). 

27 


