
TWISTED PICARD-LEFSCHETZ FORMULAS 
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The Picard-Lefschetz theory [17, 4] describes the monodromy of vanishing cycles in ver- 
sal deformations of isolated singularities of complex hypersurfaces. The monodromy group 
turns out to be the group of reflections with respect to the intersection form in the middle 
dimensional homology space. An example is the group of permutation of the roots of a poly- 
nomial in a family of polynomials of one variable. In this theory, along with Euclidean 
groups of reflections there also arise their "odd" analogs. Thus, upon replacing a family 
of polynomials by a family of hyperelliptic curves, the group of permutations is replaced 
by the group of symplectic "reflections" in the one-dimensional homology space of the curve 
(cf. [22-24]). 

The original idea of the present paper is to consider instead of cycles on a hypersur- 
face, cycles on its complement, endowed with a local system of coefficients which transform 
nontrivially upon circuit around the hypersurface. We describe the monodromy group in the 
homology space with the so "twisted" coefficients. It turns out that twisted Picard-Lef- 
schetz formulas interpolate between the symmetric and skew-symmetric versions of the classi- 
cal theory. As noted by Shekhtman [ii], the group algebra of the monodromy group turns out 
to be the analog of the Hecke algebra, a well-known deformation of the group algebra of the 
group of permutations. 

We formulate the result of our calculation for simple singularities of hypersurfaces. 
As is known [i], such singularities are classified by the Dynkin diagrams A~, D~, E~, E v, Es. 
For a suitable basis of cycles, the matrix of the symmetric intersection form of a simple 
singularity coincides (up to sign) with the Cartan matrix C of the corresponding type. We 
represent C as a sum V + V t of an upper triangular matrix with ones on the diagonal and the 
transpose of one, and then we define in C~ a bilinear form (', ") with matrix (ej, ei) = qV + 
V t, where q is a nonzero complex number. The "reflections" Mi: h + h - (h, ei)e i then generate 
the monodromy group of twisted cycles. For q = 1 one gets the Weyl group corresponding to 
the original Cartan matrix, for q = -i, its "odd" analog. For arbitrary q the "reflections" 
M i satify the defining relations of the Artin-Brieskorn braid group, and also the additional 
relations (M + q)(M - i) = 0, which define the Hecke algebra of the corresponding Weyl group. 

I sincerely thank V. I. Arnol'd, A. N. Varchenko, O. Ya. Viro, V. A. Vasil'ev, I. M. 
Gel'fand, V. A. Ginzburg, A. B. Goncharov, S. K. Lando, D. B. Fuks, V. M. Khar!amov, and 
V. V. Shekhtman for interest in the work, which served as a good stimulus for me in writing 
this paper. 

i. Monodromy of Vanishin~ Cycles 

We collect here information from the ordinary Picard-Lefschetz theory (cf. [4]). 

Let/: Cn, 0-+C, 0 be a germ of a holomorphic function at an isolated critical point of 
multiplicity ~. The germ F: C ~ × C~. 0 × 0-~C, 0 is a miniversal deformation of it, if f(x) = 
F(x, 0) and the germs of the functions ~F/~%1(.,0),..., ~f/~k~(., 0) (~i,...,~ being coordinates 
in the space of parameters C~) are a basis in the local algebra Q = C[[x]]/(O//#z). One can 
understand this definition as follows: the family F is transverse to the orbit of the germ f 
under the action of the "group" of diffeomorphisms of the space C ~. Example: n = 2, f = 

~+1 2 ~ + l  2 x~ --x~, F =  ÷~lx~ - ~ . . . ÷  ~ - - x ~ .  
Let F~. ~ F (., ~), V~ ~ f~ ~(0) be the zero level of the function F~ from a miniversal family. 

In the base of the family we define the discriminant ~_C ~ of those values of the parameter 
~, for which VI is singular. More precisely, we choose a representative of the germ F and a 
ball B e in C n of small radius e such that the boundary of the ball is transverse to V 0. Then 
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choose a ball D 6 in C~ with 6 so small that the fibers V% with ~D6 will also be transverse 
to 8B e. Then the nonsingular fibers V~. N Re form a locally transverse fibration over the com- 
plement of the discriminant in D 6. In what follows we shall assume that all these B e and D 6 
are chosen once and for all, but for the sake of simplicity we shall not remark on this, de- 
noting B e by C ~, O8 by G~, V~N ~ by V~, AN D8 by 4, and by f and F we shall mean functions 
representing the corresponding germs. 

It is known [16] that a nonsingular fiber V% has the homotopy type of a bouquet of ~ 
spheres of dimension n - i. Hence the homology group H~(VG Z) (for n = l, reduced) is zero 
for k ~ n - 1 and isomorphic to Z~ for k = n - i. In the homology fibration of H~q (VG Z) 
over O~A there is a flat Gauss-Manin connection, induced by identifying the homology 
groups for a local trivialization of the fibration of the hypersurfaces V I. In other words, 
cycles can be carried from a fiber V% to a neighboring one by continuity. Carrying cycles 
from a distinguished fiber VI along closed curves, avoiding the discriminant, we get a repre- 
sentation of the fundamental group ~(C~A) of the base of the fibration by transformations 
of the lattice Z~-~H,~_~(VG Z). The image of this representation in GL,(Z) is called the 
monodromy group. 

The index of intersection of cycles of middle dimension of the manifold VI (equal to 
n - i) defines an integral bilinear intersection form on the group ~L~-~(VG Z), which is sym- 
metric for odd n and skew-symmetric for even n. The monodromy group lies in the isotropy 
group of this form, since under transfer of cycles their index of intersection is preserved. 

The Picard-Lefschetz formula describes the generators of the monodromy group in a dis- 
tin~uished..basis of the lattice Z~. We consider the function E~: C~-~ in general position 
from a versal family. It has ~ nondegenerate critical points z(~),..., z(~) with different non- 
zero critical values z(~)~...,z(~ ). We fix a system of disjoint paths on the complex plane C from 
the point z = 0 to the points zO), . . .~z(~) (cf. Fig. i). We assume that the z(k)-s are indexed 
in the order of the paths leaving zero counterclockwise. 

The fiber ~ (zq")) has a nondegenerate singular point x (k). In the homology of a nearby 
nonsingular fiber there is defined uniquel[ (up to chan~e of sign) an integral cycle ek, 
which "vanishes" at the singular point x(k), as z + z(k~. This cycle, transferred to /~*(0) = 
V% along the chosen path, is called a vanishin~ cycle. One can show that the vanishing cycles 
e~ ..... e u form a basis in H~_~ (VG Z). It is called a distinguished basis. 

THEOREM (cf. [4]). The monodromy group is generated by U reflections ~f~: A~H+ 

(_~)~+~)e <~,~> ~ with respect to the intersection form <., .> on H~_~(FG Z) in the vectors 
e~ ..... e~ of a distinguished basis. 

We note that the generators indicated correspond to circuits of z around the critical 
values z(*),...,z(~), generating the fundamental group of the complement of the discriminant. 
For an odd number of variables n the self-intersection index of a vanishing cycle is equal to 
2 (_~)~n-~)/~, so that the transformation M k is really a reflection: it has a fixed hyperplane 
and changes the sign of e k. 

Suspension of a singularity f consists of adding the square of a new variable: /(z,%)~ 
E (z, %) + ~, (z,p)~C n+~, I~OL Under suspension the critical points and values of the 
functions F% are unchanged, but the dimension of the fiber V% and the parity of the inter- 
section form change. 

The two intersection forms, symmetric and skew-syrmnetric, are connected as follows. Let 
~,...,~ be a distinguished basis of vanishing cycles, constructed from the suspended func- 
tion F% + y2 and the same system of paths as el, .... e u. Then (cf. [4]) <~, ~> = s~n (~--~) × 
(--I)'~<~]~ e~. Thus, in a general distinguished basis, the matrices of the two intersection 
forms have either identical superdiagonal and opposite subdigonal parts, or the opposite. 
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2. Twisted VanishinR HomoloKy 

The abstract construction which leads to the Gauss-Manin connection refers to a space 
E on which there is given a locally constant sheaf ~. The map p: E-+ A lets one define the 
direct image p,~ of the sheaf 4. The direct image is the sheaf on A whose stalk over l~ A 
is the cohomology space H* (p-1(k); ~) of the stalk p-l(%) with coefficients in the sheaf ~, 
restricted to p-~(%). Suppose over an open contractible U~ A, p: p-1(U)-+Uis a trivial 
bundle. Then the restriction map 

~ *  (p-1 (8); ~ )  -~ ~*  (p-1 (~); ~)  

is an isomorphism for all k .~__U. This identification of stalks of the direct image over near- 
by points defines the flat Gauss-Manin connection in the cohomology bundle over the comple- 
ment to the discriminant of the map p. 

In our situation, as E we take the complement in C ~ ~ £~ to the zero level of F, as 
p: E = C ~ ~ C~\\F-I(0)-+C ~ the projection to the space of parameters. The fiber of p over 
~ is E~ = C ~ \  V~. It remains to define the sheaf. 

Let ~ be a complex number. The function F ~ is multi~alued in E. Any two branches of 
it differ by a constant factor, the degree q = e =~i~. We define a locally constant sheaf 
C (q) on E, whose stalk is the one-dimensional space of germs of functions of the form const" 
F ~. Up to equivalence of sheaves, C (q) is determined by the number q ~ 0, by which its stalk 
is multiplied upon one positive circuit around the hypersurface F-~(0). 

It will be more convenient for us to modify this analytic definition so as to consider 
all sheaves C (q) simultaneously. 

On E we define a locally constant sheaf ~(~) with stalk Z ~g~ ~-~ (here q is a formal vari- 
able), defining the action of the fundamental group ~I(E) = Z on the stalk as follows: a gen- 
erator acts by multiplication by q. 

Giving the complex value of q, we get the integral subsheaf Z (q)in ~ (q). 

One can define the (co)homology of E% with coefficients in ~ (q) with the help of the 
complex of singular chains or the Cech complex. By definition, an elementary singular chain 
is a pair (~,~), where ~: ?-+Ek is a continuous map of a simplex, s is a univalent section 
of a shea~ over V. Such a section is defined by its value over one point of the simplex and 
extends to the whole simplex by continuity, uniquely, in view of the simple connectedness of 
V. One gets the space of chains by factoring the free Z [q, q-l]-module generated by ele- 
mentary chains by the relations q(~,;) = (~,q~). The boundary operator 8 defined in the stan- 
dard way turns the space of chains into a complex, whose graded homology group we denote by 
H,(E~;~ (q)). It supports the structure of a Z [q,q-~]-module. 

Obviously the complex of chains on E so defined is isomorphic to the complex of integral 
singular chains on the universa~ covering ~, in which multiplication by q is defined by the 
covering transformation R: ~ ~ E. 

With the help of the intersection index-~(~,~) of integral cycles on the covering (~)% 
we define a Z [q, q-*].-bilinear pairing 

<-, .) : H,  (Ez; ~ (q)) '~ H~_, (Ez; ~ (q-~)) --~ Z [q, q-~l, (~, #) "~- ~ ~ (B~¢, *) q-U- 
~ - - ~  

Together with the isomorphism ~(q)~(q-1), defined by the conjugation automorphism Z [q, 

~-*] ~÷ Z [~, q-i]: ~ = q-~, the form (., .) defines the intersection index of cycles of comple- 
mentary dimension in H~ (Ez; ~ (q)) with values in Z [9, q-~], which is a (skew)-Hermitian form 
<', -> for (odd) even n: 

<q~, ~2> = <~, q-l~2> = q <~, ~>, <~I, ~ = (--~)n ~}' ~ "  

Our next goal is to calculate H.(E~;Z (q)) for ~ A. 

~roposition. Let SV% be the space obtained from the product Vx x S I by contracting the 
fiber Vk over the distinguished point of the circle ~*, ~ (q) be the sheaf on SV% with stalk 
Z [q, q-~], which undergoes multiplication by q upon traversing a circle and constant on the 
fibers V%. Then the pair SV% is homotopy equivalent to ~(q) if Ex,~(q), ~ A. 

Proof (S. K. Lando). We contract the null fiber of the function/ = Fo:C~'-+C, leaving 
the rest nonsingular. The complement in C~ to /-~(%), ~&0, contracts to the preimage of a 
circle in C, passing through 0 and going once around the point %. 

12 



,, " Z(~) -Z (/+) % "~,~ 

Fig. 2 Fig. 3 Fig. 4 

COROLLARY. For n > i the middle dimensional homology group Ha(Ef;~(q)) is a free Z [q, 
q-~]-module of rank ~. Let 6~ .... _,6~ be a basis of cycles in H,~_a (V~; Z), $6, .... S6~ be 
the basis of suspended cycles in Hn(SV~; Z) (cf. Fig. 2), s be a basic locally constant sec- 
tion of the sheaf ~(q) over S ~, single-valued everywhere except the distinguished point. 
Then ( S ~ I ,  S), • • , ,  ( S ~ ,  8) i s  a b a s i s  in  Ha (Ex; ~ (q)) ( =  H,~ (SVx; ~ (q)). 

Remark. I f  q ~ 1, t h e  modules  H~(Ez; Z (q)) a r e  z e r o ,  i f  k = n .  For  q = 1, H~(E~; Z (q)) 
i s  t h e  o r d i n a r y  i n t e g r a l  homology g r o u p .  I t  i s  e q u a l  t o  Z f o r  k = 0 and k = 1, n > 1, and 
for k = i, n = 1 this group is isomorphic to Z "+~ • Thus the module H, (Ex; ~ (q)) in dimensions 
• = 0, 1 has torsion in the form of the Z [q, ~*]-module Z with identity multiplication by q, 
and modulo this torsion is concentrated in dimensions * = n, where (it) has rank ~. 

3. Picard-Lefschetz Theorem 

Let 8E~ be the intersection of a tubular neighborhood of V l in C n with E%. Along with 
H~{E~; ~ (q)) we consider the relative homology space Ha(E~,0E~; ~ (q-l)). Between these spaces 
there is defined a Z I~, ~-l]-bilinear pairing (', "), the index of intersection of an absolute 
cycle with a relative one. 

Below we define compatible distinguished bases (e~ ..... e~) and (g~, .... ~) of absolute 
and relative cycles, corresponding to a distinguished basis of vanishing cycles (~ ..... ~) 
in ttn_~ (V~; Z). 

THEOREM. 1) Le t  V be an uppe r  t r i a n g u l a r  m a t r i x  w i t h  d i a g o n a l  e l e m e n t s  ( - - t )  ~nq)/= and 
<6j, 6i> at the intersection of row i with column j for i < j. Then the matrix (ej, ~i) of 
the Z [9, 9-~-bilinear intersection form in compatible distinguished bases {~), {~} is qV - 
(--I)~V. 

2) The monodromy group  in  H.(E~i  ~ (q)) i s  g e n e r a t e d  by r e f l e c t i o n s  Mk: ~-h  + (--t)~mq)/=(h,g~)e~ • 

COROLLARY I. (M k - (-l)nq)(Mk - i) = 0. 

In fact, M k - I maps the hyperplane orthogonal to Sk to zero and has one-dimensional 
image generated by e k. Moreover, M~e~= (--~)~qe~, since (e~,~) = {__~)~(n=~)~ (q__(__1)~). 

Definition of the Bases {e~},{4~}. We choose a Morse function F~ from a miniversal family 
and a system of paths {Tk} as in Sec. i. We orient the circle 70 of small radius with center 
at z = 0 counterclockwise. We fix a basic section s of the sheaf ~ (q), which is trivial over 
the z-plane with a slit (Fig. 3) issuing from 0 between 7~ and 7z. Thus, the section s is 
single-valued over the union of the paths ?1i~!''" ~?~ and the arcs [?o ~ ?i,?0 ~ ?~] of the 
circle 70 between its points of intersection with 7~ and 7~. 

The cycles 6~,...,6U, which vanish at the critical points over z (~), .... z(~), upon 
transport along the paths ~,...,7~, respectively, sweep out relative cycles in (E l , 8El) 
(Fig. 4). We endow them with the section s of the sheaf ~ (q-~), and we denote the relative 
twisted cycles so obtained by ~,...,~. 

Analogously, we define the cycle e k in the complement to F~ (0), by carrying the vanish- 
ing cycle 6k from the fiber over z (k) along the path 7k to the intersection with the circle 
70, then along 70, and again along 7~, in the opposite way to the fiber over z (k) (Fig. 2), 
and choosing a section of the sheaf ~ (9), equal to s under motion from z (k) along 7k and ex- 
tended by continuity along all trajectories of transport of the cycle (so that upon returning 
to the point z (k) this section is qs). 

As is explained in Sec. 2, {ek} is a basis in Hn (E~; ~ (q))(modulo torsion). 
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COROLLARY 2. The sesquilinear intersection form in Hn(E~; ~ (q)) is (skew)-Hermitian for 
(odd) even n and with respect to the distinguished basis {ek} is given by the matrix <ej, 
e~> = (q - -  1) V ~- ( - - I )  '~ (q-1 _ t )  V t. 

I n  f a c t ,  u n d e r  t h e  n a t u r a l  m ap  H,,(E~; ~ (q))..->H~(Ez, OE~; ~ (q)) t h e  c y c l e  e k g o e s  i n t o  t h e  

relative cycle conjugate to (I--q-I)~, since F~-I(?o) cOE~. 

Proof of the Theorem. i °. For i < j the intersection indices (ej, gi), (ei, ~j) can 
be calculated starting from Fig. 5. Over a point of intersection of corresponding paths 
vanishing cycles must intersect: in the first case -q6j with 6 i, and in the second -6 i with 
6j. 

2 ° . To find the index of "self-intersection" (ek, gk) it suffices to calculate it for 
a singularity f with nondegenerate critical point. For clarity we restrict ourselves to the 
case n = i. Let f = x 2, F% = x = - I. Cycles e, ~ in the x-plane are illustrated in Fig. 6. 
It is clear from it that the index of intersection of the dashed cycle with the solid one is 
equal to 1 + q, as was needed. 

3 ° . The monodromy group is generated by circuits of the point z = 0 about the critical 
values of the function FI. Under a circuit about the critical value z (k) the vanishing cycle 
6 k goes into (-l)n6k . Moreover, the point z (k) here finishes one revolution about the point 
0. Hence 

e~-(--l)nqe~, ~ ( -  ~)nql~. 

4 ° . Now we find out how the cycles &i, &j, i < k < j are transformed upon circuit of 
z = 0 about z(k) (the cycles el, ej are transformed in the same way as the duals to ~i, ~j, 
i.e., in the formulas found below it is necessary to replace q-1 by q). We represent cycles 
by paths in the z-plane. In Fig. 7a the dashed one represents the circuit of z = 0 around 

z(k). In Fig. 7b, c on the left it is shown what the paths 7i, 7j, along which it is neces- 
sary to transport the vanishing cycles 6 i, 6j turn into. Upon circuit around z (k) one adds 
to 6i, 6j cycles proportional to 6 k. In correspondence with this, cycles represented in Fig. 
7b, c on the left are split into the sum of two summands. In the first of them, the original 
cycle is transported along the path, in the second, a multiple of 6 k. The first summand is 
homologous to the original cycle: the difference of the corresponding cycles on the z-plane 
(the solid line minus the dashed one) is the boundary of the shaded domain. The second sum- 
mand in Fig. 7b is simply ~(k) (with the corresponding numerical coefficient), and in Fig. 7c 
it differs by the factor q-~. The latter is clear from the left part of Fig. 7c; the path 
issuing from z(J), before hitting z (k), intersects the slit. 
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5 °. We calculate the monodromy and the intersection form independently of one another 
in terms of the intersection index of the vanishing cycles {~k}" One gets the twisted 
Picard-Lefschetz formula by comparing the results of these calculations. 

4. Examples and Generalizations 

i. Burau Representation. Application of the preceding constructions to the family of 
polynomials in one variable F = x~+1-~%ix~-1-~,..-~% ~ leads to a representation p of the Artin 
braid group ~I (C~A) on the ~-dimensional space of twisted cycles on C\ {~-~ i points}, 
known in the theory of braids as the Burau representation (cf. [19]). This representation 
plays an important role in the theory of links. Namely, Po(q, q-l) = det (p(o) - i) is the 
Alexander polynomial, an invariant of a link of the braid o represented. There is an old 
conjecture about the faithfulness of the Burau representation, easily proved for groups of 
braids of 2 and 3 threads, but open for ~ .  The author feels an irresistible temptation 
to formulate a more general conjecture about complements of discriminants of isolated singu- 
larities of hypersurfaces. 

2. Singularities of Powers of Volume Forms and de Rham's Theorem. The twisted co- 
homology originates in the problem of singularities of differential forms f(x~,~..,~,~) × 
(dx~ / ~ . . .  /~dx~)~ of degree ~. The question is, if you like, of the classification of singu- 

larities of functions ~: C n, 0~C, 0 with respect to the pseudogroup of diffeomorphisms C ~, 
0~C~,0, acting on f by change of variables and by simultaneous multiplication by the $-th 
power of the Jacobian, ~.~C. A similar problem arose independently for n = i, $ = 1/2 in 
the author's paper [I0], and was posed in the formulation cited by V~ I. Arnol'd. A com- 
parative classification of singularities of S-forms and functions ($ = 0) was found by Var- 
chenko [7] and Lando [15]. The versality theorem for S-forms was proved by Kostov [14] for 
n = I, and in the dissertation of Lando for any n. Lando~s theorem asserts that F (x, %)(dx)~ 
is a versal deformation of the form f(x)(dx)~ (i.e., transverse to the orbit, for a precise 
definition of versal deformations, cf., e.g., [3]), if F is a versal deformation of a ~erm 
of a function f, and the set--~/~ ~ N does not contain roots of the Bernshtein polynomial 
(cf. [5]) of this germ. 

The condition of transversality of F(dx)$ to an orbit of the pseudogroup is the condi- 
tion of solvability of the equation 

~ (  OF ~(o~ , Vv~ ~F (i) ~= + ~ + ~ F )  + 
. +~'  ~ 

w~Ch ~especC Co Ch~ ~uneC~ons + ~ ( x ,  X),  v j ( X )  ~o~ any ~ ~ ,  ~). Th~s e q u a t i o n  h a s  t h e  f o l l o w =  
~n~ ~nCe~p~eCaC~on. LeC ~ ,  d~) be  t h e  ~ o m ~ x  o~ ho~omo~ph~e d ~ e ~ e n C ~ a ~  ~o~ms ~n ~ ,  

dF dx 
d ~ =  d - - a ~ , .  Yt f o l $ o w s  f rom (1)  t h a t  f o r  a l ~  ~ t h e  n - f o r m  ¢ ~  Ys cohomologous  t o  a 

~Ynear c o m b i n a t i o n  o f  t h e  f o r m s  (OF~JO~)dx/Fx ~n ~ h i s  complex  w i t h  a = - -1 /~ .  The f o l l o w ~ n g  
"de  Rham t h e o r e m "  g i v e s  ~he c o n n e c t ~ 0 n  w~th t w i s t e d  cohomology .  

P r o p o s i t i o n .  The t w i s t e d  cohomology  H* ( E ~ V ;  E (q)) o f  t h e  complemen~ t o  a n o n s ~ n g u l a r  
h y p e r s u r f a c e  i s  i s o m o r p h i c  ~o ~he cohomology  o f  ~he complex  (~* ,d~)  o f  h o l o m o r p h ~ c  fo rms  on 
C ~ V ,  i f  q = e~Wia.  

P r o o f .  L e t  (~*,d~)  be t h e  complex  o f  s h e a v e s  o f  h o l o m o r p h i c  fo rms  Yn C~'N V. N i t h  ~ 
~ h e r e  i s  c o n n e c t e d  a d o u b l e  complex  ~f l~ o f  Gech cochaYns  w i t h  d i f f e r e n t i a l s  5: ~ ~ + ~  
(Cech c o b o u n d a r y )  and d~: ~ ~ t ~ + ~ .  The hype rcohomo~o$y  H* (~* ,da)  o f  t h e  complex  o f  
s h e a v e s  Ys d e f i n e d  as  t h e  cohomology  o f  t h e  c o m p l e x (  ~ ~ " ~ , d ~ +  5).. I n  t 5 e  p r e s e n t  c a s e  i t  

t '~8~$ 

~s un2mporCan~ wha~ ~he h y p e r c o h o m o l o g y  i s ,  b u t  ~t  ~s  ~ m p o r t a n t  t h a t  two s p e c t r a l  s e q u e n c e s  
E r ,  s and ~ s , r  c o r r e s p o n d i n g  ~o two f ~ l ~ r a t ~ o n s  o f  t h e  s p a c e s  ~ ~ " ~ ,  by r and by s ( c f .  
[ 1 3 ] )  c o n v e r g e  t o  ~ t .  ~+~=* 

The ~erm E~ o f  t h e  f i r s t  s p e c ~ r a l  s~qu~nce  c o n s i s t s  o f  Cech c o c h a ~ n s  o f  t h e  cohomology  
s h e a v e s  o f  t h e  complex  (fl*, da). The cohomolo~y  s h e a v e s  ~ (~*, d=) a s s i g n  t o  t h e  open s e t  
U ~ C '~ ~he cohomolo~y  s p a c e s  o f  t h e  complex  (~* ~v, d~). L o c a l  c a l c u l a t i o n  shows ~ h a t  t h e  
" P o i n c a r 6  l e n a "  h o l d s :  ~he s h e a f  ~ ~s z e r o  f o r  s > 0 and ~ 0 ~  C (q). Thus ,  ~n t h e  f ~ r s t  
row o f  t h e  a r r a y  E~, s t h e r e  i s  t h e  complex  o f  Gech c h a i n s  o f  t h e  s h e a f  C (q),  and t h e  ~ t h e r  
rows ( s  > 0) a r e  z e r o .  
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The spaces ~,s of the second spectral sequence are the Cech cohomology spaces Hr(C~'; Q~). 
Sheaves of holomorphic forms on Stein manifolds are acyclic. Hence ~,r= 0 for r > 0, and 
E~ ,° = (Q*,d~) is the complex of holomorphic forms. 

Thus, E= = E=,~2 = E=, and the equation E=---~H~ is the assertion being proved. 

3. Theory of SinBularities.of Divisors and Hy~erEeometric Functions. A direct general- 
ization of the operator d~ is the differential d--~df/]--~dg/g--...--~dh/h in the complex 
of holomorphic forms in C ~ with poles on the divisor ]-m (0) ~ g-~(0) ~ ... ~ ~-~(0).* The cor- 
responding local theory is the theory of singularities of divisors (a nonsingular is a divisor 
with normal intersections). The twisted Picard-Lefschetz theory for divisors is needed to 
d~scribe the monodromy of cycles on the complement of the divisor, endowed with the sheaf of 
coefficients "f~g~ ... h~." We shall return to this theory in another paper, and here we only 
note the numerous connections of this subject with others. 

a) Simple singularities of divisors in Cn, ~ are classified by Dynkin diagrams A~, 
B~, C~, D~, E~, E~, E~, F~. 

b) The theory of singularities of functions of the form fag~ with nonsingular g contains 
the theory of Arnol'd [2] of critical points of functions on manifolds with boundary 
(~ = i, g = 0) and the theory of Goryunov [12] of projections to a line (~ = 0, $ = 
I). 

c) The case of linear functions f, g ..... h was considered in [18, 8, 9] in connection 
with a single theory of multidimensional hypergeometric functions. 

Thus, the Picard-Lefschetz theory for a divisor of three merging points on a line de- 
k 

scribes the branching of ordinary hypergeometric integrals I~ (z) = I z= (z -- i)~ (z -- z%) ~ ~z. 
0 

4. Classical Monodromy Operator and Signature of Intersection Form. For a germ /: C ~, 
0-+C, 0 of a holomotphic function at a o-fold critical point we define the operator 

M: Hn (E~; Z (q)) ~ Hn (E~; Z (q)) 

of classical monodromy by transporting twisted cycles along the path ~ = ~e it, t .~_ [0, 2n]~ M = 
M,...M~ (in the notation of Sec. 3). 

For (odd) even n and q = e ~=~= (~ ~ R)the intersection form (', ") in the complexified 
space of twisted cycles H~ (E~;C (q)) is (skew)-Hermitian with respect to complex conjugation. 
The form "', ""= (., .)/(q'/,--q'-V 0 is, on the contrary, Hermitian for odd n. In a distinguished 
basis for the space H,~(Ek; ~ (q)) it has the matrix e~=V-Se-=~=V ~. We denote the signature of 
this form by (ind+, ind0, ind_). 

In the theory of singularities one associates with a germ f its spectrum Sp, a collec- 
tion of ~ rational numbers ~,...,~(0, n), symmetric with respect to n/2. 

Proposition. i) The classical monodromy operator has, with respect to a distinguished 
basis, the matrix ~f = (--~)~q (Vt)-~V. The numbers qe =~i~k form its spectrum. 

2) For  odd n and q = e ~ ,  ~ ~--_ R, 

ind0 = #~ Sp ~ ( Z -  e), 

i n d + =  ~ S p  ~ [ ~ ( 2 k - - ~ , :  2kq-  l - - a ) ] ,  
k ~ Z  

ind_ = @ S p  ~ [ ~ ( 2 k - - i - - a ,  2 k - - a ) ] ~  
~ez 

i f  t h e  monodromy o p e r a t o r  M 0 = - ( v t ) - ~ V  i s  d i a g o n a l i z a b l e . #  

Remark. Up t o  t h e  s i g n  ( - 1 )  n ,  t h e  m a t r i x  V c o i n c i d e s  w i t h  t h e  m a t r i x  o f  t h e  i n v e r s e  
v a r i a t i o n  o p e r a t o r  

Vat-*: Hn_, (Vz) --)- Hn-1 (Vx, OVu) 

*d a also acts on the complex of meromorphic forms with pole on the divisor and on the loga- 
rithmic complex. 
%This is so, for example, for quasihomogeneous singularities. 
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in a distinguished basis (cf. [4]), V--(--])~V ~ is the matrix of the intersection form in 
H~-I(V~)~ (--I)'~(V')-IV is the matrix of the classical monodromy operator M0: Hn_I(V~.)--~H~-~(VX) 
in this basis. The proposition is derived from this purely algebraically taking into account 
the description in terms of the spectrum for the signature of the intersection form in Hn_ ~ x 
(Vx), given by Steenbrink [20]. One can define the spectrum of a singularity with the help 
of the asymptotics as ~ + 0 of the integrals of holomorphic forms in C ~ over cycles on VX 

(cf. [4]). If analogously one defines the spectrum with the help of integrals y/~e over 

twisted cycles, then it turns out that one gets such a spectrum from Sp by translation by a. 

5. Twisting and Suspension. Let F~C"be a nonsingular local level manifold of a germ 
f of finite multiplicity (cf. Sec. i), E~ = C ~ \\ V~ be its complement, ~ be a Z~ covering of 
C '~, branched along VX. 

Proposition. There is a canonical isomorphism 

~ ' P - ~  /E  (exp 2~k ~ H,, ( ~ )  ~ ~,~=~ ..... \ ~, aE~; Z . 

One g e t s  t h e  p r o o f  e a s i l y  f rom t h e  e x a c t  s e q u e n c e  o f  t h e  p a i r  (Ez, VT.). I t  c o n t a i n s  t h e  
f r a g m e n t  

0 - .  H~ ( ~ )  -* Hn ( ~ ,  V~) -+/1~-1 (Y~) -~ 0. 

I t  i s  c l e a r  t h a t  H~ (Ex, V~) = ,~ H~ (E~, OEz; Z (q)) . The d e c o m p o s i t i o n  i n t o  a d i r e c t  sum h e r e  
{q:qP:l} 

c o i n c i d e s  w i t h  t h e  d e c o m p o s i t i o n  o f  H~ (Ex, Vz) by c h a r a c t e r s  o f  t h e  g roup  o f  c o v e r i n g  t r a n s -  
f o r m a t i o n s  Z~, and on /~,_~(Vz) t h i s  g roup  a c t s  t r i v i a l l y .  

Th i s  p r o p o s i t i o n  e x p l a i n s  why t h e  t w i s t e d  P i c a r d - L e f s c h e t z  f o r m u l a  i n t e r p o l a t e s  be tween  
t h e  even  and odd v e r s i o n s  o f  t h e  c l a s s i c a l  ~ h e o r y .  Under s u s p e n s i o n  ] - - - ~ . / - - y ~  t h e  m a n i f o l d  
V X i s  r e p l a c e d  by t h e  t w o - s h e e t e d  c o v e r i n g  EX, b r a n c h e d  a l o n g  V X, and we g e t  c a n o n i c a l  i s o -  
morphisms 

H~(~,)=H~(E~,  a&; z ( - -  i)), H ~ ( V ~ ) = H ~ ( ~ ,  aE~; Z(i)). 

6. A n a l y t i c  T h e o r y .  L e t  fl~og be t h e  s p a c e  o f  meromorph ic  fo rms  in  E ~ w i t h  a l o g a r i t h m i c  
dfK , 

p o l e  on V X. The d i f f e r e n t ~ a l  d : =  d - - a ~ t u r n s  ~ o g  ~nto  a complex .  By t h e  a n a l y t i c  

t h e o r y  o f  t w i s t e d  cohomology  we mean t h e  s t u d y  o f  t h e  p r o p e r t i e s  o f  ~he l o g a r ~ t ~ i c  complex .  
These  p r o p e r t i e s  depend on a ,  and n o t  o n l y  on q = e ~ ,  as  was t h e  c a s e  in  t h e  t o p o l o g i c a l  

~heo ry  c o n s i d e r e d  above .  S t u d y i n g  t h e  a s ~ p t o t ~ c s  o f  t h e  i n t e g r a l s  ~ ] ~  o f  such  forms o v e r  

t w i s t e d  c y c l e s ,  one  can endow t h e  t w i s t e d  cohomology  s p a c e s  ~ t h  a f ~ K [ r a t i o n  which  appa-  
r e n t l y  has  good "Hodge" p r o p e r t i e s ,  d e f i n e  t h e  s p e c t r ~  o f  a s i n g u l a r i t y ,  e t c .  I t  seems ~o 
me t h a t  t h e  a n a l y ~ i c  t h e o r y  o f  t w i s t e d  cohomology  happens  t o  be t h e  n a t u r a l  l a n g u a g e  f o r  
p r o v i n g  t h e  t h e o r e m  on t h e  s e m £ c o n t £ n u i t y  o f  t h e  s p e c t r ~  o f  a s ~ n g u l a r ~ t y .  I t  s u f f i c e s  t o  
r e c a l l  t h e  r o l e  which  t h e  b e h a v i o r  o f  t h e  Hodge s t r u c t u r e  p l a y s  in  t h e  cohomology  o f  b r a n c h e d  
c o v e r i n g  unde r  d e c o m p o s i t i o n  by t h e  c h a r a c t e r s  o f  a c y c l £ c  g roup  ~n t h e  p r o o f  o f  t h ~s  t h e o r e m  
g~ven by h.  N. Varchenko  and J .  S t e e n b r i n k  [6 ,  2 1 ] .  

i. 

. 

3. 

4. 

5. 
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