NORMAL FORMS FOR FUNCTIONS NEAR DEGENERATE
CRITICAL POINTS, THE WEYL GROUPS OF Ak, Dk, Eg
AND LAGRANGIAN SINGULARITIES

V.I. Arnol’'d

There exist interesting connections between the simplest degenerate critical points of functions and
the simple Lie algebras Ay, Dk, Ex (or at least their Weyl groups). Inthe present paper it is shown that
critical points which are simple (without moduli) are classified by the series Ak, Dk, Ek. All degeneracies
of codimension not greater than 5 turn out to be simple. Hence this paper also contains the classification
of all degenerate critical points of codimension not greater than 5.

Critical points of functions are closely connected with singularities of projections of lagrangian man-
ifolds. Atthe end of the paper, the classification of simple singularities of lagrangian maps is given. In
particular, a table is computed of normal forms of projections of lagrangian manifolds in general position
up to dimension 6, where moduli first appear.

§1. Introduction

The behavior of a function near a nondegenerate critical point is determined by Morse's lemma: an
appropriate choice of coordinate functions will lead to the morsian normal form —x}—...—x} + x%, 4 +
eea ¥ x%l + C. It is also known that near an isolated critical point, even if it is degenerate, an analytic
function is transformed into its Taylor polynomial by an appropriate analytic change of variables (see, e.g.,

11, 12D

In this sense, a function near an isolated critical point can always be reduced to polynomial normal
form. However, there is an essential difference between this polynomial normal form and the morsian one:
the coefficients of the Taylor polynomial are continuous parameters for the polynomial normal forms, while
the morsian normal forms are determined by a discrete parameter (the index of inertia v).

It turns out, that for the simplest degeneracies one can give norma!l forms similar to the morsian
ones, i.e., which do not involve continuous parameters. In the present paper the classification of degenera-
cies of codimension less than 6 is given. We shall give a finite list of normal forms such that in typical
1 < 6-parameter families of functions no singularities occur other than those enumerated.

Carrying out an analogous classification of all critical points of codimension 6 is impossible, since
here the normal forms must inevitably contain parameters ("moduli"). However, there are some special
degeneracies (we shall call them simple) of any codimension, near which there are no moduli (for precise
definitions see § 2). The basic result of this paper is the classification of all simple critical points,

A complete list of normal forms of a function in the neighborhood of a simple critical point appears
as follows (we assume that the critical value is equal to zero):

A f=F+2N 42l +Q, k>1, codimd, =k—1,

Dy f=ae, 425+ Q, k>4 codimD,=k—1, (1.1)
Eg: f=2} + 24 0Q, codim E¢ =15,

Ep f=2a3 + 22 + 0, codim E; = 6,

Eg: f=a 4+ 25 4+ 0, codim Ey =7,
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where Q denotes the standard quadratic form
Q= —2t— ... — 22+ 2o+ ... + 2

The connection between these series and the series of simple Lie groups Ak (linear), D) (orthogonal}
and Eg is discussed in §9.

All singularities of codimension! < 6 are simple. They are indicated exhaustively in the following
table:

[ |1|2|3|4| 5

: 1.
Singularity 142 |4s |4, D45, D 46, Ds, B (1.2)

In codimension I = 6 with n = 3 variables, along with the singularities Ak, Dk, Ek one meets singulari-
ties of other types: their normal forms inevitably contain parameters. For n = 2, the parameters show up
beginning with codimension 7.

§2. Formulation of Results

We shall consider smooth real functions with critical point 0 € R and critical value 0 (the complex,
R-analytic and formal cases differ with slight simplifications). The group of germs at 0 of local diffeo-
morphisms of the space RM which leave 0 fixed, acts on the space of germs of our functions at 0. We are
interested in the orbits of this action. Orbits "in general position" have codimension 0: they consist of func-
tions with nondegenerate critical points. The remaining orbits have positive codimension,

Orbits of positive codimension can form discrete "stratifications" or continuous families. In the first
case we shall call the orbits simple. In order to give the exact definition, we shall first consider the ac-
tion G x M — M of a finite-dimensional Lie group G on a finite-dimensional manifold M.

Definition 2.1. An orbit W of the action of G on M abuts an orbit V at some (and then any) point v €V,
if any neighborhood of the point v in M meets W.

Definition 2.2. An orbit V is called simple, if a sufficiently small neighborhood of one (and then any)
of its points v meets only a finite number of orbits.

Remark 2J3. If the action of G on M is algebraic, then a neighborhood of a point v meets either a fi~
nite number of orbits, or a continuous family.

Remark 2.4. If in definitions 2.1 and 2.2 one replaces neighborhoods by local transversals, then these
definitions will apply to orbits of finite codimension even in the infinite-dimensional case.

We consider as M the manifold of r-jets at the point 0 of functions with critical point 0 € R® and criti-
cal value 0. On this manifold the group of r-jets of diffeomorphisms RM — R® which leave 0 fixed, acts
algebraically.

Definition 2.5. A germ of a function f with critical point 0 € R™ and critical value 0 will be called
simple if for sufficiently large r, 1) its orbit in the space of r~jets is simple and 2) the number of abutting
orbits in the space of r-jets remains bounded as r — «,

Example 2.6. The germ of the function of one variable v(x) = xK is simple, since its orbit in the space
of r-jets for r = k abuts only the orbits of the germs +x™, where m < k.

Example 2.7. The germ of the function v(xy, X,) = x4X,(x — x2) is not simple, since among the nearby
functions x;(x} — x3) (x, * tx,) (where t is small) an infinite number belong to different orbits. Thus the
cross-ratio of the four tangents to the branches of the zero level lines is an invariant diffeomorphism.

Example 2.8, The germ of the function of one variable v(x) = 0 is not simple, although its r-jet for
any r is simple.

The critical point 0 in this example is not isolated. A phenomenon, similar to what has been observed
in this example is possible only for critical points of infinite multiplicity (in the analytic case not isolated).
In fact, if a critical point is of finite multiplicity (in the analytic case isolated), sufficiently long r-jets de-

fine the germ up to diffeomorphisms, hence under passage to longer jets the number of abutting orbits is un~
changed.
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Definition 2.9. An r-jet of a function at 0 is called sufficient, if any 2 germs fy, f, with this r-jet are
carried into one another by a local diffeomorphism g which leaves 0 fixed: f(x) = f,(g(x)).

The set of germs which do not have a sufficient jet (i.e., the set of germs with singularities of infinite
multiplicity), has infinite codimension in the space of all germs.

Disregarding these completely unusual cases allows us to reduce the analytic problem of the classifi-
cation of simple germs to an algebraic one (on orbits in the space of jets) and has no influence on the de-
cisive results which are the following.

THEOREM 2.10. Each simple germ can be described in an appropriate coordinate system as one of
the normal forms Ag(k =1), Dr(k = 1), Ex(6 = k = 8) of the list (1.1). '

THEOREM 2.11. The set of all nonsimple germs has codimension 6 in the space of germs of func-
tions of n > 2 variables with critical point 0 and critical value 0 (if it is desired, in the space of r-jets where
r= 3). For n = 2 the codimension of the set of all nonsimple germs (or r-jets, where r = 4) is equal to 7,
and for n = 1 it is infinite.

COROLLARY 2.12. The classification of degeneracies of codimension ! < 6 is given by table (1.2).
For example, in a typical five-parameter family of functions with separated values of the parameters,
critical points of types Ag, D;, E; occur, on some union of their curves types A;, D;, on some union of these
curved surfaces types A, and D;; the singularity A; occurs on a three~dimensional and A, on a four-dimen-
sional submanifold of the parameter space. For the remaining values of the parameters, critical points are
morsian (nondegenerate).

~ Remark 2,13, The results formulatedare equallyvalid in C* and R~ or C-analytic situations and also
in the framework of formal power series. In the complex case the number of normal forms is naturally
lower, replacing all minus signs in (1.1) by plus signs. For even k the singularities Ax with x1+ L are equiv-
alent even in the real domain (i.e., they belong to the same orbit). With this exception the remaining singu~
larities in the list (1.1) are pairwise nonequivalent.

Remark 2.14, Further consequences of theorems 2.10 and 2.11 are mentioned in §§8-11. Among
other things, from the results cited there it follows that in a typical family of functions of the special form
F(x,y) = 8(x) = (x,y) (x €R®, y €RD), depending on n variables x and n parameters y, there occur exactly
the same degenerate critical points as in a typical family F of general form which depends arbitrarily on n
parameters.

The proof of Theorems 2.10 and 2.11 is givenin §8 3~7.

§3., Sufficient Jets

The use of the simple lemmas given below greatly shortens the calculations in the proof of the class-
ification theorem.

We consider the ring of germs of smooth functions at the point 0 € R®, We denote by m the maximal

ideal of this ring, i.e., the collection of germs of functions equal to zero at the point 0. Thus, the notation
J €m?® denotes that f has a zero of order s at 0.

LEMMA 3.1. Let f be a germ of a function at the point 0 ¢ RP, We fix a natural number r and assume
that f satisfies the following condition:

n
Vocsw+ Ihem: o= -g—é— h; mod mre, 8.1,

i=1 i

Then any function f' for which f' = f mod m¥*l also satisfies (3.1)p.
) n

Proof. 2 3(—/8:—”— h; =mm, hence it suffices to take hi' = h;j.
i=1

Remark. Thus, (3.1)r is a restriction on r-jets, not on germs,

LEMMA 3.2. Let the r-jet of the function f at 0 satisfy (3.1)y. Then the r—iéi of the function f at 0 is
sufficient (see definition 2.9). :
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Proof. 1°, Let J° be the space of s-jets of functions at the point 0 in the space RD. Let m = 1. We
consider in the jet space J¥"M the submanifold consisting of all r + m-jets, whose r-jet coincides with the
r-jet of the function f. We denote this submanifold by Fp; thus, Fip< Jrim, mo prove Lemma 3.2, we
shall show first of all the following

Assertion Ap. Under the condition (3.1)y the orbit of the jet of the function f in J*VM contains Fpy
for any m = 1.

2°. We shall prove assertion A;. The action G x J — J of the Lie group of s-jets of diffeomorphisms
leaving 0 fixed, on the manifold of jets J = JS gives a map of tangent spaces (derived from the action on the
first argument) TeG — TjJ (e is the unit of the group, j is the jet of the function f). In coordinate notation,

this map associates with the s-jet of the vector field h = 2h0/0z; at zero the s-jet of the function );df/dz:

at zero. Hence, from condition (3.1)r it follows that the tangent space to the orbit of the r + 1-jet of the
function f contains the tangent space to Fy at the point which is the r + 1-jet of the function f.

But by Lemma 3.1, condition (3.1), is also satisfied for all f € F;. Consequently, the tangent space
to the orbit of each point of Fy contains the entire tangent space to Fy at this point.

Whence it follows that each curve in Fy is tangent to the orbit of each of its points, and so belongs en-
tirely to an orbit. Since the space Fy is arcwise connected (it is diffeomorphic to euclidean space), Fy be-
longs entirely to an orbit. A, is proved.

3°. We shall show that (3.1),=> (3.0)..;. Let @ €mT™2, Then «=Yza; (; Sw+) (Hadamard's lemma).

We represent o in the form «; = leij-af/'azj mod m™2, h;; =m? , by virtue of (3.1)y. We set h;= inhi,-.
i i
Then a =Y k;-0fdz; mod w3 (h; =m® = w?) , which is what was needed.

Applying what was proved s — r times, we get (3.1}, = (3.1)g forany s = r.

4°. Letf,and f, be two functions whose r-jets coincide with the r-jet of the function f. We shall
show that their s-jets belong to one orbit in J® for s = r. This was already proved in Par.2° fors = r *1.
Let the k~jets of the functions f; and f, belong to one orbit in JK, we shall show that their k + 1-jets belong
to one orbit in Jk“. We make a diffeomorphism which carries the k-jet of the function f, into the k-jet of
the function fy. The function f, is carried into a function fg, whose k + 1-jet lies in the same orbit in Jk+l
as the k + 1-jet of the tunction f,. But the k-jets of the functions £, and f; coincide and satisfy (3.1)i by
virtue of 3°. From A (proved in 2°) it follows that the k + 1-jet of the function f4 belongs to the orbit of
the k + 1-jet of the function f in J¥*1, This means that the k + 1-jets of f and f, lie in one orbit in gkt
and Ap, is proved for any m = 1.

5°, For sufficiently large s the s-jet of the function f is sufficient (see [2] or [1] and [3]). Whence
and from Ap which was proved in 4° it follows that the r-jet is already sufficient.

In fact, let f, be another function with the same r-jet as f . There exists a diffeomorphism which car~-
ries f4 into a function f; with the same s-jet as f(Ag-r).  Since the s-jet of the function f is sufficient, there
exists a diffeomorphism carrying f; into f. Thus, there exists a diffeomorphism carrying f 4 into f, and
Lemma 3.2 is proved.

Example 3.3. We consider the function x° + y4 of the two variables x, y. Its 4-jet at 0 is sufficient
by Lemma 3.2. In fact, any monomial of degree 5 in x, y can be represented either in the form 3x2h1 or in
the form 4yh,, where h; is a monomial of degree 3 and h, is a monomial of degree 2.

Remark 3.4, To replaceh €ém2pbyh €m in lemmas 3.1 and 3.2 is impossible. In fact, let f(x) = xz,
r=1, Then Ve = m?*Hdr =m: « = 2 zh-mod m® , however, the 1-jet of the function f at zero is not suffi~
cient. In the same example the function f' = 0 satisfies the condition f = ' mod m?, but does not admit a
decomposition o = hd f/9x, although f admits such a decomposition.

Remark 3.5. The assertions and proofs of lemmas 3.1 and 3.2 are still valid in the R~ or C-analytic
and R- or C- formal cases.

§4. Classification of Simple Germs: the Series Ak

Let f be a germ of a smooth function at the point 0 €RD; we shall assume that 0 is a critical point
(df | = 0) and that f (0) = 0. Let p be the rank of the second differential d’f |, m the maximal ideal of the
ring of germs so that germs in mK have zeroes of order k at 0.
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LEMMA 4.1. In a2 neighborhood of the point 0 there exists a smooth system of coordinates x, y in
which f can be written in the form

f=0@+0Q W (psmd,
where Q is a nondegenerate quadratic form (dim {y} = p,dim {x} = n-—p).,

Proof, First we reduce 2-jets to canonical form. By the theorem of Jacobi on quadratic forms,
there exists a system of coordinates x, z(dim {zf = p), in which the 2-jet of the function f takes the form

(o) (z,2) = et (i=1,..,p, & = +1). (4.1)

We consider the restriction ft of the function f to the plane x = t. For small [t]| the function ft has a unique
critical point near z = 0; this critical point depends smoothly on t, and at it [z[ = o(]t]) all of this follows
from the nondegeneracy of the critical point z = 0 of the function f, and the implicit function theorem.

We denote by ¢ {t) the value of the function f at this critical point; from formula (4.1), since [z[ =
o(t]) it follows that |ot) ]| = O(|t]3).

The difference g(x, z) = f(x, z) — ¢ (x) can be considered as a family of functions of z depending
smoothly on the parameter x, with nondegenerate critical point which depends smoothly on x and with criti-
cal value zero,

The generalized lemma of Morse asserts that such a family g can be reduced to the form g(x, z) =
tyi+... :l:yé by a smooth change of variables y; = yj(x, z) (this lemma is proved in the same way as the
ordinary lemma of Morse in which there is no parameter x; see, e.g., [4]). Now

f=e@+£pyt... £yt (psmd),
which is what had to be proved.

The number of deficient squares n —p = dim{xt will be called the corank of the function f at zero.
Thus, the corank of a function at a nondegenerate critical point is equal to zero.

LEMMA 4.2. The corank of a simple germ does not exceed two.

Proof. We consider the cubical Taylor polynomial of the function f at a critical point of corank k.
The restriction to the null space of the second differential defines on this k~dimensional linear subspace
of the tangent space a cubical form which is independent of the coordinate system.

The action of the group of diffeomorphisms on the space J° (3-jets of functions) induces an action of
the linear group GL(RK) in the form of a linear substitution in the cubical forms on RK. If the cubical forms
of the functions f and g lie in different orbits of the action of GL(RK) on 3-jets, these functions lie in differ-
ent orbits of the action of the group of diffeomorphisms on the space of jets J%,

But the dimension of the space E of cubical forms in RK is equal to Ct+q, and the dimension of the
group GL(RK) is equal to k>. For k = 3 we have C},, > k?. Consequently the dimension of all orbits of
GL(RK) in E is less than the dimension of E. Hence the orbits form a continuous family in E for k = 3.
This means that the orbits of the group of diffeomorphisms in J% also form a continuous family near the 3-
jet of the function f.

Thus, a germ of corank k = 3 cannot be simple, and Lemma 4.2 is proved.
It remains for us to classify simple germs of coranks 1 and 2.

LEMMA 4.3. A simple germ of corank 1 can be reduced to one of the normal forms of type Ak with
some k = 2,
n—1
f=do1Q, @Q=eyr (:=1) (4.2)
i=1
Proof. By virtue of Lemma 4.1, in some coordinate system x, y we have f = ¢(x) ¥ Q(y), where
¢ ém3, We investigate the function ¢ of one variable x. If all derivatives of ¢ at zero are equal to 0,
then the germ f is not simple (infinite number of abutting orbits —xk + Q. Let, for some k = 2, all deriva-
tives of ¢ at 0 up to order k inclusive be equal to zero, and the derivative of order k + 1 be different from
Zero.

258



Then f reduces to normal form (4.2). In fact, by virtue of Lemma 3.2 the k + 1-jet
e O N L (4.3)
is sufficient: this follows from the factorization of all monomials in x, y of degree k + 2:
2kt = (k 1 1) ca®ho,  Yige (T, ¥) = 24 :hia (ho, hiw = m?).

Thus, we can write f in the form (4.3), and hence, (after substituting x' = |e ka'” x), also in the form (4.2).
Lemma 4.3 is proved.

It is not difficult to verify that all germs (4.2} are simple (see below §8).

Remark 4.4. Actually, we have proved more than was formulated in Lemma 4.3. Namely, we have
proved that every germ of corank 1 either reduces to one of the normal forms (4.2) or has a critical point
of infinite multiplicity, and hence, belongs to a set of infinite codimension in the space of germs.

§5. Classification of Simple Germs of Corank 2: the Series Dg

Lemma 4.1 reduces the study of germs of corank k to the case of functions of k variables: the reduc-
tion is brought about in the general case just as it was done for the case k = 1 in the proof of lemma 4.3.
Hence for the classification of simple germs of corank 2 it suffices to deal with functions of two variables.
(However, the calculation carried out below could also be done for a larger number of variables, without
using the above-cited reduction.)

A germ of a function of two variables has corank 2 if its 2-jet is zero. In this case the 3-jet deter-
mines a cubical form on the tangent plane. It is easy to prove

LEMMA 5.1. A cubical form on the plane R? is reduced by a linear change of variables to one of the
following types: x%y = y°, x%, %, 0.

The proof depends on the fact that three different points in a projective line can be transformed into
any other three by a projective transformation,

LEMMA 5.2. If the germ of a function of two variables of corank 2 is simple, then its cubical form
is different from 0. Moreover, if a germ of corank 2 of a function of any number of variables has zero cub-
ical form on the null plane of the second differential, then it is not simple.

Proof. Under the given hypotheses the 4-jet can be reduced to the form @ (xy, xp) + x§ + ., .. +x}
mod m®, where ¢ is a homogeneous polynomial of degree 4. This polynomial gives a form of degree 4 on
the null plane of the second differential, which does not depend on the coordinate system. The cross-ratio,
defined on zeros of ¢, is an invariant action of the diffeomorphisms on the 4-jets. The existence of a con~
tinuous family of orbits distinguishing values of this invariant is an obstruction fo the simplicity of the germ.

LEMMA 5.3. The 3-jet of the function x%y = y® at 0 is sufficient.

Proof. For calculation it is more convenient to take the (obviously equivalent) form f = x% + (y3/9).
Then df/dy =2 + y?, 8f/dx = 2zy, and Lemma 5.3 follows from Lemma 3.2 and the decompositions

gt = (2 y®) (d- 9% F 2ay (2y/2), v’z = 2zy (y*/2),
2 = 2zy (ay/2), y2® = 2ay (2%2), 2* = (2 4 y¥)a? TF 2ay (2y/2).

From Lemma 5.3 and 5.1 it follows that if the cubical form is not degenerate, then the function can
be reduced to the normal form '

Dy:f=2 Ly
It is not hard to verify that both germs of type D, are simple (see §8).
We now consider the case of a cubical form of type xzy.

LEMMA 5.4. A simple germ of a function of two variables of corank 2 with cubical form x%y can be
reduced to one of the normal forms

Dy :f = 2% 4 y*' (k > 5).
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Proof. We assume that the s~-jet of the function f in some coordinate system has the form x%y +
¥ g(x, y), where ¢g is a homogeneous polynomial of degree s. (For s = 4 there is automatically such a co-
ordinate system). We represent ¢g in the form

@ = ay® + 2bzy* + 2 (, y),v}here¢ e mtl
Substituting x — byS~2 = x,, y = ¥(x, y) = y; reduces f to the form f = x}y, + ay; mod mS*! (because m*S~3<
‘mSt for 5 > 3). Next, two cases are possible: ¢ = 0 and a = 0. If @ = 0, then the s~jet of the function f is

reduced to the form x%. Hence the s + 1-jet has the form. xjy; + ¢g+s (x4, ¥y, and we can repeat the pre-
vious argument. Going on, we will either get ¢ = 0 for all s =4,5,,..,or at some step we get a = 0.

If @ # 0 never occurs, then the singularity has infinite codimension and the gefm of f at 0 is not sim-~
ple (for example, its orbit in J abuts all orbits of x%y + xX for k = s).

Now if for some s.one has a # 0, then the germ of the function f at zero will be equivalent to the
germ of x%y + ayS. For the proof, we verify that the s-jet x%y + (ayS/s) (s = 4, a = 0) is sufficient. By
Lemma 3.2 this follows from the following decompositions:

zoy? = 2zyh(z,y), h=m? foo a+B=s5s+4+1>3 (>0, >0),

841 — (xz + ays—l) z51 - Zzy (_ xs—zys—‘z/ga) (z“l Emz, (xy)s-z Em2),

P = (2? -+ ay*) (y¥/a) + 22y (— zy/2) e, (—y2)ew’).
In order to convert x%y + (ayS/s) into x’y + yS, it suffices to substitute x, = px, y; = qy. Lemma 5.4 is
proved.

Remark 5.5. Actually, more was proved than Lemma 5.4. Namely, we have proved that every germ
of corank 2 with cubical form x%y either reduces to one of the normal forms Di(f = x3x, + x5 ! £ x2 +
..+t x3), or has a critical point of infinite multiplicity, and hence belongs to a set of infinite codimension
in the space of germs.

It is not hard to verify that the germs Dk, k = 4, are simple (see § 8).

§6. The Germs Eg, E;, Eg

We shall look for simple germs of functions of two variables of corank 2 with cubical form x°.

LEMMA 6.1. A simple germ of a function of two variables of corank 2 with cubical form x® reduces
to one of the following normal forms:

Eg:f=2 -y Enif =2+ ap Bt f = 2 + ¢
_Proof, 1°. We write the 4-jet of the function considered in the form
22 + ay® + baxy® + 32%p (z, y) mod m, where ¢ & m?.
Substituting x + ¢(x, y) = x4 turns the 4-jet into xj -+ ay* + bx;y® mod m’,

2°. We assume that @ = 0. Then one can reduce the 4-jet tothe form x} + y} + 4cx,y} mod m® by sub-
stituting y = py;. After this we set y, = y; + cx;. Then the 4-jet assumes the form x} + yj + 3x}¥ mod m®,
where ¢ €ém?, Now, sunstituting x; + ¥ = x, reduces the 4-jet to the form x} + y} mod m®, By Lemma 3.2
this jet is sufficient (see example 3.3). Thus, inthe case a # 0 the germ is reduced to the normal form E,.

3°. We assume that g = 0, b # 0. Then the 4-jet has the form x} + bxy?, and it can be reduced to the
“form x} + x; y} mod m5 by substituting y = py,.

We shall show that the 4-jet x°® + xy® is sufficient. First, we shall show that the orbit of any 5-jet
P xy3 + @ modmé (¢ em) is open in the space of 5~jets with 4-jet <3+ xy:’. For this it suffices to repre-
sent any monomial 5-jet x®yB(a + B = 5) in the form

22y’ = (322 + y® + A)ry + (3zy® + B)h, mod ms, (6.1)

where A = 09/ 0z, B = 0¢/0y = mi, h =m* . For the decompositions of xy*, x%*® and x%y? we take h, = 0,
hy = x21yB-2/3, Further,

2 = (32® + y® + A) (2%3) + (3zy® + B)(—=%y/3) mod m¢.
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Thus, for all monomials divisible by x, the decomposition (6.1) is achieved. Finally,
¥ =032 + y* + A)y* + Gay® + B) (—a) + Bz mod m;

Here Bx mod m® is a monomial of degree 5, which is divisible by x. The decomposition (6.1) with left side
Bx exists by what was proved. This means it a2lso exists for y?%,

Thus, the orbit of the 5-jet x° + xy® + ¢ (¢ ¢m% is open in the space of 5-jets with 4~jet x* + xy® and
hence contains this entire space. Consequently, any 5-jet with 4-jet x° + xy® mod m® can be reduced to the
form x* + xy® mod m®,

4°. We shall show that the 4-jet of x3 + xy® mod m® is sufficient. Our computation in Par. 3° shows
for any v €m® there exists a decomposition of the form (6.1)
v = (32% 4+ ¥ + (32y®)h, mod méwhere h; &= m,
Consequently, for 6 € m® there exists a decomposition
8 = (32 + ¥ + (32yPh,mod W7, where h, = m2.
Thus, the 5-jet of x° + xy° is sufficient by Lemma 3.2.

But by virtue of3°, every 5-]et with 4-jet x* + xy® mod m® can be transformed mto the form x° + xy®
mod m®, Thus, the 4-jet of x3 + xy® mod m® is already sufficient.

We have thus proved that if in 1°, 2 =0 and b = 0, then the function can be transformed to the nor-
mal form E;.

5°. We assume that ¢ = 0, b = 0. Then the 4-jet has the form x® mod m®, We write the 5-jet of our
function in the form

34 a'yt + bayt + 32%¢ (z, y) mod mOwhere ¢ = w3,
Substituting x + @ (x, y) = x; transforms the 5~jet into Xsl +a'y® + b'x1y4 mod mé,

6°. We assume that @' # 0. Then one can reduce the 5-jet to the form x} + y} + 5¢'xyy] mod m® by
substituting y = py,. After this we set y, =y, + c¢'x;. Then the 5-jet assumes the form x{ + y3 + 3x}¥ mod
mé, where ¥ em®, Now substituting x; + ¥ = x, transforms the 5-jet to the form x3 + y§ mod m®.

By Lemma 3.2, the 5-jet x° + y® mod m® is sufficient (the monomial x®y® for o + 8 = 6 is divisible
either by x% or by y%. Thus, in the case a' # 0 the function reduces to the normal form Eg.

7°. We assume a' = 0. Then the 5-jet has the form x° + b'xy* mod m®. We shall show that this jet is
not sufficient. Moreover, the partition of the space of 6-jets with this 5-jet into orbits is continuous (at
least for b' % 0) in the neighborhood of any such 6-jet. Thus we will show that for simple jets a' = 0.

8°. We shall show that our 6-jet for b' = 0 can be reduced to the form x* + xy* + Ay®* mod m". In fact,
we shall show that the coefficient b' in the 5-jet can be made equal to + 1 by an axial dilatation. After this
we shall show that the tangent plane to the orbit of any 6-jet x* + xy* + @ mod m” (where ¢ € m®) contains the
entire space of monomials of degree 6 which are divisible by x (modm’), For this, we shall give a decompo-
sition of the monomial xayB (¢ + B = 6, & = 1):

Ty = (32® 4 y* + Ay + (£ 4y® + B)hy mod w7,

where A = 3¢/8x, B = 9¢/3y, A and B €m®, Namely, for 1 = o = 3 we set hy = 0, hy = z5-1y8-%4 = m?,
and for4 =g =6weseth; = 22 %3 =m* ,hy = 0.

Consequently, the orbit of the 6-]et %% + xy! + ¢ modm’ contains a representative with ¢ = Ay®, which
is what was asserted.

9°, We consider the family of functions depending on a parameter A, f3 = x*+ xy* + Ay’. We shall
show that the orbit of the germ of the function f at zero (and even the orbit of its 6-jet) varies continuously
with A.

With this aim, we note that the zeros of £ form 3 parabolas x = tiy?, where t; are the roots of the
equation t? £ t + A = 0. We shall show that the ratio (t; — t)/(t, — t) (definite to within the order of the roots)
is an invariant of the system of three tangent parabolas with respect to diffeomorphisms (it is sufficient to
consider the 2-jets of the parabolas and the 1-jets of the diffeomorphisms).
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We shall verify that the ordered triple of parabolasx = 0, x = y?, x = ky? (k # 0, 1) is never trans-
formed by a diffeomorphism of the plane (near x = y = 0) into another triple of the same form with differ-
ent k (one parabola can be transformed by the diffeomorphism into x = 0, and the second into x = y?.

A diffeomorphism which carries the first triple into the second leaves the y axis fixed and hence has
the form ’

T=rx@n+uy), ¥=oeur+ auy+ v y)whereucsm, vem,

In order that the parabola x = y? remain in place, one must have ayy = a},. But then the image of the para-
bola x = ky? will also be x' = ky'? mod y'3, which cannot be a parabola x' = k'y'? for k' = k.

10°, We return to the 6-jet of 8°. The number (t; ~t;)/(t, — t;), constructed from this jet, varies con-
tinuously with A. Whence it follows that the 6-jets of the functions f) belong to different orbits (which vary
continuously with A). This means that not one of the germs with a' = 0 is simple, and Lemma 6.1 is proved.

One can verify (see §8), that the germs Eg¢, E;, Eg are simple,

Remark 6.2. Actually, we have proved more than Lemma 6.1, Namely, we have proved that every
germ of corank 2 with cubical form x® either reduces to one of the forms

Ey f=24at+add.. 42k Epf=altzaitait.. Lo
Eg =2+ aitai+. .. an

or belongs to the set of codimension 8, which consists of germs whose 5-jets reduce to the form
£ zah .. 4 2h modme.

All germs of this last type are not simple.

The last part of the assertion (that the germs with 5-jet x} + x;x} + xJ + ., . = x} are not simple)
for n > 2 does not follow formally from Lemma 6.1, but was also proved.

We shall show, for example, that the tangent plane to the orbit of the 6-jet x} + x;x§ + Ax + x? =
§

ee s x%l (and every 6-jet with the given 5-jet reduces to this form) does not contain the direction x3, i.e.,
that the equation relative to hj ¢m
(322 - 23) by + (6AxS -+ 4z yal) By o 223y 4 . . . + 220k, = 2§ mod m?
is unsolvable. In fact, we set €= 1, %3 = . .. = xp = 0, and we introduce the notation h.(z,) = h, (V' F5;23,
Xgs 0y » . ., 0). Then we get
(6M -+ 4V TT,) heal = 28 mod a7,
Consequently,
Bt (£.) = ez, modad, ¢ = 6k -+ &4V T, = 6h — 4V F;,
which is impossible for such a A,

Thus, the orbits of the 6-jets x} + x;, x§ + Ax§ x4 + ... + x}; modm’ vary continuously with 2, so
no germ with such a 6-jet is simple.

Remark 6.3. The passage from the classification of germs of functions of k variables to germs of
corank k of functions of any number of variables can also be justified with the help of any of the following
assertions.

Proposition 6.4. The map which associates with the germ of ¢ at zero the germ of the function
f@)=9@+ QW) vwhereQ=+12+...+12 @R yeskh, o=n’),
at the point (0, 0) is transversal to the orbit of the germ of f at this point.

Proposition 6,5. If the germ of the functions f, (z, y) = ¢, () + Q (y) and {2 (z, y) = ¢z (z) + Q (y) and
(where oy 6m3, @y ¢md) at the point (0, 0) are smoothly equivalent and of finite multiplicity, then the germs
of the functions ¢; and ¢, are also equivalent.

The proofs are not given since they are long and it is not clear if the requirement of finite multiplicity
is essential, We shall not use propositions 6.4 and 6.5 in what follows.,
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§7. Classification of Singularities up to Codimension 6

Theorem 2.10 follows immediately from the lemmas proved above in 8§4-6. As a matter of fact,
these lemmas prove somewhat more, namely, from remarks 4.4, 5.5, and 6.2 follow the

THEOREM 7.1. Any germ of a function at a critical point* can either

1) be described in one of the forms Ak, Dk, Eg, E;, Eg, or
2) belongs tothe set of codimension 6, formed by all germs of corank greater than 2, or

3):belongs tothe:set.of codimension 7,:formed by those germs of corank 2, whose 3-jet reduces to
the form + x§ + ... + x2, or
n
4) belongs to the set of codimension 8, formed by all germs of corank 2 with 5-jet which reduces to
the form x} + xyx§ +x% + ... % x}, or

5) belongs to the set of infinite codimension, formed by all germs of corank 1 with critical point of
infinite multiplicity.

In case 1) the germ is simple, and in the remaining cases it is not.

Each of the sets described in 2)-5), has, for n 2 3, codimension not less than 6 (for n = 1, not less
than 7, for n = 2, infinite codimension). Hence from Theorem 7.1 follows Theorem 2.10 as well as Theorem
2.11 and Corollary 2.12.

§8. Versal Deformations of Functions

We recall the definition of versal deformations of functions (for more details on versal deformations
(see [5], [6]).

Let f be the germ of a smootht function f: RN — R at the point 0. A deformation F of the function f
is a germ of a smooth function F: RD x R! — R at the point (0, 0), for which F(x, 0) = f(x). The space R!
of the second argument of F is called the base of the deformation, and its elements are called the para-

meters of the deformation. The dimensions of the bases of different deformations of one function f can be
distinct.

Definition 8.1. A deformation F of the germ of a function f is calied versal, if every other deforma-
tion of the function f is equivalent to one induced from F.

This means that for any function G: R x RP — R which is smooth near the point (0, 0), such that
Gy, 0) =f(y), there exist 1) a map ¥: R™M — R! which is smooth near 0 and ¥(0) = 0 (change of parameter),
2) a diffeomorphism (x = X(y, ), where X: R x Rm — R1, X(0, 0) = 0, det (D4X) (0, 0) = 0) which de-
pends smoothly on the parameter x € R!, which turns into the identity transformation for u = 0 (X(y, 0) = y),
such that

Gy, wy=F (X @ w ¥ ).
Differentiating this relation, we arrive at the following definition.

Definition 8.2. A deformation F: RM x Rl — R of the germ of a function f: RD — R at zero is called
infinitesimally versal if every germ at 0 of a function o-: R? — R can be represented in the form

n {
0@ =2 L n) + 3 ewsa),
i=1 ¢ i=1

aF
where ¢; = TN

N A=A, ..., )= R') » hj are smooth functions, ¢; are numbers.
] (A=0

In other words, a deformation of the germ of a function at a critical point is infinitesimally versal if
the germ of its derivative with respect to the parameter generates the local ring of gradient maps at the
critical point.,

*With critical value zero; the codimension is also in the space of germs with critical value zero.

tThere exist C*®, R-, and C~analytic and formal variants of the following definitions; the results carry over
to all these cases.
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THEOREM 8.3. Every infinitesimally versal deformation is versal.

The proof is too long to gwe it here; it can be carried out by any of a series of standard schemes
(see, e.g., [1], [T]).

Choosing generators of the local ring for germs of the functions Ak, Dk, Ek, we get the basic result
of the present paragraph.

COROLLARY 8.4. As versal deformations for the germs of functions Ay, Dy, and Ey [see formulas
(1.1)] one can take the following k~parameter deformations:

A F =, A=+ xfﬂ_-j:x: + @+ lk—le—l -+ M-zzl 4o A+ Ao,
Dy F (2, M) =212 425 4 Q 4 Moy + hcgth - L + haity - Ao,
Eg F(x, M) = a3 i‘ré 4 Q + ATy} -+ Aywymy -+ A-a-’% + AyZp -+ iy + Ao,
E;: F(z,0) =2} + 2,25 + Q + Mz + Aoty + Ay} + AoZh + Moot hay Do,
Eg: F(z,}) = 2]+ 23 + Q + Mzidh + Ae2y75 + AsTy2p +
-+ ng + sz; + gy + My -+ .

Here Q is the standard quadratic form
—zi— ...~z +xent ... 25

COROLLARY 8.5. As transversals to the orbits of the simple germs f in the space of r~jets of func-
tions with critical point 0 and critical value zero, one can take the linear family with k — 1 parameters
€9 « » o, € Of the form

Ay ix’{“+x§+0+e2xi+asx?+ +am r>k+1),
Dy: aim 2 + Q+ ey ... F exaT g1 Tp + exTi r>k—1),
-Ea:x?i 23+ Q + o2l + £5T3 -+ £4T1 + 857172 + 87,23 (r>4),
Ey: al + ol + Q + ea7) £ #573 + €428 4 871 + eetata + 81212} - =>4),

Eg B+ Q4 Bolh 53352 + 841; -+ Ssﬂ'{'ﬁexlxz‘{‘ﬁﬂng‘i’ asxxx’é (r>39
From these formulas, in particular, follows

COROLLARY 8.6. The germs of types Ay, Dk, Eg, E;, E; are simple.

In fact, by' direct calculation it is easy to see that for all ¢ the germs indicated in Corollary 8.5 be-
long to the orbits of types A1, Dj, E7 (I = k), which (for fixed k and n) are finite in number. The formulas
of Corollary 8.5 also clearly permit one to enumerate all orbits which abut orbits of the given simple germ.

COROLLARY 8.7. The diagram of abutting of simple germs has the form (in the complex case)

4, <——Az ~—dy <4, «—A,<——A <A, =<

\15,, NN
N \

Here P < S denotes that the orbit P abuts the orblt S; the complete set of orbits abutting S is obtained
from 8 by moving along arrows in the diagram.

.___..[7

It is easy to foresee the result of Corollary 8.7 heuristically, by considering the inclusions of the
Dynkin diagrams of Ay, Dy, Ek in one another (see §9). However, the proof requires some calculation.

First of all, from dimensional considerations it is clear that Sy can abut only P; with ! <k (P and S
run through the values A, D, E). Further, from the semicontinuity of the rank and multiplicity, it follows
that Ak can abut only A, and that Dk can abut only D7 and A;. Thus, only the abutments indicated in the dia-
gram are possible.

In order to prove that the abutment Py _; — Sy is realized, it is sufficient to indicate a curve in the
space of jets (t — ft), for which f, has type Sy, and f¢ for t # 0 has type Pg-4.
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As such a curve, one can take, for example, the intersection of the transversals to Sy, indicated in
Corollary 8.5, with orbit Pk-,.

The calculations (rather tedious, especially for A; — Ej) give the following curves:

Ar At fr=an +12f + 25+ Q,

Dy« Dy: fr=alzy+ 2 -t 4 Q,

Ap =D fy =Ty — 23t — (020 2l L+ ) 4 2V ez, — ta] 4+ Qy
Dy —Eg fi= (& — tz)? (¥, + 2ay) + 23 + Q,

As—Eg fr=2l+ @+ ta) 4+ Q,

Do —Ez: fo = (11— t2)* (2, + 26zy) + 2} (2, — tz) + Q,

Ag—Ey: 1 = 1667} + 2} — 4tziz, -— 8t%z,2} + 23 (2, + t23) + O,

Dy —Eq: fr = (v, — 3tz,)* (z, + 6btag) — 186375 + 6123z, + 25 + O,

A;—Eg: fr =1 (@, — ) — 2, (5253 4-4txd) + 23 + 4455 4 56%2% + 25 + Q,
Ey—E;: ft = &} + 2,23 + tah + O,

Ey—Eq: fr=al 425+ tz 2l + Q.

We shall show, for example, that the function f¢ indicated in the line A; - E;, fort = 0, belongs to
As. In fact, for t # 0 the corank of the germ of f¢ at 0 is equal to 1, so ft has type A with some k = «,
In order to find k it suffices to consider the function @¢(x,) = ft(x,(xy), x,), where the function x4(x,) is de-

fined by the condition -aai—: e, = 0 ; the order of zero of the function ¢ is then equal fo k + 1. We find
successively
32+ 2 (5 +tz) =0, =z, {xg) = — (@3/t) - o (23),
(I'f' + tzy (29))* = 9x}/4t? = o @), ¢r=—23+o0 (Ig)-
Thus, k + 1 = 6, i.e., ft has type A;.

§9, Bifurcation Diagrams, Braids, and the Wey!l Group

We consider the bases of the versal deformations indicated in Corollary 8.4. These bases are natur-
ally stratified according to the singularities of the zeros of the level surfaces of the function F(-, ). The
set of all values of the parameter A € CK for which the function F(-, A) has zero as a critical value, forms a
hypersurface I in CK (the bifurcation diagram), which can be called the generalized swallow's tail of the
corresponding singularity (Ak, Dk or Eg); the ordinary swallow's tail in C? is obtained for the singularity
A;.

In this paragraph we consider (without proofs) more or less new propositions about bifurcation dia-
grams of germs of type Ay, Dk, Ex. :

PROPOSITION 9.1. The complement in CK to the bifurcation diagram Z of a germ of type Ak, Di or
Ey is an Eilenberg-MacLane space K(m, 1): m(CK—X) =0 for i = 2.

In order to describe the fundamental group of this complement, we recall the construction of E. Brie-
skorn of the group of braids of the group generated by a map (see (8], [9], [10]).

Let T' be a finite group generated by a map of R™ into some hyperplane.

The complexification of the action of T on Rrﬁ gives a finite group in CM, Let X be the domain in
Cm formed by points of "general type" (with orbits of the smallest number of points). The domain X is ob-
tained from CK by throwing out a certain number of hyperplanes ("diagonals").

Definition 9.2. The braid group of the group I' is the fundamental group of the quotient space X/T :
B(I) = m (X/T).

PROPOSITION 9.3. The fundamental group of the complement of the bifurcation diagram of a germ
of type Ak, Dk, or Ek is the braid group of the corresponding Weyl group: 7r1(Ck ~3) =B(I); ck-2 is
homeomorphic to X/T'.
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The complement Ck — Z of the bifurcation surface serves as the base of a series of important fibra-
tions. One of them has fiber over the point A € CK — I the hypersurface in C? with equation F(., &) = 0.
Since A does not belong to the bifurcation diagram Z, the fiber is a nonsingular hypersurface. We denote it
by v =Va. :

PROPOSITION 9.4. The nonsingular fiber V) of a versal deformation of a singularity Ay, Dy, or Ex
is homotopically equivalent to a:bouquet of spheres-of dimension n— 1,

As these spheres one cantake the-vanishing cycles of Picard-Lefschetz. Moreover, if n is odd (so
that the intersection‘index in Hy-4(Vj) is symmetri¢), then these k-cycles can'be chosen so that their-inter-
section indices will give the Dynkin diagram:

Ay » - to point
5e <

P A

P

oo |

Here each point represents a sphere {a generator in Hy—4(V3)). The self-intersection indices of the
generators are equal to (— 1)R~Y/22, if the points @ and g are joined by a segment, and (o, § = CDPTV?, if
the points o and B are joined by a segment, and (¢, B) = 0, if there is no segment.

PROPOSITION 9.5. The action of the fundamental group 7r1(Ck — Z) of the base of the fibration con-
sidered on the homology of the fiber Vj (for odd n) is the standard representation of the generalized braid
group as the Weyl group; the Picard-Lefschetz transformation is realized as a map into Hy-4(V3) (for Ay,
see the work of A. N. Varchenko [11]).

Remark 9.6. An interesting special case is the case n = 3. In this case the hypersurface V; is an
ordinary surface. The singularities of surfaces of types Ay, Dk, Ex have been thoroughly studied under the
name of "double rational points" (see [12], [13], [14)). In the theory of double rational points, in particular,
it is proved that a singular point of a surface which satisfies some rigidity condition, can be reduced to one
of the types Ak, Dk, E¢, E;, Egc Moreover, it turns out that the set of lines joined in minimal resolutions
of double rational points is described by a2 Dynkin diagram (points —lines, segments —intersections).

Surfaces with double rational points, their versal deformations, and their resolutions can be obtained
from the corresponding Lie groups (Ak, Dk, Ek): they appear in the description of the singularities of a
map, associating with a matrix (an element of the Lie algebra) its characteristic polynomial. In this con-
nection, see [15], [16], [17]. With the indicated map is also connected a family of algebraic manifolds of
other (but always even) dimensions — it would not be surprising to meet among them {V)\} not only forn—1=
2but also forn—1 = 2] >2,

Despite the facts mentioned above, the connection of singularities with Weyl groups does not seem to
be well understood. For example, it is not clear whether connected with singularities are only coxeter
groups generated by reflections, or real Lie groups with their Weyl groups -~ in the latter case one could
hope to obtain some information about nonsimple germs.

§10. Lagrangian Singularifies

The investigation above of the classification of simple germs of functions has applications in the
theory of singularities of projections of so-called lagrangian manifolds.

Actually, this classification was found for the solution of the problems of asymptotic integrals of
rapidly oscillating functions [18}, which is closely connected with lagrangian singularities. In the present
paragraph is communicated (without detailed proof) preliminary information about lagrangian singularities;
the classification results obtained with its help is contained in §11,

Definition 10.1. A symplectic manifold is a pair (M™, w?), where M*? is a smooth even-dimensional
manifold, and w? is a closed nondegenerate differential 2-form on it. A diffeomorphism of symplectic man-
folds f: MP® — MJ" is called symplectic if f*w} = wi.
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Definition 10.2. A submanifold L2 of a symplectic manifold (M?2, w? is called a lagrangian manifold
if the form i*w? induced by the inclusion i: L — M is equal to zero,

Definition 10.3. A fibration p: M — B is called a lagrangian fibratinn f its fiber is lagrangian.

Definition 10.4. A lagrangian map m: L — B is the map induced by the projection » = pi of a lagrang-
ian manifold onto the base of-a lagrangian fibration.

Examples of lagrangian fibrations-are the:cotangent fibrations T*B of smooth manifolds B. More par-
_ticular examples are coordinate 2n-dimensional'space R?™ with coordinates xi, y (i = 1, - . ., n), with form
‘@? = Ydz; /\ dy; and projections 7(x, y) = y.

PROPOSITION 10.5. Any lagrangian fibration is locally isomorphic to the standard one just described,
and the affine structure on the fiber in a neighborhood of each point is defined invariantly.

The proof is based on an application of Darboux's theorem.

An example of a lagrangian submanifold is a submanifold L = ix, y:y= 8S/8x} , where S is a function
on RR = {x}, of the standard 2n~dimensional space R*®. The corresponding lagrangian map =: L - B is
called the gradient. If xi{ are taken as coordinates on L, and yj on B, then ¥ is given by the formula

TENRRPRIE. S 4] (10.0

Every lagrangian submanifold LP in R?® is locally given by its "derivative function" S(x) in a neigh-

borhood of each of its points, in which the tangent space to L1 is transversal to the y-space.

PROPOSITION 10.6. In a neighborhood of each point without exception a lagrangian manifold is given
by at least one of the 21 formulas of the following form:

ar aF R R
yi=79;:Y .’tj:—g‘;— (I,EI, ]EJ), (1002)

i

where F = F(x1, yJ) is the "derivative function" and I = (i, . . «, ik) i8 one of the 21 subsets of the set (1,
.+ n),and Jis its complement. Here, if the kernel of the projection of the tangent plane onto the y-space
is k-dimensional, then as I one can take a set of k elements.

The proof is found, for example, in [19].

Parallel to the general theory of singularities of smooth maps there is a theory of singularities of
lagrangian maps, which are about as frequently met in applications (caustics, envelopes, Huygens principle,
Hamilton-Jacobi equations, etc.).

Definition 10.7. A lagrangian equivalence of lagrangian maps 7y, : Ly, — By,; is 2 symplectic diffeo-
morphism s: My — M,, d: By — B, of the lagrangian fibrations py,: My, —~ By y, such that Ly is carried
into L,. If such an equivalence exists, then the maps 7y, 7, are said to be lagrangian equivalent.

Proposition 10.8. From lagrangian equivalence follows equivalence in the sense of the ordinary
theory of singularities of smooth maps (fy,: U — V are equivalent if there exist diffeomorphisms h: U —
U and k: V — V such that kf; = f,h).

The proof is obvious. The converse proposition is not true, as is shown by the example of smooth
equivalent but lagrangian inequivalent germs at zero f; = x¥ and f, = x® + x4,

Definition 10.9. A lagrangian map is said to be lagrange stable if every close lagrangian map is
lagrangian equivalent to it.

Remark. In the definition of lagrange stability one must choose among several possible concepts.
Here is one of them.

_Definition 10.10. A lagrangian map is said to be weakly lagrange stable if every close lagrangian
map is equivalent to it in the sense of-the ordinary theory of singularities.

Lagrange: stable maps are weakly lagrange stable according to proposition 10.8. I do not know ex-
amples.of weakly lagrange stable germs of maps which are not lagrange stable.*

*There exist germs of smooth maps R? — R? which are not equivalent to gradients in the sense of the ordin-~
ary theory of singularities (and also local rings which are not realized by gradients). The author thanks
V. P. Palamodova, for showing the example: y; = x3, y, = xx, + x3.
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Remark. The concepts of lagrangian equivalence and stability in the large are not very reasonable.
For example, the lagrangian curves (x? + y2—4) ((x=N? + y2— 1) = 0 in the plane (x, y) for different A
A(0 = Ay 5 < 1) are lagrange inequivalent because of the invariance of the affine structure on the fiber of a
lagrangian fibration,

Local variants of definitions of lagrangian stability and weak lagrangian stability of germs are con-
structed on the model of the ordinary theory of singularities (see-[1]). Below "stability" always means
"lagrangian stability," if the contrary is not asserted.

PROPOSITION 10.11. Every germ of a lagrangian map is lagrange equivalent to the germ of a grad-
ient map. .

For the proof, a slight bending of the coordinate system suffices. In fact, every germ of a lagrangian
map can be written in the form (10.2). The symplectic diffeomorphism given by #;=x;, y, =y (1),
'— z; + My, y;=y; (&l , preserves fibers and defines a lagrangian equivalence of the initial map with
some new lagranglan map, depending on the number A. It is easy to verify that this new germ is a gradient
[i.e., can be written in the form (10.1)] for almost all A.

In fact, a derivative function of the form (10.2) for the new germ will be F -—-—;—A.Ey‘;. (Gj=J). The

condition of local solvability of the new equation (10.2) with respect to yy will be | PFioys —AE [=0. If 2
is not an eigenvalue of the hessian of F with respect to yj, then the new germ is a gradient; thus the excep-
tional values of A are finite in number (not more than n).

Proposition 10.11 formally reduces the study of all germs of lagrangian maps to the study of grad-
ient germs. However actually in working with lagrangian singularities it is more convenient to use the
charts (10.2).

We proceed now to the infinitesimal analogs of the concepts introduced.

Definition 10.12. An infinitesimal lagrangian equivalence of a lagrangian fibration is a vector field
on the total space which preserves both the symplectic structure and the fiber structure.

Just like any vector field which preserves the symplectic structure on M, the field of an infinitesi-
mal lagrangian equivalence X is locally given by a real function (the Hamiltonian functlon) H by the formula
0? (X (z), §) =dH (§) (VE& I.M).

LEMMA 10.13. The Hamiltonian function of an infinitesimal lagrangian equivalence is linear (in-
homogeneous) along each fiber. Conversely, any function which is linear (inhomogeneous) along each fiber
gives an infinitesimal lagrangian equivalence.

- Proof. By virtue of proposition 10.5, it suffices to consider the coordinate fibration (x, y) [~ (y).
Then the field X has components 9H/3y, ~8H/8x. For the field to be a lagrangian equivalence, the second
component should not depend on x. Consequently, H = g(y)x + b(y), which is what was needed.

Remark. Lagrangian equivalences are classically called "extended point transformations."

Definition 10.14, An infinitesimal lagrangian deformation of a lagrangian manifold is an element of
the tangent space to the manifold of a lagrangian manifold.

Definition 10.15. A lagrangian map is called infinitesimally stable if every infinitesimal lagrangian
deformation of its lagrangian manifold is induced by some infinitesimal lagrangian equivalence.

The definition of the corresponding local concepts is analogous: it is only necessary to replace man-
ifolds and maps by their germs everywhere.

Remark. In order to make definition 10.14 for germs completely precise, we note that if the germ of
a lagrangian manifold is given by formula (10.1) or (10.2), then the tangent space to the manifold germ is
identified in the germs considered with the space of germs of smooth functions of x (or of x1, yJ). From
Lemma 10.13 it is easy to deduce

PROPOSITION 10.16, For infinitesimal stability of a gradient germ (10.1) at zero it is necessary
and sufficient that the local ring of the gradient map be generated by linear functions.
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Here, the local ring of a gradient map is the quotient ring of the germs of smooth functions of » at 0
by the ideal spanned by the n germs of the partial derivatives 8S/98xj.

Thus, the condition of infinitesimal stability consists in the fact that {u. every germ « of a smooth
function at 0 there exists a decomposition a(x) = 2% hi(z) 4 ¢ + o+ ... + c.x, , where hj are germs of
smooth functions at zero, and ci are mumbers.

Now we shall formulate the condition of infinitesimal stability for germs of the form (10.2) at zero.
We assume that at zero F = 0 and 9F/9x1 = 0 (the latter can be achieved by translation of the origin of co-
ordinates yy). We introduce the functions f(x) = F(x, 0) and goj(x) = (BF/ay]-) (x,0 (j€J, x=XxD.

From Lemma 10,13 follows

THEOREM 10.17, Infinitesimal stability of the germ (10,2) at zero is equivalent to versality of the
n + 1-parameter deformation G of the germ of the function f at 0 which is obtained from F if the y; are con-
sidered as parameters and a general linear inhomogeneous function of x is added:

G(z, ) =f(2) + 2hjo; @) + hog + 20z G, e T).

The proof is based on the fact that the condition of infinitesimal stability (existence of a decomposi-
tionof any germa(x,y) intoasumea (z, y) = 4, + Ddz; + S4; (0F19y;), ie=1, j& J ,where Ay aregerms of
functions of 8F/0x; and of y Jat zero) coincides with the condition of infinitesimal versality from Par. 8.2 (existence

of a decomposition of any germ «(x) into a sum (z) = 2k;0f/dz; + ;05 (@1) + o+ 2w (=1, j = J)

(wherehare germs of functions of x1 at zero, and ¢y, are numbers) by the preparation theorem of Weier-
strass-Malgrange.

The classification of lagrangian germs is obtained by combining the theorems on functions from
£§ 2-8, Theorem 10.17 and the following proposition. :

THEOREM 10.18, Every infinitesimally stable germ of a lagrangian map is stable.

This follows from general theorems on actions of infinite-dimensional groups, which are not formu-
lated in [1], and can be proved on the model of the proofs of the stability theorems in [1] or on the mode! of
the proofs of J. Mather in [7].

§11. Classification of Simple Lagrangian Germs

Now we shall define and classify simple stable germs of lagrangian maps. Germé of lagrangian maps
of an n-dimensional lagrangian manifold in general position are stable and simple for n < 6. Hence our
classification reduces to normal form the germs of lagrangian maps in general position for n < 6.

Definition 11.1. A germ of a lagrangian map at the point x, is called simple, if there exists a finite
set of germs of lagrangian maps such that every finite-parameter family of lagrangian maps containing a
map with the given germ for the value zero of the parameters has for all close values of the parameters
at all points sufficiently close to x,, only germs which are lagrangian equivalent to germs of the given set.

Pemark 11.12. Stable germs are not necessarily simple. In fact, the manifold of singularities of a
stable germ can contain curves along which the lagrangian type of the germ varies continuously. Simple
germs can be unstable (an example is the gradient map of the line with S(x) = x%. The basic result of this
paragraph is the classification of simple stable germs.

THEOREM 11.3. Every stable simple germ of a lagrangian map of an n-dimensional lagrangian man-
ifold is lagrangian equivalent to one of the germs of the following list:

A F=Faf" 4 yeazf™ 4+ 4yt k<n+1,I={1)),
Dy F=Aafzta ' +yeads "+ ...tz E<n+1,1={1,2),
Ey: F = 242} + 25 + y52.25 + yymi2s + ya2h 6<n,I={1,2),

E; F= j_—Ifixlzg + Yoz, 22 + ysx; + yﬂg + ysx,g 6<n,I={1,2),

Eg: F=+ I?-{_—xg + y'lxlxg + yul'ﬂ:: + Ys7ixs - ?/4372 + ys“-':
(1<n, I ={1,2)).
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Here Fis a function which gives the equations of a lagrangian submanifold of the space R®! = {(x, y)} by the
formulas y; = 9F/dz;, «; =—0Fdy; (i< 1,7 F I), The lagrangian map is given by the projection (x,
Vi—=y.

"Remark 11,4, The normal forms 11.3 are written by throwing out summands of degree 0 and 1 in x
from the formulas for versal deformations in Par. 8.4.: The stability of the germs follows from Theorems
10.17 and 10.18; the completeness of the list is proved {with the help of these theorems) by the same argu-
ments which in §§3-6 proved the completeness of the list of simple germs of functions.

‘COROLLARY 11.5. Every stable simple germ of a lagrangian map of an‘n-dimensional lagrangian
manifold is lagrangian equivalent to one of the germs of gradient maps given by the following functions:

A S=2" 4 @+ A P4+ (a2 4 0,

Dy: S=aimt o + @+ )+ ... 4 (g2 4 Q,

Eg: §= T}:x:l; "’_‘1; + (x5 + -1'11%)2 + (z; + 712,)2 + (xs + 13)2 + Q,

Ep: 8=l 2] + (T + 2120 + (25 + 2 + (@ + D) + @+ 29 +Q,

Ey: S =4al4-a5+ (z7 + le;)z + (%6 + 1112)2 4 (s + TaT)® + (T, + 12)2 o+ (T + 23) + q,

where Q = xf, + .. . + x4,

The corollary is proved with the help of proposition 10.11 and the normal forms given here are ob-
tained from the normal forms of Theorem 11.3 by the transformations indicated in the proof of proposition
10.11.

THEOREM 11,6, For n < 6 a lagrangian map of an n-dimensional lagrangian manifold in general
position has at each point a simple stable germ.

COROLLARY 11.7. A lagrangian map of a lagrangian manifold of dimension n < 6 can, by a small
perturbation (in the class of lagrangian maps), be transformed into one such that in a neighborhood of each
of its points it will reduce by a lagrangian equivalence to one of the following normal forms:

forn=1
Ay F=2}, Ay F= 44

11

for n = 2, in addition,
Ag: F = + 1} 4 yoal;
forn =3, in addition,
A4: F = f?': 1: -+ yax:i + yzziy
Dy F = +ziz, + 25 + yots

for n = 4, in addition,

- 6 a 3 2
Ayt F = d-2y -+ yy21 + Ys21 + Ya71
4 3 2.
F T1Ty = 13 + YaZa + YaTa}

for n = 5, in addition,

Ag F =z +yn+ ... + yo21,
Dy: F = + iz, + 2] + ys2s -+ yo23 + ys73,
Egy F=+aitz3+ ysxrzg +- Yy 217y - yawi-

Here the lagrangian manifold is given in the space R™® = {ix, y)f by the equations y; = 8F/axi, Xj=—8F/
9yi, where i =1, j # 1 for the cases Ay andi = 1 or 2,j # 1 and 2 for Dk and Ex. The lagrangian map is
the projection onto the y-space.

For example, a typical lagrangian map of a three-dimensional manifold has at isolated points singu-
larities of type A, and D, (three tangents come together, two of them can be minimal), on curves joining
these points there can be singularities of type Az (cusps) and on surfaces passing thfough these curves
there can be singularities of type A, (folds).
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We remark here further that the codimension ¢() = c(iy, . . ., ig) of the Boardman class Z1I (see [1]
or [20], [21]) in the space of jets of lagrangian maps of an n-dimensional manifold can be computed by the
following formula: c(I) = vy y(n,D = n,where v is the codimension of the Boardman class 2% i -+ sis in
the space of jets of functions R? — R, To compute v, in [1] or [20] there are formulas. For example,
Ap =2 k-1, and has codimension k — 1, 22 has codimension 3 and consists (with a residual part of codim-~
ension-4) of jets of type Dy, 32l has codimension 5 and consists (with a residual part of codimension 6) of
jets of type E;, and %! has codimension 7 and contains Ej.

COROLLARY 11.8. A lagrangian map of a typical lagrangian manifold of dimension n < 6 can, by a

.small perturbation (in the class of lagrangian maps), be transformed into one such that in a neighborhood of
any point it can be reduced by a lagrangian equivalence to one of the following normal forms x |- 35/8x:

forn=1
Ay S=2, Ay S=-+2

forn=2
A S=al+44;, A S=+2+a, Ag 8=zl (2R

forn=3
Ay S=af+ 25+ 23,
Ay S= ) +a}+ 2,
A3Z S = __:—_‘f: -+ (1'2 + l'%)z -+ ‘tgv
Ag S =22+ (xy+ 2)* + (&, + )2
Dy 8=+ air, + 23 + (5 + 7,
forn=4

A S=nt+ 22+ 2+ 25,

Ay 8§ =bal 4+ af+ 5544,

Ay S =t + (1, + ) + 73 + 1,

Ay 8= 42 + (25 + a})? + (@ + 2})? + 2%,

45 S = izg Tz + xt)z + (x5 2 + (z: + xf)z,
Dy 8§ = +ajzy £ a5+ (7 + 7)) + 14,

D;: 8 =+ ziz, a4 (xy + 2 + (x3 + 2302,

forn=5

Ay S=ai+ a3+ o3+ 2%+ 15,
Ay S=4a+ai+n+ a4+,
Ay S = 2l + (@ + %) + 25 + 24 + 5,
Ap 8= 2l + (@ + 2)° + (2. + 21)® + 2% + 2,
Ay S = a4 (5 + 2+ (@ + 2) + (@ + B) + b
Ag 8= ]+ (25 + 1) + (2, + 2D? + (T3 + 20)° + (1 + 237,
Dy S=+talz, -2+ (2, + 222 + 22 + 22,
Dy: 8 = = zjz, + 25 + (7, + 22 + (3 + 23 +- 22,
Dg: S = + iz, 423+ (x5 + 23)2 + (24 + 232 + (2, + 2D,
B S= + 2 G+ (T + 12D 4 (2 + 2325)* + (25 + 7).

Remark 11.9. For n = 6 there exist lagrangian maps which cannot be approximated by lagrangian
maps whose germs at each point are lagrange stable (or simple, or even weakly lagrange stable). All this
follows from the existence of projectively invariant cubical curves on the projective plane and from the
fact that the codimension of Z? in the lagrangian case is equal to 6.

Note Added in Proof. At the time of publication of this paper the author received the preprint of J.
Guckenheim on "Catastrophes and partial differential equations,” pp. 1-29 (Princeton, 1972); among the re-
sults .announced by J. Guckenheim are some of the propositions of § 10 of the present paper; he also indicated
that some of them were found by L. Hsrmander and A. Weinstein.
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