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Lognormal  Kr ig ing- -The  General Case 1 

P. A. Dowd 2 

A theoretical study of the general case of  the estimation ofregionalized variables with a log- 
normal distribution is presented. The results of  this study are compared to those obtained 
assuming conservation of  lognormality. The numerical significance of  the different solutions 
is illustrated by several simple examples. 
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INTRODUCTION 

Rendu (1979) presented Marechal's (1974) comparison of the mathematical 
theory for the estimation of regionalized variables with a known normal or log- 
normal frequency distribution. The major assumption in the presentation for the 
lognormal case was that of the conservation oflognormality which states that if 
sample values are lognormally distributed then the average value of a number of 
samples, such as a block average value, is also a lognormally distributed variable. 

Although the assumption of conservation of lognormality is statistically in- 
valid (the probability distribution of a linear combination of lognormal variates 
is not lognormal) it is frequently observed in practice and has been verified for 
small blocks (Krige, 1951). 

The objects of this paper are 

(i) to show that even when conservation of lognormality can be assumed, 
Rendu's presentation of the solution to the problem is only an approxima- 
tion, and 

(ii) to present the mathematical theory for the general case of lognormal kriging 
(i.e., without the assumption of conservation of lognormality) and to com- 
pare results obtained with and without the assumption of conservation of 
lognormality. 

1Manuscript received 4 November 1981 ; revised 4 January 1982. 
2Department of Mining and Mineral Engineering, The University of Leeds, Leeds LS2 9JT, 
England. 
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NOTATIONS 

For the sake of continuity Rendu's notations, as reproduced below, are 
used throughout this paper. 

bi 
o (( . ) )  
E((.)) 
C 

n 
W 

wi 
x 

xi 

I.t 

l~tc 

~ w  
I.tw 
~(W; I4/) 
~(w~; W) 
o(w,; wj) 
 e(W; W) 
6e(Wi; 14/) 
ae(Wi; Wj) 
o3 
O~e 

weight given to the ith sample value x i 
variance of ( . )  
expected value of ( . )  
a constant 
number of samples 
a block of support W; the size (area or volume) of this block 
a sample of support wi, the size (area or volume) of this sample 
a regionalized variable 
value of the sample wi; average value ofx  in w i 
additive constant 
Lagrange multiplier 
average value of the orebody:/~ = E[x]  
Kriging estimator of/a w 
value of the block W; average value ofx  in W 
an estimator of ~w 
variance of/~w 
covariance o f  x i and/~w 
covariance of xi and x] 
variance of In/~w 
covariance of In x i and In #w 
covariance of In x i and In xj 
kriging variance of estimation of/~w: 03 = E [~k -/-tW) 2 ] 
logarithmic kriging variance: O~e = E [(In/ak - In/~w) 2 ] an ore- 

body; the domain within which the regionalized variable is 
defined 

Lognormal Formulas 

If the variable xi ,  defined on the support wi,  is lognormally distributed with 
mean/a and variance 6(wi;  wi)  

E [xi] = U 

D 2 [xi] = u(wi; wi) 

then In x i  is normally distributed with mean/2 e and variance Oe(Wi; wi)  

E [In xi] = lae 

D 2 [In xi] = #e(Wi; wi) 
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and the following relationships exist 

0 = e ue + ~Je(Wi; wi) (1) 

6(wi; wi) = 02(e ae(wi; wi) _ 1 (2) 

If xi and x], defined on identical supports, wi and w], respectively, are joint 
lognormally distributed with mean 0 and covariance 6(wi; w]) then In xi and 
In x/are joint normally distributed with covariance #e(Wi; W]) where 

6(wi; w]) = 02 (e ~e(wi; wj) _ 1) (3) 

COVARIANCE CALCULATIONS 

It has been shown (Matheron, 1971) that if the covariogram o(h)of  point 
values is known, the covariance 6(w; w') between any two blocks or samples 
w and w', or the variance 6(w; w) of any block or sample w is equal to the aver- 
age value of the covariogram in the blocks or samples. The point covariogram 
o(h) is the function that relates the covariance between sample values with in- 
finitely small support to the vectorial distance h between the supports. 

The point covariogram can be obtained from the covariogram of sample 
values with finite supports. If z and z' are two points in [2 and zz' the distance 
between these points, a(zz') is the covariance between two point values at dis- 
tance zz' and O(w; w') is calculated as follows 

6(w;w')=-l--;f  z I a(zz')dz'dz (4) 
WW i n w  - ' i n w '  

The same formula applies to the calculation of 6(w; w). This formula is true, 
whatever the frequency distribution of the values in [2. 

In practice, when values are lognormally distributed, the logarithms of sam- 
ple values are used to calculate a logarithmic covariogram, oe(h), which is related 
to the covariogram, o(h) of point values by eq. (3) 

o(h)=o2(e °e(a)- I) 

If Oe(ZZ') is the covariance between the logarithms of two point values at 
distance zz' then 

o(zz') = 02(e °e(zz') - 1) 

substituting in (4) gives 

6(w;w')=02" 1 fz ~ ,  (e°e(ZZ')-l)dz (5) 
WW in w ' in w' 
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If conservation of lognormalffy is assumed, then 

#(w; w') = la2(e ee(w;w') - 1) 

and thus 

Oe(W; W')= ln (w~ ~zinw fz,in w, eae(ZZ') dz' dz ) 

(6) 

(7) 

LOGNORMALITY AND SUPPORT 

In practice, lognormality is observed for values measured on a given (sample 
size) support and, unless the assumption of conservation of lognormality is in- 
voked, lognormality cannot be assumed for any different (whether smaller or 
larger) supports. It cannot, for example, be assumed for sample size supports 
and, at the same time, be assumed for point supports for the purpose of calculat- 
ing covariances (in eq. 4 lognormality cannot be assumed for the point supports 
z, z' and for the nonpoint supports w, w'). 

In fact, values defined on point supports cannot be lognormally distributed 
under any circumstances (Matheron, 1962). A grade defined on a point support 
can take only one of two values: zero if it is inside a grain of waste (nonmineral- 
ized grain) or the grade, p of pure ore if it is inside a mineralized grain. If the 
mean grade over [2 is bt then the regionalized variable takes the value p with 
probability t~/P and the value zero with probability 1 - (///iv); its variance is 
/l(p -/1). Such a variable is obviously neither lognormaUy nor normally distrib- 
uted. There is no reason, however, why variables defined on supports that are 
large with respect to the granulometry cannot be lognormally distributed. 

For the purpose of this paper it is assumed that the sample supports, w~, are 
quasi-point supports; that is, they are 

(i) small with respect to the support, W, which is to be estimated 
(ii) close enough to point supports for formulas such as eq. (4) to be used, at 

least as numerical approximations 
(iii) large enough with respect to the granulometry for lognormality to be 

assumed 

When these conditions apply the sample-sample covariance, 6(w; w'), de- 
fined in eq. (4) becomes 

e(w; w') = o(zz') 

where zz' is the distance separating the two quasi-point supports w, w'. 
Conditions (i)-(iii) are very often fulfilled in practice. At the very least the 

estimation problem can usually be interpreted in such a way that the conditions 
are satisfied as, for example, when a three-dimensional problem of estimating a 
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block by drill core intersections is interpreted as estimating a two-dimensional 
panel by point samples. 

The assumption of  conservation of lognormality means that not only are 
the distributions of the individual sample grades and the block grade assumed to 
be lognormal (i.e., their marginal laws are lognormal) but that the joint distribu- 
tion of sample grades and block grade is also assumed to be lognormal. 

LOGNORMAL ESTIMATION 

Consider an orebody, ~2, of average value/~ in which quasi-point support 
sample values are lognormally distributed. The value/aw of a block of ore, W, is 
estimated by a log-linear estimator, ~w, which satisfies the following equation 

In ~w = C + ~ b i In xi (8) 
i 

where C and the bis are constants to be calculated. If the mean p is known,/~w 
is chosen such that 

In Owlu) = c' + Z bi in (xdu) where (9) 
i 

i 

The log-linear estimator, ~w, is given by 

~w=exp(C+ ~i bilnxi) (11) 

If the In xi are joint normally distributed then the exponent C + ~ibi  In xi is a 
normally distributed variable and from the properties of the moment generating 
function of the normal distribution the expected value of~w is 

E[~w] = e x p ( C + / ~  bi{ln/~-½~e(Wi;Wi)}+ ½ Z ~"~bib/6e(Wi;W])) (12) 
• i j 

The error of estimation of/a w is/~w -/aw and its expectation is 

E[~W- ~awl =exp (C + ~ b  i (In/a-  ½ 6e(Wi;Wi) ) 

Z Z bib/Oe(w~; wj)]- exp In u (13) ½ + 

i j / 

- ~ U_. ~.b~bj~e(Wi, w/)- ½ X, b~e(wi; wj) - (14) 
i J 
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The estimator, gw, is an unbiased estimator of la w if and only if 

C = (1 -  z~ " bi)lnla-1 ~i" ~j bibjae(Wi, wj)+ 1 ~i biae(Wi; wj) (15) 

For this value of C 

E [~wl = la (16) 

Lognormal Kriging Assuming Conservation of Lognormality 

If conservation of lognormality is assumed, then #w is a lognormal variable 
with mean la and variance 6(W; W); In #w is a normal variable with variance 
6e(W; W), and (from eq. 2), the following relationship exists 

D 2 [law] = #(W; W) = la:(je(W; w) _ 1) (17) 

where (from eq. 7) 

6e(W;W)=DZ[lnlaw]=ln(-~ f fz,inwe°e(ZZ')dz'dz) (18) k W Jzin w 
The variance of the estimator In #w is 

D 2 [lnBw] = ~ ~ bibjoe(We;W i) (19) 
i j 

and, as #w is a lognormal variable 

If In #w and In #w are joint normally distributed (this is an additional assump- 
tion) then the covafiance between #w and law is 

c°v [#w;law] = C°v [exp (C + S-":-" bi lnxi) "law ] ," 

= --  coy exp C + b i In xi "z dz 
W in W 

:laz ~fzinw(eXpc°v[(C+~'~i bilnxi)lnzJ-1)dz 

and thus 

(21) 
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and, from (6) and (7) 

c°v [ln ~w; in/2w] = In ( 1  fz  in w exp~-~bi°e(Wi;z)dz)i (22) 

Note that Rendu (1979)calculates this covariance as 

coy [ln~w;ln/2w] = ~ bi6e(Wi; W), where (23) 
i 

~e(Wi; W)= ln ( ~ fz in W eae(Wi;Z) dz) (24) 

This method does not require the assumption of joint normality between In ~w 
and In #w; it requires only the assumption of bivariate normality between In x i 
and z. However, the assumption of joint normality between In/~w and in/2w 
must be made for the next step which is the calculation of coy [/~w,/2w] 

cov [~w/2w] =122 (exp (Zbi6e(Wi; W)) - l) (25) 

Rendu's covariance calculation (23 and 24) is thus an approximation to the co- 
variance calculation in (22). 

From (17), (20), and (21) the variance of the estimation error is thus 

D2 ~w - Uw] = / 22 (exp Oe(W; W) + exp Z Z bioe(Wi; w j) 
k i i 

- 2 ~ l f z  inW exp ~i bioe(Wi;z)dz) (26) 

Using Rendu's approximation (eqs. 23 and 24) the variance of the estima- 
tion error is 

D2 [~w - Uw] =/22 (exp Oe(W; W) + exp Z Z bibjoe(Wi; wj) 
\ i ] 

- 2 exp Z bi6e(Wi; W)] (27) 
i / 

where, in both expressions, #e(W; IV) is given by eq. (18) and 6e(Wi; W) is given 
by eq. 24. 

The logarithmic error variance is 

D 2 [ln ~w - In/2w] = ~e(W; W) + Z Z bibl°e(Wi; wj) 
i i 

- 21n ( l  ~zin w exp ~ bioe(Wi;z)dz ) (28) 
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Using Rendu's approximation the logarithmic error variance is 

02 [ln ~W - In//IT] : Oe(W; [4/) + Z Z bibjoe(Wi; w]) - 2 Z bioe(Wi; W) 
i j 

(29) 

Assuming conservation of lognormality, the variances of the estimation er- 
rors given in eqs. 26 and 27 will be minimum when the respective logarithmic 
error variances in eqs. 28 and 29 are minimized. In other words, the kriging esti- 
mator,//k, is the unbiased log-linear estimator with the smallest logarithmic error 
variance. 

Known Mean 

If the mean/ /of  the orebody is known the estimator given in eq. 9 is used 

~W = exp [ ( 1 -  /~ bi)ln//+ Zi bi ln x i+  l~-~i bi°e(Wi; wi) 

1 )] (30) - "2 Z Z bibj ~e(wi; w] 
i j 

Rendu (1979) minimizes the logarithmic error variance given in eq. 29. This 
results in the kriging weights bj which are the solutions to the following system 
of equations 

2 bjOe(Wiw]) = 6e(Wi; W) (31) 
J 

The logarithmic kriging error variance is 

O~e = Oe(W, W)- ~" biOe(Wi; W) (32) 
i 

From eqs. 30 and 31 

//k =exp [(1- ~ bi) ln//+ ~'~bilnxi+ ½ ~ i 

- g ~ bi6e(Wi; W) (33) 
i 

The kriging error variance is 

aN =D 2 [//k - / /w]  

=/12 (exp ~e(W; W) - exp Ei bi6e(Wi; W) ) (34) 

=//2eOe(W; w)(1 - e -a~e) (35) 
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Minimizing the logarithmic error variance given in eq. 28 results in the krig- 
ing weights/)1, which are the solutions to the following system of equations 

~z exp b/oe(W/;z)dz Oe(Wi; Z) Z 
in W j 

Z b/oe(Wi; wj) = F (36) 
/ / exp ~ b:e(Wj;Z)dZ 

Jz in W j 

Obviously there is no straightforward solution to the system of equations 
in (36) but they can be solved iteratively. 

There is no simple expression for the corresponding kriging error variance, 
~ ,  which is obtained by substituting the values of the kriging weights, b/(ob- 
tained by solving eq. 36) into eq. 26. 

U n k n o w n  Mean 

If the mean/1 is unknown, the estimator ~w (eq. 8) will be unbiased (eq. 
15) if and only if 

~'~ bi = 1 (37) 
i 

Thus 

C = 1 Z bi°e(Wi; wi) - 1 Z Z bibj6e(Wi; wj) (38) 
i i j 

and the unbiased estimator is 

\ i i i / / 

The kriging estimator #k is the unbiased log-linear estimator (i.e., satisfies eq. 
37) with the minimum logarithmic error variance. Using Rendu's expression for 
the logarithmic error variance (eq. 29), the kriging weights, bj, are obtained by 
solving the following system of equations 

Z bJOe(Wi; IV]) = Oe(Wi; [41) + 3  ̀ (40) 
J 

Z bj = 1 (41) 
J 

where 3. is a Lagrange multiplier. 
The logarithmic kriging error variance is 

O~e = (re(W, [4/) - Z bi°e(Wi, W) + 3. (42) 
i 
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From eqs. 39, 40, and 41 

lak=exp (~i bi lnxi + ½ ~-~bi°e(wi;wi)-½ ~ bi°e(Wi; W)- ½ X) i 

The kriging error variance is 

(44 )  

= ~2eee(w; w)[1 + e x - ~e(e  x - 2)1 (45) 

As the mean ~ is unknown only the relative variance o]~/~ 2 can be calcu- 
lated. 

Minimizing the logarithmic error variance given in eq. 28 subject to ~,] b] = 
1 results in the kriging weights, hi, obtained by solving the following system of 
equations 

fz ae(Wi; z) exp ~ bjoe(W]; z) dz + X 
in w j b]6e(Wi; wj) = (46) 

J ~z exp ~ bjoe(Wj;z)dz 
in W j 

~_, bj = 1 (47) 
i 

which can be solved iteratively. 
The resulting kriging variance, o~, is obtained by substituting the values of 

bj which satisfy 46 and 47 into eq. 26. 

Lognormal Kriging-The General Case 

Without the assumption of conservation of lognormality for the blocks W 
the relationships given in eqs. 17 and 22 are not valid. As a result the logarithmic 
error variance cannot be defined and even if it could the minimization of the log- 
arithmic error variance D 2 [ln,~w - In/aw] would not ensure the minimization 
of the error variance D 2 [~t w -/.tw] and the latter must be minimized directly. 

The error variance is 

D 2 [~w - Uw] = D  ~ [ ~ w ]  + D  ~ [ ~ w ]  - 2 coy [~w,Uw]  

~w is a lognormal variable and thus 
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By definition 

1 f ~(z)dz D 2 [/2w] = ~ in W 

1 fzz (e ae(z)- 1)dz, and (49) = 122 W in W 

l fz z (exp }-~biae(Wi;z)- l) dz coy [~w/2w] =/22 W i~ w i (50) 

From eqs. 48, 49, and 50, the error variance is 

D ~ ,  uw] xp ~ ~ bibiGe(wi; wi)- 1 
i / 

1 
fz (exp oe(z) - 1)dz +/'t2 W in W 

1) 
This expression for the error variance can be compared with that given in 

eq. 16 where conservation of lognorrnality is assumed. 

Known Mean 

When the mean,/2, of the orebody is known, the estimator, ~w, is given in 
eq. 12. As conservation of lognormality is not assumed the kriging weights, bi, 
are those that minimize the error variance given in eq. 51. 

Differentiating eq. 51 with respect to b i and equating the resulting expres- 
sion to zero, gives 

bi6e(Wi; w i) exp ~ ~ bibj6e(Wi; wj) 
j i j 

1 f ae(Wi;z)exp ~-[biae(Wi;z)dz--O (52) 
[41 Jz in W i 

and the weights b i are the solutions to the following system of equations 

1 fz Oe(Wj; z) exp ~" biae(Wi; z) dz 
W in W i 

~'~i bi6e(Wi; wi) = exp Z Z bibj6e(Wi; wi) (53) 
i / 
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This system of equations can be compared to that given in 18 for the case 
when conservation of lognormality is assumed. 

Obviously there is no straightforward solution to the system of equations in 
53, but they can be solved readily by iteration. 

There is no simplified form for the resulting kriging variance a~, which is 
obtained by substituting the values of the kriging weights, bi, (obtained by solv- 
ing eq. 53) into eq. 51. The kriging estimator,/s~, is obtained by a similar sub- 
stitution in eq. 17. 

Unknown Mean 

If the mean/~ is unknown, the estimator, ~w will be unbiased if the condi- 
tion given in eq. 37 is imposed. The resulting unbiased estimator is given in 
eq. 39. 

The kriging estimator, #k, is the log-linear estimator with smallest error 
variance, D2[~w-  law] (eq. 51), which also satisfies the unbiasedness con- 
straint (eqs. 37 and 38). 

Differentiating eq. 51 with respect to bi, subject to the constraint N b i = 1, 
results in the following system of equations 

l fz  Oe(Wi;z)exp ~-" biae(Wi;z)dz 
W in w i 

~'~i bi6e(Wi; w i) = exp ~ ~" btbj~e(Wi; w/) + X (54) 
i i 

Z bi = 1 (55) 
i 

where X is a Lagrange multiplier. The system of equations given in 54 and 55 can 
be solved by iteration. 

There is no simplified form for the resulting kriging variance, try, which is 
obtained by substituting the values of the kriging weights, b i (obtained by solv- 
ing eqs. 54 and 55), into eq. 51. The kriging estimator, ~k, is obtained by a simi- 
lar substitution in eq. 39. 

Ordinary Kriging 

If the lognormality of the data is ignored, the estimator, ~w, is obtained by 
simple linear kriging. 

When the mean,/s, is known the estimate is 

~w = ~ bi(xi - I.t) + ~ (56) 

and the b i are found from 

bi6(wi; w/) = 6(wi; 14/) V i (57) 
i 
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When the mean,/l, is unknown, the estimator, ~w, is 

~t w = ~-~bix i 

and the b i are found from 

bj (wi; wj) =  (wi; w) + x 
] 

~ b i  = 1 

(58) 

(59) 

Comparison of Solutions 

Obviously the systems of eqs. (31 and 40) resulting from Rendu's approxi- 
mation (23 and 24) differ from those (36 and 40) obtained without the approxi- 
mation. In addition, both solutions differ from those (53 and 54) obtained for 
the general case when conservation of lognorrnality is not assumed. 

To illustrate the numerical significance of the different solutions, a square 
panel has been estimated from four corner samples and a central sample, the val- 
ues of which come from a lognormal distribution. It has been assumed that the 
covariance, ae(h), of the logarithms of the sample values is spherical 

. . . .  + h <~a oe(h ) Co~(h ) + C 1 2 £1 ' 

=0, where h/>a,  and where 

= ~1, if h = 0 
6(h) 

t 0, if h 4 : 0  

The covariance, a(h), of the sample values is given by 

a(h) = u (e "e(h) - 1) 

Where # is the mean value of the lognormal distribution from which the 
sample values are taken. 

The square panel has been estimated by 

0) ordinary kfiging, that is, solving eq. 57 when the mean/l is known and eq. 
59 when it is unknown 

(ii) lognormal kriging assuming conservation of lognormality and using Rendu's 
approximation, that is, solving eq. 31 when the mean/l is known and eq. 40 
when it is unknown. 

(iii) lognormal kriging assuming conservation of lognormality for the general 
case, that is, solving eq. 36 when the mean/1 is known and eq. 40 when it is 
unknown. 

(iv) lognormal kriging for the general case, that is, solving eq. 53'when the mean 
/l is known and eq. 54 when it is unknown. 
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The results for various sill values (Co + C), nugget variances (Co), and panel 
sizes are summarized in Tables 1-9. 

CONCLUSIONS 

The results for  an unknown mean are given in Tables 1-6. For small values 
of C(~< 1) the general case of lognormal kriging assuming conservation of lognor- 
mality gives results which are not significantly different from those obtained 
without the assumption of conservation of lognormality. As C increases the krig- 
ing variances obtained from both methods remain very similar but the differ- 
ences in kriging weights become increasingly significant. 

Rendu's approximation consistently underestimates the kriging variance 
even for relatively small panels (e.g., sides equal to 20% of the range). 

Ordinary kriging consistently overestimates the kriging variance. 
All methods give similar results for very small panels (sides of 5% or less of 

the range) except when a nugget variance is present; then ordinary kriging results 
differ significantly from the others. 

As Co increases the results obtained from Rendu's approximation approach 
those obtained without the assumption of conservation of lognormality, al- 
though the approximation still significantly underestimates the kriging variance. 
The significance of the differences in the results obtained from ordinary kriging 
and from the other methods increases as the nugget variance (Co) increases. 

When the mean is known,  Rendu's approximation can give negative kriging 
variances for large sill values (Co + C) as shown in Table 8.3 Apart from this, the 
same conclusions can be drawn from the case of a known mean with the addi- 
tional comment that differences are even more significant than in the corre- 
sponding case of an unknown mean. 

The parameters of the covariance function used to obtain the results in 
Tables 6 and 9 were taken from a case study of an alluvial tin deposit in Indo- 
nesia. The estimated mean value of the deposit is 1.17 kg/m 3 and the variance is 
208 (kg/m 3)2. 

The covariance/variogram of the data values appeared to be almost random 
with an estimated nugget effect of approximately 2.0. The covariance/variogram 
of the logarithms of the data values had a nugget variance (Co) of approximately 
1.0, a sill value (Co + C) of approximately 5.0, and a range of 100 meters. Ex- 
cept for very small block sizes, the results in Table 6 indicate that the choice of 
the valuation method to be used for block estimation is critical. If the mean is 
assumed known, Tables 8 and 9 indicate that the choice of method is even more 
critical, Rendu's approximation being unacceptable even for very small blocks. 

3This is a consequence of using the approximation given in eq. 23 and relaxing the restric- 
tion that the sum of the weights must be unity. 
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Iteration Programming 

The kriging equations for nonconservation of lognormality (53, 54, 55) and 
the general case of lognormality (36, 46, 47) have been solved by iteration. 

For example the equations given in (36) for the general case of conserva- 
tion of lognormality with a known mean can be solved by beginning with an ini- 
tial solution provided by the values of bj which satisfy Rendu's formulation of 
the problem, that is, 31 and 24. 

These values of b i are then substituted into the right-hand side of (36) and 
the set of equations is solved for the unknown bjs on the left-hand side. This 
procedure is repeated until the weights bj converge to some acceptable percent- 
age of their value on the previous iteration. 

This simple iterative method works satisfactorily for all cases except that of 
nonconservation of lognormality with a known mean (eq. 53). For large vari- 
ances (Co + C >~ 2) the number of iterations becomes prohibitively large and for 
Co + C >~ 4 the procedure will not converge to a solution. The method was there- 
fore adapted to include a directed search at each step of the iteration and this 
always resulted in a solution after a maximum of 10 iterations. The number of 
iterations was subsequently reduced to a maximum of 4 by using the method of 
successive corrections, for example, Noble (1964). 

In practice, it has been found that from one to four iterations are sufficient 
for the weights and Lagrange multipliers to converge to less than 1% of their 
value on the previous iteration. 

On the average, computing time for the solution involving iterative proce- 
dures was 40% more than that required by the noniterative procedures (ordinary 
kriging and Rendu's approximation) which seems a small price to pay for the en- 
hanced estimates. 
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