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Estimation of Semivariograms by the Maximum 
Entropy Method 

W. E. Sharp 2 

A wide variety o f  semivariograms may be represented in terms o f  a first, or second-order 
autoregressive (AR) process, and the nugget effect may be included by use o f  a moving 
average (MA) process. The weighting parameters for these models have a simple functional 
dependence on the value o f  the sill and the semivariance at the first and second lag. These 
may be estimated either graphically from the semivariogram or directly from the computed 
values. Improved spectral estimates o f  geophysical data have been obtained by the use o f  
the "maximum entropy method," and the necessary equations were adapted here for the 
estimation o f  the weighting parameters o f  the AR and the MA processes. Comparison among 
the semivariograms obtained for the ideal case, the observed case, and the estimated case for 
artificial series show excellent correspondence between the ideal and estimated while the 
observed semivariogram may show marked divergence. 
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INTRODUCTION 

Much geological data is collected in the form of traverses whether these be from 
an adit in a mine, a series of  outcrops along a stratigraphic unit, or a well log of 
a drill hole. As a result, the estimation of the semivariogram for such traverses is 
of considerable importance. Recently, it has been shown that a wide variety of 
semivariograms can be represented in terms of three models (Sharp, 1981): a 
first-order autoregressive (AR) process, ARMA (1 0), a second-order AR pro- 
cess, ARMA (2 0), and a mixed first-order moving average (MA) process with 
a first-order AR, ARMA (1 1). The use of these models allows for the rapid 
generation of a wide variety of artificial series which can be used to simulate geo- 
logical traverses. For this reason, the parameter estimation for these models be- 
comes greatly interesting. For many purposes, a graphical estimate of the param- 
eters will prove satisfactory. However, a more objective estimation procedure 
would be desirable. The recognition that improved spectral estimates can be ob- 

1Manuscript received 5 October 1981; revised 1 February 1982. 
2Department of Geology, University of South Carolina, Columbia, South Carolina 29208. 
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tained for short data records by the "maximum entropy method" suggests that 
this procedure might also prove reliable for parameter estimation in the ARMA 
modeling of semivariograms. 

A geologist will usually view the variance structure first as a one-dimensional 
space series and then try to generalize his understanding into two or three di- 
mensions. Although procedures for the simulation of one-dimensional patterns 
have been established for some time, significant advances have recently been 
made in multidimensional time and space series analysis (Ripley, 1981, p. 88). 
In fact, if the variance structure is understood for a series of traverses in dif- 
ferent directions, the results can be converted into an equivalent multidimen- 
sional space or time series representation (Taneja and Aroian, 1980; Perry and 
Aroian, 1979). 

ESTIMATION OF SEMIVARIOGRAMS 

The semivariance of a traverse (Clark, 1979, p. 92) may be defined as 

N - h  
7~ = I ~ (g i -  gi+h)2/(N - h) 

i=1  

where 7~ is the observed semivariance for lag h, and g l ,g2 ,g3  . . . . .  gN repre- 
sent observed sample values such as grade, N is the total number of equally 
spaced observations, while the autocovariance of the traverse (Dijkstra, 1976) 
may be defined as 

N - h  

s]~ --- [1/(N- h - 1)] ~_. (g i -  g)(gi+h - g)  
i=1  

where s~ is the observed autocovariance for lag h, and g is the average grade. If 
the traverse is sufficiently long and stationary then 

: s 0  - 

(Jowett, 1955, p. 161). A plot of s 2 versus h yields a covariogram while a plot 
of 7* versus h yields a semivariogram. These variables may also be conveniently 
expressed in terms of the autocorrelation, P, by 

s~ = So ~ Oh, and 

* 2 7h = So(1 - Oh) = C(1 - Ph) 

where C is the sill of the semivariogram. 
In time series analysis, a series of linear models has been developed for ran- 

dom processes (Fuller, 1976). Of these models (Box and Jenkins, 1970, p. 51), 
three are of particular interest 
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1. a first-order autoregressive process, ARMA (1 0), given by 

gi  = (Pgi- 1 + ei 

2. a mixed first-order autoregressive and moving average, ARMA (1 1), given 
by 

gi  = C g i - 1  + ei - Oei -1  

3. a second order autoregressive process, ARMA (2 0), given by 

gi  = dPlgi-1 + (P2gi-2 + ei 

where ¢ and 0 are weighting parameters and ei is a random impulse. The exami- 
nation of  semivariograms of  both artificial and observed series shows that a wide 
variety can be fitted to one of  these three models (Sharp, 1981). 

An important characteristic of  the ARMA models is the well-defined re- 
cursive relations that exist for finding the autocorrelation as a function of  the 
lag, h, and the weighting parameters ¢ and 0 (Table 1). As a consequence, the 
semivariogram may be generated recursively if estimates are made of  sill and of  
the weighting parameters. In turn, the weighting parameters depend solely on 
estimates o f  Pl and P2 (Table 2), and these may be determined from the ob- 
served variances using 

P l  = ( C  - 71  ) / C  = s 2 / s  2 , and 

= (c-  75)1c = Is o 
For most exponential and transitive types only a knowledge of  Pl is needed to 
determine the value of  ¢ so that one need only observe the overall variance, C, 
or So 2, and the variance at the first lag, 7* or s 2. In those cases where a nugget 
effect is present or the semivariogram shows pseudo-periodicity the variance at 
the second lag 7* or s 2 will be needed. For initial fitting, the standard estimates 

Table 1. Recursive Relations for the Autocorrelation of 
Some Random Models a 

ARMA (1 O) Oh = ~ P h - l , h  ~> 1 

p o = l  

ARMA (1 1) Oh = 4 , P h - l , h  ~ 2 

Pl = (1 - 4,0)(4, - 0)/(1 + 02 - 24,0) 

ARMA (2 0) Ph = 4,1Ph-1 + 4 ,2Ph-2 ,  h ~> 2 

p~ = 4,1/(1 - 4,~) 

p 0 = l  

aBox and Jenkins, 1970, p. 69, 57, 77, 59. 
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Table 2. Calculation of the Weighting Parameters of  Some Random Processes f rom Est imates  
of  the Autocorrelat ion a 

1. Exponent ia l  and transitive semivariograms wi thout  a nugget effect. 

Model = ARMA (1 0). 

@ = P l ,  where 0 < @ < 1  

2. Exponent ia l  and transitive semivariograms with a nugget effect. 

M o d e l = A R M A  (1 1). 

@ = P2 /P l ,  and 

0 = [ - B  - (B 2 - 4) 1/2 ] /2 ,  where 

B = (1 + @2 _ 2@pl)/(01 - ¢), and 

0<@<I 

- 1 < 0 < 1  

For  this model  to be valid, one mus t  have Pl  < @ and B < - 2 .  

3. Cont inuous  (mixed exponentials)  or pseudo-periodic semivariograms wi thout  nugget  
effect. 

Model = ARMA (2 0). 

@~ = p:(l - p2)/(1 - p2) 
02 = (P2 - P12)/( 1 - P~), where 

0 , ' ; @ 1 < 2  and - 1 < @ 2 < 1  

aBox and Jenkins,  1970, p. 58, 77-78,  5 9 - 6 0 .  

of the semivariance will be adequate, or in those instances where a real period- 
icity is present graphically smoothed estimates may be prefered. 

When an observed series is to be modeled and the results used to generate 
an artificial series which will then simulate the original, an estimate must also 
be made of the variance of the random impulse (residual variance). Here again 
an important feature of the ARMA models is the ease with which this variance 
(Table 3) can be estimated once the weighting parameters and the total variance 
have been estimated. 

Table 3. Residual Variance of  Some R andom Processes a 

ARMA (1 0) 

ARMA (1 1) 

ARMA (2 0) 

sr 2 =s~ / (1  - @2) 
s2r =sg(1  - @2)/(1 + 02 - 2@0) 

s]  = s~(1 - 02)/ (1 + @2)((1 - @2) 2 - @ l  2) 

aBox and Jenkins,  1970, p. 58, 193, 62. 
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ESTIMATION BY THE MAXIMUM ENTROPY METHOD 

The maximum entropy method or Burg Scheme was originally developed to 
improve spectral estimates of geophysical data (Burg, 1967). Intensive testing 
(Lacoss, 1971, p. 670)has shown it to give more reliable estimates of the vari- 
ance and better resolution than conventional methods particularly when the 
data records are of short length. In this procedure the AR parameters are calcu- 
lated recursively by running an AR model in a backward and forward direction 
over the data such that the residual variance is a minimum (Ulrych, 1972). 

The necessary relationships for the ARMA models were adapted from a de- 
tailed description of the algorithm developed for spectral analysis (Andersen, 
1974) and converted for use in estimating the semivariograms. The least-squares 
relationships needed for the ARMA (1 0) and the ARMA (1 1) models 
(Andersen, 1974, eq. for all ) are 

N~I N -  1 
0 - - p l  = 2  gigi+l/ /__.. (g~+g]+l), and 

i=1 ]i=l '= 

N~2 N-2  
P 2 : 2  gig i+2/i~=l (g2 +g2+2) 

i=1 '= 

For the ARMA (2 0) model, the necessary relationships (Andersen, 1974, eqs. 
7, 8a, 8b, and 5) are 

N-2 p/N-2 
~02 = 2 ~ BiB[I E (B] + B/2), where 

i=1 / / = 1  

Bi =gi - Plgi+l 

B[ =gi+2 - Plgi+l, and 

~1 = P l -  ~2Pl 

ESTIMATION OF ARTIFICIAL SERIES 

A number of artificial series were generated by assigning selected values to 
the weighting parameters of the autoregressive processes. The random impulse, 
ei, was computed using a uniform pseudo-random number generator with shuf- 
fling (IMSL, 1980, routine GGUW) which was converted to normal deviates by 
use of the inverse normal function (IMSL, 1980, routine MDNRIS). From the 
assigned weighting parameters, the ideal semivariance was obtained from the re- 
cursion formulas while the observed semivariance was calculated from the gen- 
erated artificial series, and the results plotted as semivariograms (Fig. 1). From 
the artificial series estimates of the weighting parameters were made using the 
"maximum entropy method" and these parameters were then used to obtain 
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Fig. 1. Ideal, observed, and estimated semivariograms for the ARMA (1 0) process: g i  = 

0.90gi_ 1 + e i. The observed semivariogram was obtained from an artificial series using the 
pseudo-random number generator GGUW with the seed 4685655. Notice how the observed 
variogram wanders above both the ideal and the one estimated by the maximum entropy 
method (MEM 0 = 0.89). 

an estimated semivariogram by use of  the recursion relations. It was p lot ted  and 
compared with both the ideal and the observed (Fig. 1 .) 

For  a first-order autoregressive process, the curvature of  the ideal semi- 
variogram will be exponential  (Fig. 1 and 2). Notice the marked deviations that  
may occur between the observed and the ideal cases because of  the l imited 
length of  the series. Yet, the estimated semivariogram obtained by  calculating 
the weighting parameters by  the maximum entropy method agrees quite well 
with the ideal semivariogram. Similar nice agreement was found in the case of  a 
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Fig. 2. Ideal, observed, and estimated semivariograms for the ARMA (1 0) process: g i  = 

0.90gi_ 1 + e i.  The observed semivariogram was obtained from an artificial series using the 
generator GGUW and the seed 8224897. Notice how the observed variogram wanders below 
both the ideal and the estimated (MEM ~b = 0.91). 

mixed first-order AR and first-order MA (Fig. 3), a second-order AR-mixed 
exponential (Fig. 4), and a second-order process showing pseudo-periodicity 
(Fig. 5). 

ESTIMATION OF OBSERVED SERIES 

With the results of  the simulations "in hand," an attempt was made to use 
these models to estimate some experimental semivariograms. For this purpose, 
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Fig .  3 .  I d e a l ,  observed, and estimated semivadograms for the ARMA (1 1) process: gi = 

0 . 9 0 g i _  1 + e i - 0 . 5 0 e i _  1. The observed semivariogram was obtained from an artificial series 
using the generator GGUW and the seed 7822323.  Notice the presence o f  a distinct nugget 
e f f e c t .  The estimated MEM parameters are ¢ = 0 . 9 2  a n d  0 = 0 . 5 6 .  

observed series from a bore hole in the Copper Mountain (Wyoming) uranium 
district and mine data from the Eagle Copper vein in British Columbia were 
utilized. 

The observations from the bore hole through granite at Copper Mountain 
(CM-1) consisted of well log analyses for K, U, and Th obtained with a 7 ray 
spectrometer. The observed semivariogram of the K analyses (Fig. 6) shows a 
general exponential curvature with superimposed undulations. This diagram may 
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Fig. 4. Ideal, observed, and estimated continuous semivariograms for the ARMA (2 0) 
process: gi = 1-40gi-1 -0.48gi-2 + ei. The observed semivariogram was obtained from an 
artificial series using the generator GGUW and the seed 7822323. The estimated MEM pa- 
rameters are 01 = 1.40 and 02 = -0.47. 

be interpreted as a first-order AR process, ARMA (1 0), with a superimposed 

oscillation probably from the instrumentation.  The fi t ted curve yields a q~ = 0.85 
and except for the undulation agrees quite closely with the observed semivario- 
gram. In the semivariogram of  the U analyses (Fig. 7), a similar exponential  
curvature is found arid again the diagram would be interpreted as a first-order 
AR process, ARMA (1 0). Notice that  in the observed series, the very high 
local values o f  U have raised the mean above the base level of  the series. This 
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Fig. 5. Ideal, observed, and estimated pseudo-periodic semivariograms for the ARMA (2 0) 
process: gi = 1.80gi-1 - 0.90gi-2 + ei. The observed semivariogram was obtained from an 
artificial series using the generator GGUW and the seed 7822323. The estimated MEM pa- 
rameters are 4~1 = 1.79 and % = -0.88. 

has produced a difference in the sill value between the observed semivariogram 
and the fitted one (q~ = 0.90). The semivariogram of the Th analyses (Fig. 8) 
shows a marked "hole-effect" and this pseudo-periodic semivariogram is inter- 
preted as a second-order AR process, ARMA (2 0) which yields estimated pa- 

rameters of q~l = 1.48 and 42 = - 0.65. Notice the excellent agreement between 
the estimated and observed diagrams at small lags, and then how they wander 
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Fig. 6. Observed and estimated semivariograms for a series of K concentrations taken at 
0.5-ft intervals from a well log (CM-1) through granite by 1, ray spectrometry in the Copper 
Mountain district, Wyoming. The observed variogram shows exponential curvature with 
super-imposed undulations. Compare the difference between the observed and estimated 
(~ = 0.85) semivariograms with that found in the simulations (Figs. 1, 2). 

away from each other at higher lags in a manner analogous to the simulated 
case (Fig. 5). 

The observations from the Eagle Copper vein at the 6930 level consisted o f  
vein thickness and copper grade (Trimble, 1972). The semivariogram of  the vein 
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Fig. 7. Observed and estimated semivariograms for a series of U concentrations taken at 
0.5-ft intervals from a well log (CM-1) through granite by 3' ray spectrometry in the Copper 
Mountain district, Wyoming. Both variograms show simple exponential curvature but the 
sill values differ between the observed and estimated (4 = 0.90) because the localized high 
U values have shifted the mean away from the base values. 
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Fig. 8. Observed and estimated semivariograms for a series of Th concentrations taken at 
0.5-ft intervals from a well log (CM-1) through granite by 3' ray spectrometry in the Copper 
Mountain district, Wyoming. Both the observed and estimated variograms show a distinct 
hole effect. Notice the excellent agreement between the observed and estimated (q51 = 1.48 
and q52 = -0.65) variogram at small lags and how they wander apart at intermediate lags. 

thickness (Fig. 9)  is essentially transitive and has a distinct nugget effect. It may 

be interpreted as consis.ting of  a first-order AR process with a weighting param- 
eter in the neighborhood of  0.9 combined with a first-order moving average pro- 
cess, ARMA (1 1). Similarly the semivariograms for the copper grade (Fig. 10) 
and for the accumulation = thickness × grade (Fig. 11) may also be interpreted 
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Fig. 9. Observed and estimated semivariograms for a series of vein thicknesses taken at an 
average interval of 8 ft from the 6930 level of the Eagle Copper vein, British Columbia. 
Notice how the differences between the observed and estimated (~ = 0.87, 0 = 0.57) ratio- 
grams compare to those in the simulated example (Fig. 3). 

in the same way but  wi th  a larger cont r ibu t ion  f rom the MA process. Not ice  h o w  

the observed and es t imated semivariograms o f  these examples  are similar in agree- 

ments  to that  seen be tween  the observed and es t imated ones in the  s imulat ion 

(Fig. 3). 
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Fig. 10. Observed and estimated semivariograms for a series of copper grades taken at an 
average interval of 8 ft from the 6930 level of the Eagle Copper vein, British Columbia. The 
estimated MEM parameters for an ARMA (1 1) process are ¢ = 0.89 and # = 0.67. 

C O N C L U S I O N  

The es t imat ion o f  the weighting parameters  and residual variance using the 

Burg scheme on compu te r  generated artificial series has proven to be qui te  ef- 

fective.  However ,  compar ison  o f  the f i t ted  and observed semivariograms m a y  

show quite marked  departures  at in te rmedia te  lags; that  is be tween  lag 3 and 
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Fig. 11. Observed and estimated semivariograms for a series of accumulations (thickness X 
copper grade) obtained at an average interval of 8 .ft from the 6930 level of the Eagle Copper 
vein, British Columbia. The estimated MEM parameters are cp = 0.87 and 0 = 0.57. 

the usually accepted range for reaching the sill. This is clearly the result of  the 
finite length of  any particular series. This does raise an important consideration 
regarding the curve fitting of  semivariograms as currently practiced and conse- 
quently the effectiveness of  estimations such as kriging. 

There is a natural human tendency and need to fit processes into a long- 
range scheme in preference to a short range one. This is of  course a typical 
defect in composing stochastic music where it is relatively easy to obtain pieces 
with pleasant short-range phrases but which tends to wander over longer spans 



Estimation of Semivariograms by the Maximum Entropy Method 473 

(Pierce, 1980, p. 259). As a result of  this human tendency a good bit of  effor.t 
has been placed on fitting the long-range curvature of  semivariograms. This will, 
of  course, reproduce the original observed series; however, these results can not  
be expected to apply to any other series, even one a short distance away. This 
effect has long hampered efforts to make long-range weather forecasts (Panofsky 
and Brier, 1958, p. 140). Serious at tention needs to be given to the relative im- 
portance of  short- and long-range fitting o f  semivariograms upon kriging esti- 
mates. If  the processes being modeled are really stochastic, then temptat ions to 
fit the long-range order of  any particular series must be ignored and the short- 
range fit allowed to take precedence. 
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