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CURVATURE OF GROUPS OF DIFFEOMORPHISMS PRESERVING THE MEASURE
OF THE 2-SPHERE

A. M. hukatskii UDC 519.46

In this paper, the curvatures of the groups S Diff (S®) (diffeomorphisms of the 2-sphere
§? preserving the standard density) equipped with the natural right-invariant Riemannian
metric (weak metric) dre calculated. It was shown by Arnmol'd [1, 2] that the geodesics on
groups of this type express flows of an ideal incompressible fluid, and negativity of the
sectional curvature along two-dimensional directions is a criterion for expomential insta-
bility of flows. Steady flow on a two-dimensional torus having the velocity field sin y 8x
(i.e., a Passat flow) was, in particular, studied in [2] in detail. In this paper, the fol-
lowing analog of the Passat flow is studied for S®: wviz., the vector field g = z(-ydx +
x3y); in many two-dimensional planes cutting the field g, the curvatures turn out to be neg-
ative. The curvature values obtained dre used to estimate the interval of time during which
long-term dynamic weather forecasting is not possible, and results close to those of [2] are
obtained. The vector field h = —ydx + xdy (the curl on 8%) is also studied, for which the
sectional curvatures are nonnegative. The author sincerely thanks V. I. Arnol'd for valu-
able advice, and also A. L. Onishchik for helpful discussions.

1. Statement 0f the Results

Let S? be defined in R® by the equation x® + y' + 2% = 1. We denote by SV(S8?) the Lie
algebra of the group S lef(Sz) consisting of vector fields with zero divergence. The right-
invariant metric om S Diff (S®) is defined at the identity by

Cuy v =$[ @(z) T @)dn(z)  (u, ves SV ($HP).

It is convenient to represent vector fields on SV(S?) by their flow functions: v = T (f,) =
I (grad /,) (where I is the operator given by clockwise rotatiom by 90°).

We choose in the space of flow functions a basis consisting of the spherical functions
(@, 6being the standard spherical coordinates on $%)

m d"™ (sint 0 -

L [E—m) 2047 1 . o
Ym '[(l+m)! 4n ] iy @ sine) d (cos B)+™ (=N, "= bieeen D)
We remark that || T (Yi) |2 = —M | Yalz=L1( + 1), from which an orthonormal basis in SV(8*) is

formed by the vector fields eh=T{1/V.I(I + 1)Y+).

We agree to denote by K(u, v) the curvature taken at the identity element of S Diff(S?)
along the two-dimensional plane L{u, v}.

THEOREM 1. The sectional curvatures along two-dimensional planes containing the vec-
tor field h = —y3x + x3y are given by the formulas

m2

1) Kk en) = 8n EQTIp
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TABLE 1

& m) (1,1) 2,1) (2,2) @,1) (3,2) (3,3)

Kz ¢ty | 1/3om | 15,2260 | —t5/28n | 4/128n | —4/8x | —111/128x

2
2) if v =" vheh, then K (b v) =g ) |%n P srray-
IL,m

Lm

COROLLARY 1. The curvatures K (k, v) >0, and K(h, v) = 0 only for vector fields v com-
muting with h, Max K (h, v) = 3/32 n = K . (the curvature of SO(3), the orthogonal subgroup)
v

and is attained when v& SO (3).

THEOREM 2. For curvatures in two-dimensional planes containing the Passat flow, we
have

1 K (g, em) = (15 m?32 1) [(1 — c)® (amby + &o¥bin) + 2 (1+ ) X (@ + &) — 3 (a/by + albu,a)].
Here ap = (2 — m®)/(4lz — 1), b = (I + 1)/ (I — 1), e = 6/1 (I+1).

2) For Im] > 1, the curvature K (g, eﬁn)< 0.

3) As [ oo we have K (g, éu)— — 15/8 x.

Table 1 gives values of the curvatures K (g, e,) for small (I, m); we remark that X (g,
) =0 and K (g, elm) = K (g, eh).
THEOREM 3. 1) In the case of the Passat flow, the curvature functional has the form
K (g, v) = l}%‘,}ﬂ(zxin [vm 2 + Lo Re (')

here Kb = K (g, eb), L = (15m2A6m) Vabalbbi (1 — ) bug+ (1 +¢) (4 + bbrag) — 3by).
2) For vector fields v having vh, =0 for I < L, the curvature is given asymptotically
(as L » ») by the following expression:

15 (A — m3?) m? ! 1
K(e ”)——sn‘,z Fon @ |+ 0 () -

3) For vector fields v having v =0 for Im] <2 we have K(g, v) < 0.

Remark. If we assume that the state of atmospheric flows is like that of a Passat
flow (i.e., under assumptions analogous to the ones made in [2]) and choose as the average
value of the curvature Kgv = o inf K (g, v) for some o & (0,1), we obtain the following:

»

if € is the error in the initial conditions for dynamic weather forecasting, then after
n months the size of the error will be 10*"¢ (here k =~ (30:24/400) 4xV alge~ 10V a)-

In particular, if we take Kyy =(1/4)inf K, we obtain that the increase in the error
in determining the state of the weather amounts to 10° times over one month; if we take
Kav = (1/16) inf K, a 10°-fold increase occurs over a 2-month period.

We remark that in Arnol'd's model in [2], a similar increase of the error (for Kgv =
(1/4) inf K) takes place during two months.

It is of interest to note that in models with a torus or sphere for the time interval
during which long-term weather forecasting is in practice impossible, estimates of the same
order of magnitude are obtained.

2. Proofs

In order to calculate the curvatures of the group S Diff(S®), we make use of a method
introduced by Arnol'd [1]. We denote by B(u, v) the operator adjoint to ad u(v) = [u, V]
(for fixed u). The curvature in the two-dimensional plane defined by orthonormal vector
fields &, n is given by (see [1])
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K (§ m) =<5, 8>+ 2<a, B> — 3<a, ad — 4 (By,By,

where 28 =B (¢, 1) +B(, &), 26 =B (¢, ©) — B, &), 2a = [§, nl, 2B, = B (1, n)-
In order to determine the form of B(u, v), it is necessary to find the structure con-
stants of the Lie algebra SV(S®). We introduce the functions
fmp = (@ + )" (m, k= Z).

We note that the spherical functions can be expanded in the £y, k.
LEMMA 1. The Poisson bracket for the functions fp,k has the form

{fmaks Fag} = & (kn — IM) frangsiots
{f @&+ i)™, ¢ @) (= + iy)"} = (inf'o — imf ¢) (z + iy)™".

For the proof, we remark that T (fu:) = imfmaxe + kfmpah, where e = T(—i(x + iy)). We
have
[, el = ie, k (.fm,k) = {Mfm ks e (fm,k) = — kfm+1,k—1,

from which the assertion of the lemma is easily derived.

The spherical functions Y%, can be expressed by homogeneous polynomials of degree 7
which are harmonic in R® (see [3]). We put P; =1 {Yt fm=—1I,..., 1} and V; =T (P;). The
subspaces V] are simple submodules of the SO(3)-module of spherlcal vector fields on §%

(see [4]). Using a formula for B(u, v) in [1], it is easily shown that for ueEV;, vEV,
we have B(v, u) =(—1(1+1) /k (t +1) B(u, v). In particular, for vector fields with homo-
geneous flow functions (i.e., ve= V;) we have B(v, v) = 0, i.e., all such flows are steady
(see [1]). For the case of a steady field &, we have By = 0 and the curvature formula sim-
plifies to

K (& n) =<, 8 +2, B —3<a o *)
In the case of a vector field h, we remark that [k, eyl =im elm. Putting k' =V 3/8nh
(I » | =1), we have
B (e, k') = —imV/ 3/Bri ey and B (', eb) = (—2/L (I + 1)) B (h, ).
Using (*), we obtain Theorem 1 from this.

In the case of a Passat flow g, we obtain g =V 15/8n g (|&'|| =1). The flow function
for the vector field g' has the form f = (1/2)) 15/8n 2%, From Lemma 1 we get {f, ¢ (2)(z + ix)™}:
zm]/ 15/8x 29 (z)(z + iy)™. Passing to spherical coordinates, we have

{f, Y.} = im Y 15/8n cos 0YL,.

Using the representation of functions in P7 by homogeneous harmonic polynomials (see
[3]), it can be shown that zP;C Py 4+ Pua. It is verified directly that

l—m+1 ! A0 +m) 14 1 d"*™(sin' §)
elrhE+Pm 21 Pm ( B d(cose)lm)‘

cosOpl, = —

In the basis e,’n we have (using the notation of Theorem 2)
ad g’ (eh) = — im ]/F/SE(Vam/bleH + Va“lbme’” ).
The operator B(v, g') is adjoint to ad g', from which we get
B(eh, g')=im V15/8n (Vamble + Val“/bm AL
Moreover, B (g, e,) = (—6/1 (I + 1))B (ek, g). Further, using (*) formulas can be obtained for
K(g, e%).(Theorem 2.1)) and K(g, v) (Theorem 3.1D).
In order to estimate the sign of K(g, v), it is useful to transform the expressions for
Kh, L.
LEMMA 2., 1In the case of a Passat flow we have (in the notation of Theorem 3)

7%,

L e e e e

L, = %(T—"—T‘FTZ‘)"H Y T = /e -+ 1)
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Here
1>2, p;= (8P + 121 — 321 — 18)/(21 — 1)(21 + 1)(2L + 3),
%y = 4% (212 + 51 4 2)/(F + 1+ 2) (21 — D21 + 1)21 + 3),
vi =48 VI =0 §0 + DU+ 96F — DEC F D7 — 1),

and 0 <Cpp, %, v;<<li.
This is proved by tedious but straightforward calculations.

Using Lemma 2, it is easy to obtain the assertions concerning the sign of K (g, e')
(Theorem 2.2)) and the asymptotic formula for K(g, v) (Theorem 3.2)). 1In order to prove
Theorem 3.3), it is useful to transform the curvature functional K(g, v) for v with v% = (
for |m| < 3 as follows:

K(g.,v)= }; [CKm | vm P -+ Ln™ Re (vmim®) 4+ Knt2 ol 1) +

M ==3

+ (2Kﬁ+1 | vz:ﬂ 12 + Lfmn+2 Re (vxﬂi}—mﬂ) + K7r2+3i U'rnn,’+3 I2) +

B (Khlohf o+ L Re 0t + K04 ),

after which it can be shown using the estimates of Lemma 2 that the expressions in paren-—
theses are negative definite forms.

We remark that values close to the minimum K (g, v) =~ —15/8n, are taken on vector fields
¢\, for large 1, or, if real fields are considered, on et = (1/2)(e +éy), e = (1/2i)(e wt?g_‘z_)
(these fields have as flow functions f. = A;Re (z -+ iy), /£ = (A/i) Im (z + iy)!). The functions

{f.. 1. 11l= N} span on S? a subspace of functions depending only on %, v, and it is easy to
see that the curvature K(g, v) for vector fields with such flow functions has the form

K(g,v)= gllKi(ivflz—i— ]vl_llz).

The character of the increase of the error in weather forecasting is determined anal~
ogously to [2]. One need only take into account that the length of a circle along the lati-
tudes at which maximum velocity of a Passat flow is obtained (i.e., at 8 =n/4, 3w/4) is small-
er than the length of the equator by a factor of V2 and also that inf K (g, v) = —15/8x.

bl

LITERATURE CITED

1. V.I.Arnol'd, "Sur la géometrie différentielle des groupes de Lie de dimension infi-
nite et ses applications & 1'hydrodynamique des fluides parfaits," Ann. Inst. Fourier,
16, No. 1, 319-361 (1966).

2. V. I. Arnol'd, Mathematical Methods in Classical Mechanics [in Russian], Nauka, Moscow
(1974).

3. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations [in Russian],
Nauka, Moscow (1965).

4, A. A. Kirillov, "Representations of the rotation group of n-dimensional Euclidean space
by means of spherical vector fields," Dokl. Akad. Nauk SSSR, 116, No. 4, 538-541 (1957).

177



