
9. K. Pohlmeyer, "Integrable Hamiltonian systems and interactions through quadric con- 
straints," Commun. Math. Phys., 4_66, 207-221 (1976). 

i0. V. E. Zakharov and A. V. Mikhailov, "Relativistically invariant systems integrable by 
the method of the inverse scattering problem," Zh. Eksp. Teor. Fiz., 74, No. 6, 1953- 
1973 (1978). 

ii. A. A. B~lavin and V. E. Zakharov, "A higher-dimensional method of the inverse scatter- 
ing problem and the dik~lity equation for the Yang-Mills field," Pis'ma Zh. Eksp. Teor. 
Fiz., 2_~5, No. 12, 603-607 (1977). 

CURVATURE OF GROUPS OF DIFFEOMORPHISMS PRESERVING THE MEASURE 

OF THE 2-SPHERE 

A. M. Luka~skii UDC 519.46 

In this paper, :the curvatures :of the groups S Diff(S a) (diffeomorphisms of the 2-sphere 
S 2 preserving t~e standard density) equipped with the natural right,invariant Riemannian 
metric (weak metric)are calculated. It was shown by Arnol'd [i, 2] that the geodesics on 
groups of this type express flows of an ideal incompressible fluid, and negativity of the 
sectional curvature along two-dimensional directions is a criterion for exponential insta- 
bility of flows. Steady flow on a two-dimensional torus having the velocity field sin y 8x 
(i.e., a Passer floW) was, in particular, studied in [2] in detail. In this paper, the fol- 
lowing analog of the Passat flow is studied for S$: viz., the vector field g = z(--y~x + 
x~y); in many two-dimensional planes cutting the field g, the curvatures turn out to be neg- 
ative. The curvature values obtained are used to estimate the interval of time during which 
long-term dynamic weather forecasting is not possible, and results close to those of [2] are 
obtained. The vector field h =--y~x + x~y (the curl on S 2) is also studied, for which the 
sectional curvatures are nonnegative. The author sincerely thanks V. I. Arnol'd for valu- 
able advice, and also A. L. Onishchik for helpful discussions. 

i. Statement Of the Results 

Let S 2 be defined in R ~ by the equation x a + ya + z a = I. We denote by SV(S a) the Lie 
algebra of the group S Diff(S 2) consisting of vector fields with zero divergence. The right- 
invariant metric on S Diff (S a) is defined at the identity by 

<u, v> = ~  (u (x), ~(z))dtt(z) (u, v~SV(SDc). 

I t  i s  c o n v e n i e n t  t o  r e p r e s e n t  v e c t o r  f i e l d s  on  SV(S a) by  t h e i r  f l o w  f u n c t i o n s :  v ---- T (f~) --  
I (grad/a) (whe re  I i s  t h e  o p e r a t o r  g i v e n  by  c l o c k w i s e  r o t a t i o n  by  9 0 ° ) .  

We c h o o s e  i n  t h e  s p a c e  o f  f l o w  f u n c t i o n s  a b a s i s  c o n s i s t i n g  o f  t h e  s p h e r i c a l  f u n c t i o n s  
(~0, 0 b e i n g  t h e  s t a n d a r d  s p h e r i c a l  c o o r d i n a t e s  on S 2) 

y /  V(/--m)! 21 + i ' l  '1~ t , i~ . .md/+m(sinl0) ( / ~ N ,  m = - - l ,  1). 
= [ ( t ~ . - - ~ f f - J  2-~11 te~sm¢) d(cosO/+~ " ' ' '  

We remark that ][ T (Y~) []~ ~- -- k~ [] y~l[z -- l (l q- i), from Which an orthonormal basis in SV(S a) is 
formed by the vector fields ~=T(I/~.l(f-c 1)YZm). 

We agree to denote by K(u, v) the curvature taken at the identity element of S Diff(S a) 
along the two-dimensional plane L{u, v}. 

THEOREM i. The sectional curvatures along two-dimensional planes containing the vec- 
tor field h --~x + x3y are given by the formulas 

3 mz 
1) K(h, ei) =8-EI,(/+I)' : 
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TABLE i 

(l, m) (i,l) (2,1) (2,2) (3,i) (3,2) (3,3) 

K (g, e~) i/32~ i57224~ --15/28~ 1/128~ --i /8~ --11i/128~ 

2) if =y, let  __3 l , 2 m ~ 
t h e n  P 

COROLLARY 1 .  The c u r v a t u r e s  K (h, v ) >  0, and K(h ,  v)  = 0 o n l y  f o r  v e c t o r  f i e l d s  v com- 
m u t i n g  with h, Max K(h,  v) = 3/32 ~ = K :  (the curvature of S0(3), the orthogona'l subgroup) 

v 

and is attained when v~ SO (3). 

THEOREM 2. For curvatures in two-dimensional planes containing the Passat flow, we 
have 

l )  K (g, e~) ---- ( i5 ra~/32 ~) [(l - -  ct) 2 (a~b~ ~- a~l/.b~+l) q- 2 (i q- cz) × (a~m q- a~ ' )  - -  3 (a~/b~ + a~b~+l)]. 

He re  a ~ =  (l ~-rn2)/(4F - t) ,  b~ = (l ~- t ) / ( l - -  1), c ~  611(l+t).  

2) For Iml > i, the curvature g (g, etm)< 0. 

3) As l - *  oo we have K ( g ,  e ~ l ) - + - -  15/8~.  

T a b l e  1 g i v e s  v a l u e s  o f  t h e  c u r v a t u r e s  K(g,  e ~ ) f o r  s m a l l  ( l ,  m);  we r e m a r k  t h a t  K(g, 

e0 ~) =0 and K ( g , e ! ~ )  =K(g, elm). 

THEOREM 3 .  1)  I n  t h e  c a s e  o f  t h e  P a s s a t  f l o w ,  t h e  c u r v a t u r e  f u n c t i o n a l  h a s  t h e  f o r m  

K (g, v) ~ (2Klm z ~ z z-l-z+1, = Ivmt -~-Lmae(vm Vm )); 

z t I at+l~b b- h e r e  K m =  K ( g ,  e~), LZm - (ihm2/i6n) V a ~  ~ J z ~+~ ((i - cz) ~ b l + l q - ( l + c l ) ( l + b ~ b l + l ) - 3 b ~ ) .  

z 2) F o r  v e c t o r  f i e l d s  v h a v i n g  vm = 0 f o r  l < L, t h e  c u r v a t u r e  i s  g i v e n  a s y m p t o t i c a l l y  
( a s  L -~ ¢0) by  t h e  f o l l o w i n g  e x p r e s s i o n :  

K (g, v) 
- ~ -  ~ (~ - i )  ((t + t), - i )  

3) For vector fields v having v~m = 0 for [rn] ~2 we have K(g, v) < 0. 

Remark. If we assume that the state of atmospheric flows is like that of a Passat 
flow (i.e., under assumptions analogous to the ones made in [2]) and choose as the average 
value of the curvature Kav----¢zinfK(g,v) for some a ~ (0, i) ,  we obtain the following: 

if s is the error in the initial conditions for dynamic weather forecasting, then after 
n months the size of the error will be 10~e (here k ~ (30.24/400) 4~ ~ Ig e ~ I0 ~a). 

In particular, if we take Kav =(i/4)inf K, we obtain that the increase in the error 
in determining the state of the weather amounts to I05 times over one month; if we take 
Kav = (1/16) inf K, a 105-fold increase occurs over a 2-month period. 

We remark that in Arnol'd's model in [2], a similar increase of the error (for Kay 
(1/4) inf K) takes place during two months. 

It is of interest to note that in models with a torus or sphere for the time interval 
during which long-term weather forecasting is in practice impossible, estimates of the same 
order of magnitude are obtained. 

2. Proofs 

In order to calculate the curvatures of the group S Diff(Sa), we make use of a method 
introduced by Arnol'd [I]. We denote by B(u, v) the operator adjoint to ad u(v) = [u, v] 
(for fixed u). The curvature in the two-dimensional plane defined by orthonormal vector 
fields ~, ~ is given by (see" [i]) 
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K (~, n)  = <8, ~> + 2 <a, ~> - -  3 <a, a> - -  4 <B~,Bn>, 

where  2~ = B(~,  ~) q - B ( n ,  ~), 26 = B ( ~ ,  ~ ) - - B ( ~ ,  ~), 2a = [~, ~1], 2Ba = B ( !  ~, !~). 

In order to determine the form of B(u, v), it is necessary to find the structure con- 
stants of the Lie algebra SV(S ~) . We introduce the functions 

lm,~ = (x + ~y)'~z ~ (m, k ~ Z). 

We note that the spherical functions can be expanded in the fm,k- 

LEMMA i. The Poisson bracket for the functions fm,k has the form 

{/,n,~, In, t} = t (kn - -  hn)  /,.+~;~+z-1, 
{l (z) (x ÷ iy) TM, ~ (z) (x A- iy)'} = (inl'cp - -  im! (p') (z  -t- iy)"+". 

have 
For the proof, we remark that T (f,~.~) = ~rn/,~_1.~e + k/,~.~_lh, where e = T(--i(x + iy)). 

[h, el = te, h (/m,~) = im/m,~, e (fro,k) = - - k f ,  n+l,~-l, 

We 

from which the assertion of the lemma is easily derived. 

The spherical functions Y$ can be expressed by homogeneous polynomials of degree 
which are harmonic in R" (see [3]). We put Pl----L{Y~I m =--I ..... I} and V t = T(Pl). The 
subspaces V~ are simple submodules of the SO(3)-module of sphericaLvector fields on S 2 
(see [4]). Using a formula for B(u, v) in [i], it is easily shown that for uEV~, v~Yl 
we have B(v, u) ---- (-- l (l ~- I) / k (k ~- i)) B (u, p). In particular, for vector fields with homo- 
geneous flow functions (i.e., P E Yz) we have B(v, v) = 0, i.e., all such flows are steady 
(see [i]). For the case of a steady field ~, we have B~ = 0 and the curvature formula sim- 
plifies to 

K(~,  ~1)--<8, 8 > A - 2 < a ,  g > - - 3 < a ,  a>. ( , )  

In the case of a vector field h, we remark that [h, e~] = im e~. Putting h' = ~8~h 
(lib'If --- I), we have 

B ( e ~  h ' )  --- - - i m ~ f 3 - 7 ~  e~ and B (h', e~) = (--2/1 (l + t)) B (e~, h'). 

Using (*), we obtain Theorem 1 from this. 

In the case of a Passat flow g, we obtain g' =V'iS/8~g(llg'll =i). The flow function 
for the vector field g' has the form /= (I/2)V-~z ~. From Lemma i we get {f, ~(z)(x-~ iy) m}- 
imV 15/8= z~ (z)(x + iy) m. Passing to spherical coordinates, we have 

{/, Y ~ }  ---- im ) / t 5 /8n  cos o r ~ .  

Using the representation of functions in P~ by homogeneous harmonic polynomials (see 
[3]), it can be shown that zP z C Pl-1-~-Pl+t. It is verified directly that 

(s in z O) Cos OpZm = l --  m -4- t 2l (l "4- m) p~ l  pt m --=- O) l+m . 
(2/~ ~ - ( ~ -  2) ptm --  2l-[- t d(cos 

1 Tn t h e  b a s i s  e m we have  ( u s i n g  t h e  n o t a t i o n  o f  Theorem 2) 

ad g' (eta) im ~ ( g ~ e ~ '  -]- ~ f  3+'iY4i'i'--~ _t+,, 
- -  v a i n  Ol.l.lt~ m ] .  

The operator B(v, g') is adjoint to ad g', from which we get 

g')-  + 

Moreover, B (g', e~)= (--6/I(I-k i))B(e~m, g'). Further, using (*) formulas can be obtained for 

K(g, 4)(Theorem 2.1)) and K(g, v) (Theorem 3.1)). 

In order to estimate the sign of K(g, v), it is useful to transform the expressions for 
K~, L l m "  

LEMMA 2. In the case of a Passat flow we have (in the notation of Theorem 3) 

= ~  ( t - - m  2) I (l 2 l ) ( ( / + l )  2 t ) +  41~(l+i)]  
m l ( l - ~ l ) ,  . ' 

L~ - - - ~  ( - V ~  + ~9-~-) , v ~ ~ 5 ' :  o 1/(t  ~ - -  rn~)((l + t)  ~ --  m")/Z~ (Z ÷ i)~. 
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Here 

l > 2, Pt ---- (8P -4- t2 l  2 - -  32l - -  I 8 ) / ( 2 / - -  1)(2/ + i ) (2/  q- 3), 

×t = 4 P  (2/2 + 5l -+- 2 ) / ( /~ -  i ) ( l  + 2)(2l - -  i ) ( 2 / - 6  i ) (2 l  -+ 3), 

vz = 4l 2 ] / ( / - -  i )  l/(l -t- i ) ( / ÷  2)(4l ~ - -  i )(4(l  + i )  ~ - -  i ) ,  

and O < p l , ~ ,  v ~ < l .  

This is proved by tedious but straightforward calculations. 

Using Lemma 2, it is easy to obtain the assertions concerning the sign of K (g, eF)' 
(Theorem 2.2)) and the asymptotic formula for K(g, v) (Theorem 3.2)). in order to prove 
Theorem 3.3), it is useful to transform the curvature functional K(g, v) for v with v~ = 0 
for Im] < 3 as follows: 

= v m ., L ~  . -~-m+2.__  K.~+2 v~+~ K ( g , v )  2 [ (2K~]  ~ ' +  Re(v,~v.~ )~ -  ~ I ~ 12)+ 
m>~a 

m+, ]., + L,~+.~ n , re+l-m+3, jv.~+a v~+a 12) 

r / + l  n . l --/+2~ -- Kl+2 j+2 
l>jTrt~-2 ". 

after which it can be shown using the estimates of Lemma 2 that the expressions in paren- 
theses are negative definite forms. 

We remark that values close to the minimum K (g, v)~--15/8~, are taken on vector fields 

z = ( i / 2 ) ( e l  + e - t ) ,  e_ = - -  e_+z for large l, or, if real fields are considered, on e+ 

(these fields have as flow functions /+z = EtRe (x q- iy) z, f_ = (El/i) Im (x -~ iy)O. The functions 

{/i,/l ]IE N} span on S 2 a subspace of functions depending only on x, y, and it is easy to 
see that the curvature K(g, v) for vector fields with such flow functions has the form 

K(g,v)  = ~ K'~(luil~ + Irk, r-). 
l>~l 

The  c h a r a c t e r  o f  t h e  i n c r e a s e  o f  t h e  e r r o r  i n  w e a t h e r  f o r e c a s t i n g  i s  d e t e r m i n e d  a n a l -  
o g o u s l y  to [2]. One need only take into account that the length of a circle along the lati- 
tudes at which maximum velocity of a Passer flow is obtained (i.e., at 8 ----~/4, 3~/4) is small- 
er than the length of the equator by a factor of ~2 and also that inf K (g, v)~--15/8~. 

v 
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