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i. Introduction 

The equation of the form 

- ~  + (v (x) - z ~  (x ) ) ,  = o ( 1 . i )  

a r i s e s  in  many b ranches  o f  p h y s i c s :  in  quantum mechanics ,  t h e o r y  of  e l a s t i c i t y ,  e l e c t r o d y -  
namics .  The r e c o n s t r u c t i o n  o f  t h e  p o t e n t i a l s  v (x )  and u (x )  in Eq. ( 1 . 1 )  from s p e c t r a i  da ta  
is a classical problem. For the one-dimensional case this problem has been investigated well 
(see [1-3]). For the multidimensional case without the assumption of spherical symmetry 
the first results were obtained in [4-7]. A fundamental study of the multidimensional in- 
verse problem was made by Faddeev [8, 9]. Some of the results of [9] were independently 
obtained by Newton [i0]. In [ii], Dubrovin, Krichever, and Novikov obtained the first sub- 
stantial results in a multidimensional inverse problem with a fixed value of a spectral para- 
meter. With all these and subsequent results (see [12-25]), the study of multidimensional 
inverse problems is far from being complete. Specifically, the following inverse problem, 
posed by Gel'fend [26] has remained unsolved. 

Let in a bounded region~O~R n, n~2, the equation 

--~, + v ( ~  = E~ ( i . 2 )  

holds  and t he  o p e r a t o r  $ (E) ,  a c t i n g  on 89 in a space  of  f u n c t i o n s ,  i s  d e f i n e d  thus :  

where ~ is a solution of (1.2) and v is the outward normal to 8D. It is required to deter- 
mine the potential v(x) from the operator $(E). For Eq. (i.i), this problem is of even 
greater interest. 

It seems that there have been noworks devoted to solving the multidimensional inverse prob- 
lem in exactly this formulation. However, it foll~ws from [4, 2, 27] that under some restric- 
tions on u(x) and v(x) in Eq. (i.I), the operator ~(E) defined for all E uniquely determines 
v(x )  and u ( x ) .  

In the present paper, it is shown that for a fixed E the operator $(E) u~iquely deter- 
mines the potential v(x) - Eu(x). This potential is found from the operator ~(E), E = const, 
on the basis of the solution of Fredholm linear integral equations. In essence, a character- 
ization of the kernel of the operator $~E) - a function ~(x,y,E), x,y~OD - is obtained. 
The interrelation between the operator ¢(E) and other scattering data is established. Spe- 
cifically, the solution of the following problem is given. Let for Eq. (i.i) in D with u(x) > 
0 the spectrum El, Ei,... of a Dirichlet boundary-value problem and the normal derivatives 

1 o---4 - ~ ( z )  o~ of  i t s  o r t h o n o r m a l  e i g e n f u n c t i o n s  on 8~ a r e  g iven .  I t  i s  r e q u i r e d  to  de t e rmine  

from t h e s e  da t a  t h e  p o t e n t i a l s  u (x )  and v (x )  in  Eq. ( 1 . 1 ) .  For t he  cases  v ( x )  ~ 0 and u (x)  ~ 
1 t he  problem i s  s o l v e d  in  e x p l i c i t  f o rmu la s .  Also ,  in t he  paper  a p r o c e d u r e  i s  o f f e r e d  f o r  
r e c o n s t r u c t i n g  t he  f i n i t e  p o t e n t i a l  in  a Sch rgd inge r  e q u a t i o n  from the  s c a t t e r i n g  ampl i tude  
f o r  a f i x e d  ene rgy  and t he  un iquenes s  of  t h i s  r e c o n s t r u c t i o n  i s  p roved  ( f o r  n ~  ) w i t h o u t  
the assumption of the smallness of the norm of the potential. Earlier, in [21] (n = 2) and 
[23] (n ~3), it was proved (under the condition of the smallness of the norm of the poten- 
tial) that Eq. (1.2) cannot have two different potentials exponentially decreasing and having 
the same scattering amplitudes for a fixed energy. Formulations of the results of the present 
paper and sketches of the proofs were presented in the survey given in [23]. 
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It has become known recently that independently from [21, 23] Sylvester and Uhlmann 
obtained the following uniqueness theorem, in [28] for n = 2 and in [29] for n~3. Let in 
a bounded region D ~ R  ~ ( n ~ 2 )  a function ~ satisfy the equation 

v.  (v (~) v ~) = o, ( 1 . 4 )  

where ~(x) is a smooth real-valued function on D, 7(x) > g > 0. Then there do not exist two (0,)=® 
d i f f e r e n t  f u n c t i o n s  ~ l ( x )  and ~2(x)  wi th  one and t he  same o p e r a t o r  $ such t h a t  ~ OD 

(~[0D) , where ~ is a solution of Eq. (1.4). 
obtained under the condition of smallness of 

For the case n = 2 a proof of this assertion is 
the norm of the function 1 - ~(x). 

The result of [28, 29] follows from the results for Eq. (i.I) mentioned above, for by 

the substitution ~ =~0/~? (x) Eq. (1.4) reduces to the equation -/k~0+ v(x)~0 =0, where 

v ( x )  = - A ( ~ / V  ~ (x). 

I t  i s  o f  i n t e r e s t  t h a t  some p r o p e r t i e s  o f  e x p o n e n t i a l l y  growing s o l u t i o n s  o f  Eq. ( 1 . 4 )  
in  R ~ n ~ 3 ,  were used in  p rov ing  t h e  un iquenes s  theorem in [29] .  In an i n v e r s e  problem,  
t he  p r o p e r t i e s  o f  t h e  s o l u t i o n s  of  t h i s  k ind f o r  a S c h r 6 d i n g e r  e q u a t i o n  were f i r s t  u t i l i z e d  
by Faddeev [8,  9 ] .  L a t e r  t h e  p r o p e r t i e s  o f  t h e  s o l u t i o n s  of  t h a t  t y p e  were used in  d e t a i l  
in  [14 -25] .  

As i s  i n d i c a t e d  in  [29 ] ,  t h e  problem of  d e t e r m i n i n g  t he  f u n c t i o n  ¥ (x )  from the  o p e r a t o r  
$ was posed by Calderon  in [30] .  The r e s u l t s  of  t h e  p r e s e n t  paper  s o l v e  t h i s  problem.  F i -  
n a l l y ,  l e t  us o b s e r v e  t h a t  f o r  t h e  case  of  a r e a l  a n a l y t i c  f u n c t i o n  7 (x)  t he  un iquenes s  t h e o -  
rem in C a l d e r o n ' s  problem was e a r l i e r  p roved  in [31] .  

The a u t h o r  i s  g r a t e f u l  t o  S. V. Novikov f o r  h i s  i n t e r e s t  in  t h i s  work and h e l p f u l  recom- 
menda t ions .  

2. Some Initial Results for the Multidimensional Inverse Scattering 

Problem in the Entire Space 

Let Eq. (1.2) or (I.i) hold in the entire space R n, n~2. The functions v(x) and w(x) = 
u(x) - 1 are assumed to be real-valued, bounded, and rapidly decreasing at infinity. The 
scattering amplitude /(k,l), k,l~W ~, k ~ = 12 = E , can be determined by the equality 

t) ( ~V ~ / (k ,  -~-k2-~/ f e-~Zx**(x' k ) (v (x) - -Ew(x) )dx ,  ( 2 . 1 )  
x~R n 

where ~+(x, k) is a solution of the integral equation 

~+ (z, k) = e ~x + ; G ÷ (x -- g, k) (v (g) --  Ew (y)) ~+ (y, k) dy, ( 2 . 2 )  
y ~ R  n 

J~x d~ ( 2 . 3 )  
~ R  n 

The central role in solving the inverse scattering problem is played by the family of 
solutions ~(x, k) of Eq. (i.i) introduced into the study by Faddeev [8, 9] for the case of 
Schr~dinger equation. Faddeev defined these functions as the solutions of the integral equa- 
tion 

, (x, k) = e ~ + ~ G (x - -  V, k) v (V) ~ (V, k) dr, ( 2. 4 ) 
y ~ R  n 

where 

(I)-I J~Xd~ e ~  (2.5) G (x, k) = -- ~ ~ + 2k------~ 

For a suitable class of functions, Eq. (2.4) is a Fredholm one and for k ~Cn\\(Rn U ~) 
uniquely solvable. The basic properties of the set of exceptional points ~, where Eq. (2.4) 
loses its unique solvability are obtained in [23]. 

It has been found as a result of a discussion with P. G. Grinevich that for k ~ C" 
(R~ ~J ~) the solutions ~(x, k) can also be defined as the solutions of Eq. (I.i) with the 
property o-i 

~(x,k)_____e*k~(i + O  l_!_-f- )) 
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Faddeev introduced into consideration the generalized scattering data of the form 

i 
x ~ R  n 

where  k , l ~ C  ~, k ~ = l  ~, h n k =  I m l .  

For the subsequent formulations, it is convenient to make the change of variables k = k, 
p = Rek - Re£ and to consider the function H(~,p) = ~(~,~--p), ~ C  ~, p~R~, p~ = 2~p~ We 
have 

{ t ~ - ( 2 . 7 )  H (k, p) ~ k ~ ]  ~ eW~ (x, k) v (x) dx, 
x ~ R  n 

where ~ (x, k) = ~ (x, k) e -~x. 

For  r e a ~  ? , k , l , k  ~ = l ~ E , ] y [  = I , ~ h e r e  e x i s t  t h e  f o ~ o w i n g  l~mt~s ( [ 9 ] ,  s e e  a~so [ 2 3 ] ) :  

G~ (x,k)  = G ( x ,  k + i07), ~v (x,k)  = ~ ( x , k  + i07), hv (k , l )  ~ h ( k + i 0 ? ,  l +  i07)~ 

where  ?, k, l ~ R n, ]?1 ~ l ,  k z ~ l ~ = E and ~he e q u a l i t i e s  

~ q,+ (x, k) = ~ (x, ~ + i0 ~ , G + ( x , k ) = G  x , k + ~ 0 ~  , . 

. l 

. 

h o l d .  ~he f u n c t i o n s  ~ (x ,  k)  and H(k ,  p) s a t i s f y  t h e  f o l l o w i n g  e q u a t i o n s  [16,  17, 23] 
( k ~ C  ~, p ~ N ~ ) :  

o S o?~ ~ (z, ~ = - ~ ~ #  (~, - ~ e ~  (~ + ~ ~ (z, ~ + ~) ~ ,  (~.  a ) 
~ R  n 

(~, p) = - 2a ~ ~ f l  (k, --  ~) H (k + ~, p + ~) ~ (~ + 2~)  H d~. ( 2. 9 ) 
~ i  - ~ R  n 

I f  t h e  f u n c t i o n  H (k, p) (n ~ 3) i s  k n o ~  f o r  an e n e r g y  l e v e l  k ~ = E, pZ = 2kp,  t h e n  t h e  i n -  
v e r s e  p r o b l e m  can be s o l v e d ,  f o r  examp le ,  w i t h  t h e  u s e  o f  t h e  f o r m u l a  [23] 

O ( p ) - - $ ( p ) E =  l im H(k, p), ( 2 . 1 0 )  
k ~  k~=E, 

p~=2kp 

where 

o i 
~R ~ 

The inverse problem can also be solved w~th ~he use of the formula [17, 23.] 

~(~,~) 
v(x)- -Eu(x)- - -  , (x ,k)  ' (2 .12)  

where ~=e~X~ (x,k) is a solution of ~-equation (2.8) restricted to the energy level k 2 = E, 
with the property ~(x, k) ÷ i, -Ikl ÷ =. 

For the two-dimensional case with a fixed energy level formula (2.10) is not valid, but 
formula (2.12) can be used (see [18-20; 25]). Note that in the two-dimensional case with 
~2 = E~E+, to find the function ~(x, k) for k 2 = E, besides ~-equation (2.8) for the energy 
level k ~ = E, the relation.~ = ~(E)~ should also be taken into account, where ~ and ~ are 
the limits of the function ~ (x, ~),~C2,~ ~ = E on a real circumfeqence ~ ,  ~ = E, and 
~(E) is an operator expressible in terms of a scattering operator S(E) (see [19]). For the 
two-dimensional case a characterization of scattering data at an energy level was obtianed 
in [18-20; 25], for the three=dimensional, in [17, 23]. 

3. Main Results 

The kernel of the integral operator $(E) corresponding to Eq. (Io2) or (i.I) will be 
denoted by ~(x, y, E), where x,y~0D, E~C . Throughout this section we shall assume the 
functions u(x) and v(x) to be bounded in the region D. Let ~0(x, y, E) be the kernel of an 
integral operator S0(E)' of the form (1.3) for the equation 

-- ~ = E~ (3.1) 
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in the region D. Let the equalities v(x) ~ 0, u(x) ~ 1 hold outside the bounded region D 
with a smooth boundary (throughout this section by a smooth boundary we shall mean a twice 
continuously differentiable boundary). Then the following results are valid: 

THEOREM i. The function h(k, £) defined by equality (2.6) can be obtained from the 
operator $(E) by the formula 

h (k, 
x~OD, y~OD 

k , l ~ C  ~, k 2 = l ~, I m k  = Iml .  
equation 

where 

At that, the function ~(y, 

(~; (x, k) lo~) = e ~ + 

A (x, y, k ) =  .I 

x, y~OD z~OD 

k) defined by Eq. (2.4) satisfies the 

A (x, y, k) (~ (y, ~) lo~) ~ (~y), ( 3 . 3 )  
y~OD 

V (x -- z, k) (ap -- ~0) (z, y, k 2) ~ (dz). 

Equation (3.3) can be restricted to the real space. Therewith integral equations for the 
functions ~(x, k) and ~+(x, k) are produced. The following formulas for the functions hT(k, 
£) and f(k,-£) are valid: 

I I e-itx ((~ --  CP°) (x' y' k2) ~ (Y' k) ~ (dx) (~ (dy), (3.4) h,~ (k, l) -= \ - f f  ] 
x, y~OD 

( 1 7 ,  l (k, l) 
, , ,  u~ov (3.5) 
k, l, ? ~ R ~, k 2 = l ~, ?~ = 1. 

Remark i. Formula (3.5) and Eq. (3.3) for k = (i + i0)Rek remain valid in the one- 
dimensional case as well, where they reduce the inverse spectral problem on a closed inter- 
val to the inverse problem with a scattering matrix on the entire axis. 

We denote by s the spectrum of the Dirichlet problem for Eq. (i.i) and by s o the spec- 
trum of the Dirichlet problem for Eq. (3.1). 

Proposition i. Let E~s U So, Then the operator $(E) - S0(E) is completely continuous 
in the space of bounded functions on 8D. Furthermore, equalities (4.8) and (4.9) hold. 

It follows from Proposition 1 that Eq. (3.3) is a Fredholm equation of the second kind 
in the space of bounded functions on 8D. 

Proposition 2. For k~(CnXxR~) and k~sU so Eqs. (3.3) and (2.4) are simultaneously 
uniquely solvable in the space of bounded functions on D. 

Theorem 1 implies the following corollaries: 

COROLLARY i. To reconstruct from the operator $(E) the potential v(x) - Eu(x) in the 
case n>/2), it suffices to find the function h at the energy level k 2 = E on the basis of 
formulas (3.2)-(3.5) and then to make use of the methods presented ~n [23] for solving the 
problem. (Some of these methods have been given in Sec. 2.) 

COROLLARY 2. In the case n~2 the operator $(E) uniquely determines the potential 
v(x) - Eu(x). 

In the case n~3 the assertion of this corollary is proved at least for any bounded 
potential. 

As for the case n = 2, an accurate proof of Corollary 2 is so far obtained under some 
additional restrictions on the potential, for example, with the proviso that the norm of the 
function v(x) - Ew(x) is small in comparison with [El. 

Let further it be required to determine a potential q(x) from an operator $ such that 

~-~[OD-----~IOD, where ~ is a solution in D of the equation -&~ + q~ Then, rewriting 0. 

this equation in the form "&~ + (q + E)~ = E~, where E is an arbitrary complex number, we 
can regard the operator $ as the data $(E) of the inverse problem for the potential q + E 
at the chosen "energy" E. 

266 



It is of interest to note the way of solving the direct and inverse problems in a 
bounded region in the Born approximation. Suppose, for example, that in Eq. (1.2) the po- 
tential v(x) has a very small norm. In this case the two following formulas hold: 

(z, y, E) - -  ~o (x, y, E) ---- I ~D ~ Go (x, z, E) v (z) ~ ~o (z, ~, ~) d= + ~ (II ~ I1), 
~o ( 3 . 6 )  

~ (P) = ~ ~ ~ ei~e-i~ (~ -- ~o)(x, y, E) e ~v dx dy + 6 (It v I]), 
~, y~OD, 

p~=2kp, ~z~E 

where  G0(x , y ,  E) i s  G r e e n ' s  f u n c t i o n  o f  t h e  D i r i c h l e t  p r o b l e m  f o r  Eq. ( 3 . 1 ) .  

We now t u r n  t o  c h a r a c t e r i z i n g  t h e  f u n c t i o n  $ ( x ,  y ,  E) .  I n  t h i s  c o n n e c t i o n  t h e  f o l l o w i n g  
p r o p o s i t i o n  i s  o f  i n t e r e s t .  

P r o p o s i t i o n  3. The f u n c t i o n  H (k, p), k ~ C ~, p ~ R ~, c o n s t r u c t e d  a c c o r d i n g  t o  f o r m u l a s  
( 3 . 2 )  and ( 3 . 3 )  f rom an a r b i t r a r y  f u n c t i o n  ~ ( x ,  y ,  E ) ,  x ,  y ~ OD, a n a l y t i c  i n  t h e  v a r i a b l e  E, 
s a t i s f i e s  ~ - e q u a t i o n  ( 2 . 9 ) .  

Theorem 1, P r o p o s i t i o n  3, and t h e  r e s u l t s  o f  [23] i m p l y  t h e  f o l l o w i n g  c o r o l l a r y .  

COROLLARY 3. L e t  n >  3, and l e t  D be  a convex  r e g i o n .  Fo r  a f u n c t i o n  ~ ( x , y , E ) ,  x , y ~  
(~+1~ 

8D, E = c o n s t ,  t o  c o r r e s p o n d  t o  some p o t e n t i a l u ( x )  x ~ D ,  such  t h a t ] ~ ( p ) ] < C . ( i + ] p l ) - ' ~  i t  
i s  n e c e s s a r y  and s u f f i c i e n t  t h a t  t h e  f u n c t i o n  9 (x, k) = e - ~  (x, k) c o n s t r u c t e d  a c c o r d i n g  t o  
f o r m u l a  ( 3 . 2 )  t e n d  t o  1 a s  [k~ + ~,  k ~ = E, and t h e  f u n c t i o n  H ( k , p ) ,  k ~ = E , p ~  = 2kp, p ~ R  ~, 

[~+i ~ 
cons t ruc ted  accord ing  to  formula  (3 .2 )  s a t i s f y  the i n e q u a i i t y ] ~ ( ~ ,  ~ ) ~ < ~ ( i  ~ ~ ) - ~  as 
~ 1  ~ ~ .  

Note t h a t  a r e a l - v a l u e d  p o t e n t i a l  w i t h  ~ ~ ~ possesses two s y ~ e t r i e s :  ~(x ,  y,  E) = 
~ ( x ,  y,  E) and ~(x ,  y,  E) = ~(y ,  x ,  E).  Note a lso  t h a t  in  the two-d imens iona l  case the func-  
t i o n  ~ @,~, ~), N~¢ons t ,  ~, ~ # ~  , as w e l l  as the p o t e n t i a l ,  depends on two v a r i a b l e s ,  i . e . ,  
in  the two-d imens iona l  case the i nve rse  p r o b l ~  i s  not  overdetermined when E = cons t .  

I f  i t  i s  adm iss ib l e  f o r  the p o t e n t i a l  ~ (~), • ~ ~ ~ N~, to be a gene ra l i zed  f u n c t i o n ,  
th~n the two i n d i c a t e d  s ~ t r i e s  are necessary  and s u f f i c i e n t  p r o p e r t i e s  of  the f u n c t i o n  
~ (x, y, E), x, y ~  #D, E ~  R .  

Many o t h e r  v e r s i o n s  o f  an  i n v e r s e  p r o b l e m  f o r ~ E q s .  ( 1 . 1 )  and ( 1 . 2 )  ~ i v e n  in  a r e g i o n  
D r e d u c e  t o  t h e  i n v e r s e  p r o b l e m  w i t h  t h e  o p e r a t o r  ~. 

C o n s i d e r ,  e . g . ,  f o r  Eq. ( 1 . 1 )  w i t h  u (x) ~ u 0 >  0 in  a r e g i o n  D t h e  D i r i c h l e t  b o u n d a r y -  
v a l u e  p r o b l e m  ~ D  = 0. By t h e  d a t a  o f  t h e  i n v e r s e  p r o b l e m  we s h a l l  mean t h e  e i g e n v a l u e s  

~ 8  
E j ,  j = 1, 2, 3 . . . .  o f  t h e  D i r i c h l e t  p r o b l e m  and t h e  s e q u e n c e  o f  f u n c t i o n s  ~ , r ( x , E ~ ) l o n ,  
wher  e ~ j , r ( X ,  E j )  a r e  n o r m a l i z e d  e i g e n f u n c t i o n s :  

~ E~}~y,r,(z,E~,)~(x)dx={ I for ]=] ' ,  r = r ' ,  
~ , r ( ~ ,  0 for ] ~ j '  or r ~ r ' .  

~he f o l l o w i n g  f o r m u l a  r e d u c e s  t h ~ s  i n v e r s e  p r o b l e m  t o  khe  a l r e a d y  s o l v e d  ~ n ~ e r s e  p r o b l e m  ~ i t h  
t h e  o p e r a t o r  ~(g)~  

0 0 

• (x, ~, E) = ~ .  ~ ~i' ~ (~) ~ ~ '  ~ (~) ..... E--E. z, ~ O D .  ( 3 . 7 )  
j ,  r J 

I t  i s  n o t  h a r d  t o  c o n s i d e r  t h e  b o ~ d a r y  c o n d i t i o n  a ( x ) ~ O D + ~ ( X ) ~ o D = O  i n s t e a d  o f  a D i r i c h -  

0 10~ = 0 ~e~ b e u n d a r y  c o n d i t i o n .  For  e x a m p l e ,  ~n ~he c a s e  o f  t h e  N e ~ a n n  b o u n d a r y  c o n d i t i o n  ~ 

t h e  f o l l o w i n g  f o r m u l a  h o l d s  ~o r  t h e  k e r n e l  Q(x ,  y ,  E) o f  t h e  o p e r a , o r  ~ ( ~ )  = ( ~ ( R ) ) - ~ :  

Q (x, y, E) ~ ~ ~ ,  ~ (x) ~ ,  ~ ~) 
Z--E~ , x, y ~ O D .  

L e t  us  now show a me thod  o f  d e t e r m i n i n ~  t h e  o p e r a t o r  $ (E)  f rom t h e  s c a t t e r i n ~  a m p l i t u d e  
f ( k ,  £) a t  a f i x e d  e n e r g y  k ~ = £~ = E. 
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For potentials u(x) and v(x) such that u(x) -- 1 and v(x) -= 0 for x ~ R~~ D , where D 
is a region with a connected boundary, the formulas 

/(~, ~ )=  ~ ~÷(x,~)K(x,O~(dx) ~+(x,~)---- ~ /(k,~)~(Z,~)a~ (3.8) 
OD l ~ E  

hold [5] ,  where the  f u n c t i o n  K(x, ~) and ~(~,  x) a re  comple te ly  de te rmined  by the  r eg ion  D. 
Substituting (3.8) into (3.5), we obtain an equation for determining the function ¢(x, y, E), 
x,~OD, from the scattering amplitude f(k, £), k ~ = £~ = E. 

Let D be a bounded simply connected region with a smooth boundary, and let u and v be 
bounded in D. The following propositions hold. 

Proposition 4. The operator $(E) and the scattering amplitude f(k, ~), k ~ = Z~ = E 
(E fixed) are uniquely determined each by the other. 

Proposition 5. In the case ~ ~ a potential v(x) in Eq. (1.2) vanishing outside D is 
uniquely determined by its scattering amplitude f(k, £), k z = £~ = E, defined for any fixed 
E > 0 [the smallness of the norm of the function v(x) is not assumed]. In fact, a little 
adaptation of the arguments in [21, 23] leads to the proof of the uniqueness of the recon- 
struction of an exponentially decreasing potential from a scattering amplitude at a fixed 
energy for n ~ ~ , without the assumption of the smallness of its norm. The only thing which 
is required is to carry out for the functions &(k) and H.A the same arguments that were used 
for H in [21, 23]. 

In [4], there was established the interrelation between the inverse problem with the 
scattering amplitude for a finite potential and many other possible versions of an inverse 
problem. 

It is important to note that the inverse problems for the equations --A~ + v# = E~ and 
-&~ = Eu~ admit simplifications in comparison with the general Eq. (i.i). In these particu- 
lar cases the inverse spectral problem can be solved in explicit formulas on the basis of 
formula (3.7) and the following proposition. 

Propositiqn 6. Let the following equations hold in a bounded region D: (a) -~ = Eu(x)~ 
(respectively), (b) --A@ + v(x)~ = ~. Then the following formulas hold: 

(a) (n ~ 2) 

t ~ l . -  e~P~+~(~-~) (q) (x, y, ~) - -  (D o (x, y, 0)) a (dx) (y (dy), V (p) = I im - ~  
~--~o 0 ~f0~ 

k ~ = 0, p= = 2kp (respectively); 

(b) (n ~ 3) 

~) (p) ~--- lim ~ e~p~+~(~)(~-:¢)((1) (x, y, ~, ('~)) --  (1) o (x, y, )~ ('~))) o (dx)~ (dy), 
~.-~-o~ ODxOD 

p~ = 2kp, k ~(x)=~,(~), R e ~ ( x ) - ~ + ~ o ,  Im~,(~)----c~=/=O, [ I m k ( ~ ) [ ~ c ~ .  

A similar formula can be written for the case n = 2, also. 

Proposition 6(b) implies that the potential u(x), x~R n, n~ 2, in the Schr6dinger equa- 
o 

tion is uniquely determined by the data Ej;~V~j,~(x)10n, given beginning with an arbitrarily 
large number j. 

Note also that in the case of Schr~dinger equation there can be given a characterization 
of the function ~ (x, y, E), x, y~OD, E~R+~, analogous to the characterization of a scattering 
amplitude/(k,~), k= = ~ = E~E+, obtained in [9, 23]. 

With some applications in geophysical inverse problems in mind, let us formulate some 
rseults for a region D which is a half-space. 

Let in the half-space O = {x~,zn<0} there be a given Eq. (i.i) with real-valued 
bounded coefficients u and v such that u(x) + i, v(x) + 0 sufficiently fast as x + ~. The 
spectrum of a problem (i.i) with a Dirichlet boundary condition in L=(D, u(x), dx) consists 
of the entire positive semiaxis R+ and and isolated points on the negative semiaxis. If E 
is not a point of the spectrum, then the operator $(E) can be determined from formula (1.3) 
with the use of solutions of Eq. (i.i) in L=(D, u(x)dx). For E~+ there exist the limits 
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8+_ (E) --- • (E + z0). 

In order to make it possible that a bounded solution ~ of Eq. (i.I) in D for E~R+ with a 
given condition ~I 3D = f be uniquely determined, a radiation condition at infinity should be 
additionally prescribed. The solution ~ with a radiation condition is to be found from the 
integral equation 

f ° I , (x) = ~ Go (x, g, E) ] (y) (~ (dy) + C o (x, y, E) (v (y) - -  E w  (y)) * (y) dy, 
019 

where  Go (x, y, E) = G + (x - -  y, E) - -  G + (x - -  y*, E), Yl = Y~ . . . . .  Yn = ~Y*~" 

[The o p e r a t o r  ~+ (E), E ~_ R+, can  be d e t e r m i n e d  f rom t h e  f o r m u l a  ( 1 . 3 )  w i t h  t h e  u s e  o f  t h e  
solutions satisfying the radiation condition. ] 

Extend the functions u and v to Rn~ D as u(x) - i, v(x) - 0 and consider the solutions 
of Eq. (I.i) in the entire R ~. The following proposition holds. 

Proposition 7. Let k ~ D, Then the function ~+(x, k)[3 D satisfies the equation 

~÷ (x, k) l ~  + G+ (k) (,~+ (k~) - -  ~3o + (k~)) (~+ I~,) = e ~ ,  

where G+(k) is an integral operator with a kernel G + (x- g, k), x, g ~ OD. At that, the scatter- 
ing amplitude f(k, £) for k ~ D, l ~Rn~ D is determined by the formula 

t) ( t ~,~ ~ l e-"~ ](k ,  =~,-f-d~} ,) (tiP+-- Op~)(x, y, k~)~+(y, k)o(dx)(~(dy) .  

I f  t h e  p o t e n t i a l s  v and u a r e  such  t h a t  v ( x )  - 0, u ( x )  -= 1 f o r  s u f f i c i e n t l y  l a r g e  [ x l ,  
t h e n  t h e  f u n c t i o n  f ( k ,  ~ ) ,  k 2 = ~2 = E, a d m i t s  an a n a l y t i c  c o n t i n u a t i o n  w i t h  r e s p e c t  t o  t h e  
v a r i a b l e s  8 = k / I k l  and 6 '  = £ / [ £ [ ,  On t h e  b a s i s  o f  t h i s  c o n t i n u a t i o n ,  t h e  s c a t t e r i n g  a m p l i -  
t u d e  can  be found  f o r  any  d i r e c t i o n s  o f  k and ~. 

P r o p o s i t i o n  7 r e d u c e s  t h e  i n v e r s e  s c a t t e r i n g  p r o b l e m  in  a h a l f - s p a c e  t o  t h e  i n v e r s e  
p rob l em w i t h  s c a t t e r i n g  a m p l i t u d e  in  t h e  e n t i r e  s p a c e .  

. Proof of the Main Theorem and Proposition2 1-7 

Proof of the Theorem. Equation (3.3) is obtained from Eq. (2.4) with the use of Green's 
formula 

! ( g A f - - ] A g ) d x ~  I (g o_~_G]__].~.o g)(~(dx). 
OD 

Using f o r m u l a  ( 4 . 1 ) ,  we f i n d  t h e  v a l i d i t y  o f  t h e  f o l l o w i n g  c h a i n  o f  e q u a l i t i e s :  

f G (x - -  y, k) (v (y) - -  k~w ( y ) ) ,  (y) dy = f G (x - -  y, k) ( A  -6 k ~') * (Y, k) dy = 
D D 

o 

o OD 

(4.1) 

o °- ! -G(x--y ,  k))c~(dy), 

D OD 

where  ~ i s  a s o l u t i o n  o f  t h e  e q u a t i o n  A~ ~ - ( v - - k 2 w ) ¢ _  k~2. 

A p p l y i n g  ( 4 . 2 )  t o  Eq. ( 2 . 4 ) ,  f o r  x ~ R r ~ D  we have  

(4.2) 

where 

I o o ) ~p (x, k) ~-  e ~ -6 (G (x - -  y, k) - ~  ~ - -  ~ -~ -  G (x - -  y, k) o (dy) -~ 
OD 

o 

OD 

---- e ~  + f c (x - y, a)(& (k 2) - -  80 (kS)) (¢ Io-) ~ (dy) + 
OD 

(4.3) 
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i (G(x--y,k)(~o, lo9)--~P--~G(x--y,k))(~(dy)=O. ~(k~),=o$ )(I)(g,z,k~),(z)O(dz), (5.4) 
OD 

( 4 . 5 )  ~ o l l o w s  f r o m  f o r m u l a  ( 5 . 1 )  and t h e  e x i s t e n c e  o~ a s o l u t i o n  ~ o f  t h e  e q u a t i o n  .AT ~ k ~ ,  
s u c h  t h a t  ~ (x, k)~o~ = ~ (x)~og. Now Eq. ( ] . ] )  ~ o l l o w s  f r o m  ( 5 . ] )  and ( 5 . 4 ) .  D e r i v e  f o r m u l a  
(3.2) from formula (2.6). Indeed, 

~ k)v(x)dx=~ e-i~(~ + k~)*dx=(k~--l~)~ e-*t~*(x' k)dx + oo'~ [e-itx oW~-- ~ e - ~ ' ° ( d x ) "  ) (4.5) 

It suffices to know the function h(k, L) under the conditions k~ = l ~ = 0, Imk = Iml,_k,l~E n. 
Further, 

where 

l 
OD 

f e -~ (~) -- ~o) ~;(~ (dx) + o~ D 
OD 

(e-ilx(~:)o~) -- * ~ e-iZ:~)(I (dx), (4.6) 

(4.7) 

I 
8D 

for ~ = k 2. 

Equality (4.7) is true for the same reasons as equality (4.4) is. Now equality (3.2) 
follows from formulas (4.5)-(4.7). Theorem i is proved. 

To prove Proposition 7, it is necessary to resort to the following additional consider- 
ation. When ~ ~ D, the function ~+(x, k) describes the propagation of oscillations from the 
boundary into the interior of the region D. This property is possessed by all the solutions 
of Eq. (i) in the region D with a radiation condition at infinity, i.e., the solutions with 
the property 

1 - n  1 - n  

~ ( ~ = ~ " ~ 1 ~  ~ + o ( ~ 1 ~  • 

It is by just these solutions that the operator $+(k 2 ) is determined. The function ~+(x, k) 
for ~ D  can (and for ~ D  cannot) be represented as the limit of a sequence of 
functions each of which satisfies the radiation condition. Therefore for ~O the for- 

~ + @ k~ + mula av ~ I a~--=- ( )(~ lop) holds, which must necessarily be used in writing an equality of 

the type (4.3) for a half-space. Equalities of the type (4.5)-(4.7) admit to be written 
only for l ~ R ~ D ,  k ~ D .  

Proof of Proposition i. Without restriction of generality, we can take E equal to zero. 
Then for the function c(m,y) = ~(~, y)--~0(~,y), z,y~D in the three-dimensional case the 
equality 

1 x~OD C(X, ~ ) I x - - ~ I  ~ = ~ : ~ , ~ 0 ~ =  ~'(X) , ( 4 . S )  

and in the two-dimensional, the equality 

c (x, y)(ln Ix  - -  y I) -1 I,=~;~,,~OD = const .v (x) I~eoD (4.9) 
h o l d .  At t h a t ,  t h e  f u n c t i o n  c ( x ,  y )  i s  bounded ,  e x c e p t  on t h e  d i a g o n a l  x = y .  Hence P r o p o -  
s i t i o n  1 f o l l o w s .  The i d e a  o f  t h e  p r o o f  o f  e q u a l i t i e s  ( 4 . 8 )  and ( 4 . 9 )  c o n s i s t s  i n  t h e  f o l -  
l o w i n g .  C o n s i d e r  in  R a t h e  h a l f - s p a c e  D = { x : x  s < 0}.  L e t  t h e  o p e r a t o r  ¢ ( x ,  y )  c o r r e s p o n d  
in  D t o  t h e  e q u a t i o n  - ~ $  + v~ = 0, where  v = c o n s t .  The o p e r a t o r  ¢ 0 ( x ,  y )  c o r r e s p o n d s  t o  t h e  
e q u a t i o n  - 5 ~  = 0. We h a v e  

' )1 • 0 ( x , y ) = ~  - - ~ -  I x _ ~ l  I ~ - y * l  ~ , ~  = - - ~ -  "lx-yl" I~ -~1  ~ ' 

c (x,  y) = ( ~  - ~ 0 )  (x ,  y ) - - _  

- -  - -  ~ I x - . y  I - -  Ix  - y* I ~, ~ e 0 ~  - -  -4~-  Ix - ~ I x, ~ 0 ~  + 0 (t). 
The p r o o f  o f  P r o p o s i t i o n  3 f o l l o w s  t h e  same scheme as  t h e  d e r i v a t i o n  o f  Eq, ( 2 . 9 )  i n  

- -  

[23]. That is, differentiating equality (3.3) with respect to kj, we arrive at Eq. (2.8), 
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where x~D. Then, differentiating equality (3.2) with respect to kj and taking into ac- 
count Eq. (2.8), we arrive at Eq. (2.9). 

The scheme of the proof of Proposition 2 is as follows. Let Eq. (2.4) have several 
solutions. Then, repeating the proof of Theorem 1 separately for each solution, we find that 
the restriction to 3D of each of these solutions satisfies Eq. (3.3). Thus, Eq. (3.3) has 
at least as many solutions as Eq. (2.4). To prove the converse and thereby to prove Propo- 
sition 2, it suffices to show that each solution of Eq. (I.i) turning on the boundary into a 
solution of Eq. (3.3) is a solution of Eq. (2.4). This can be done on the basis of the equal- 
ities (4.3), (4.2) and the following fact. If formula (4.3) holds for x ERn~D, then the 
formula 

holds for x~D . 

Proposition 5 follows from Proposition 4 and Corollary 2. 

The scheme of the proof of Proposition 4 is as foliows. From the scattering amplitude 
find the operator $(E). For a fixed vector k and x ~ R ~ ~ D the function ~+(x, k) is uniquely 
found from the scattering amplitude f(k, ~) (see [4] and (3.8) in the present paper). Thus 

a ~+ (x, k)1oD are known. It suffices to show Vk~R ~, k ~ = E , the two functions ~+(x,k) 10D and ~ 
0 + 

that the operator $(E) is uniquely determined by its action on the functions ~÷(x, k)IoD 7j-~ ~ lop ~- 

~(E)(~÷]oD)), For this, it suffices to prove that any solution ~ of Eq. (1.2) in D can 

be approximated by linear combinations of the functions ~+(x, k), k 2 = E. The last assertion 
follows from Eq. (2.2), the representability of any solution ~ of Eq. (1.2) in D in the form 

=~o ~ -G+* (v--Ew)~, where ~0 is a solution of Eq. (3.1), and the assertion that ~0 admits 
approximation by the functions e ikx, k 2 ~- E, k ~ R n. 

From the operator $(E) the scattering amplitude is uniquely found by Theorem I. 

The proof of Proposition 6 follows from formula (3.6) of the solution of the inverse 
problem in the Born approximation. 

Note at the Proofreading. Recently A. G. Ramm [*; **], proceeding from [23, 29], made 
several attempts to prove Proposition 5. His article [*] contains a substantial error, con- 
sisting in the identification of the solution ~ from formula (3) in [*] with the solution u 
from Proposition 1 in [*]. However, at least one of his subsquent attempts proved to be 
successful (see [**, Sec. II, Subsec. 3]). 

*. A. G. Ramm, Inverse Problems, 3_, L, 77-82 (1987). 
**. A. G. Ramm, "Recovery of the potential from fixed energy scattering data," Preprint 

Kanasas University (1988). 
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