
THE STURM THEOREMS AND SYMPLECTIC GEOMETRY 

V. I. Arnol'd UDC 517.9 

The theorems of Sturm on oscillation and nonoscillation of solutions to a second-order 
differential equation have a topological nature: they describe the rotation of a straight 
line in the phase space of the equation [I, 11]. 

A straight line is just a Lagrangian subspace of the phase plane. The higher-dimen- 
sional generalization of Sturm's theory, the account of which is given below, describes the 
evolution of a Lagrangian plane in the symplectic phase space of a linear Hamiltonian system, 
for example, of the system of n Newton equations 

~ = - - A  (t) x, x ~ R  ~, A ' = A  (1) 

with potential energy U = (Ax, x)/2, or of the more general system of Lagrange equations 

( B ( t ) ~ ) ' = - - A  (t) x, x ~ R  ~, A ' = A ,  B ' = B  (2) 

with positive-definite kinetic energy T = (B~, ~)/2. 

Instead of zeros of solutions, one must consider moments at which the Lagrangian plane 
is vertical. A Lagrangian plane is said to be vertical if it contains a nonzero vector with 
x = 0 (i.e., if it is not transverse to a fiber of the cotangent bundle). 

The generalizations of Sturm's theorem, formulated below, are distinguished also by a 
"correction term" n, equal to the number of degrees of freedom (instead of "between two...," 

as in Sturm's theory, we shall have "between n + I..o," etc.)° 

In such a classical area as Sturm's theory it is hard to follow all the predecessors, and 
I can only say, like Bott and Edwards, that I do not make any claim as to the novelty of the 
results. In connection with this I remark that numerous authors writing on the Maslov index, 
symplectic geometry, geometric quantization, Lagrangian analysis, etc., starting with [2], 
have not noticed the earlier works of Lidskii, as well as the earlier works of Bott [3] and 
Edwards [4], in which was constructed a Hermitian version of the theory of the Maslov index 
and Sturm intersections. 

I. Symplectic Analogs of the Sturm Theorems 

We consider first the evolution of Lagrangian planes under the action of system (I) or 
(2) (this particular case was already considered by Morse [9, 10]). 

• 

Nonoscillation Theorem. If the potential energy is nonpositive, then the number of mo- 
ments of verticality does not exceed the number n of degrees of freedom. 

Theorem on Zeros. On a segment containing n + I moments of verticality of one Lagrangian 
plane any other Lagrangian plane becomes vertical at least once. Moreover, the difference 
between the moments of verticality of two arbitrary Lagrangian planes, evolving under the 
same system, on any segment of the time axis does not exceed n. 

All these results follow, as in the usual Sturm theory, from the fact that the evolution 
of Lagrangian planes undergoes a particular acceleration when the Hamiltonian is increased. 

Consider a linear system of Hamiltonian equations (with variable coefficients) 

~ = # t f /Op,  # = - -  # t t / #q ,  (p,  q) ~ R ~n. (3) 

Alternation Theorem. Suppose the Hamiltonian H is positive-definite on the Lagrangian 
planes ~ and B. Then the numbers v~ and vB of moments at which a Lagrangian plane, evolving 
under system (3), is not transverse to the planes ~ and 8, respectively, do not differ, on 
any segment, by more than the number of degrees of freedom: 
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COROLLARY. On any segment containing n ÷ I moments of nontransversality to ~ there is 
a moment of nontransversality to ~. 

This theorem applies, in particular, to all Lagrangian planes for Eqs. (I) and (2) with 

positive potential energy. 

Suppose now that the Hamiltonians of the system studied are positive-definite only on 
one Lagrangian plane ~. In systems (I) and (2) this condition is always satisfied for the 
plane x = 0 (fiber of the tangent bundle), and if the potential energy is positive-definite, 
then it is satisfied for every Lagrangian plane; here~H = (B-Ip, p)/2 + (Aq, q)/2, q = x, 

p = Bi. 

We denote by ~(H) the number of moments on some segment of the time axis at which a 
Lagrangian plane, evolving under the action of system (3), is not transverse to e. 

Comparison Theorem. If H' ~ H, then ~(H') ~ ~(H) -- n. 

COROLLARY ]. On a segment containing n + I moments of verticality of some Lagrangian 
plane, evolving under system (2), every Lagrangian plane, evolving under system (2) with a 
Hamiltonian (not necessarily strictly) larger than the original one, becomes vertical at least 
once. 

Moreover, the difference between the numbers of moments of verticality for the systems 
with the larger and the smaller Hamiltonian is not larger than the number of degrees of free- 

dom. 

COROLLARY 2 (Oscillation Theorem). If the potential energy in Newton's equation (I) is 
uniformly positive-definite [U(x, t) ~ ~2x2/2], then the number of moments of verticalit5 of 
an arbitrary Lagrangian plane on any segment of the time axis of duration t is not smaller 
than [~t/~] + I -- n. In particular, this number grows unboundedly as t ÷ ~. 

2. Geometry of the Lagrangian Grassman Manifold 

We consider the manifold of (nonoriented) Lagrangian subspaces of the symplectic space 
(R ~n, ~), denoted by A n . In [2] it is shown that A n ~ U(n)/O(n). 

Definition. The train of a given point of the manifold A n is the set of all Lagrangian 
planes which are not transverse to the given one. The given point is called the vertex of 

the train. 

Every train is a codimension one (algebraic) variety in An whose singularities form a 
set of codimension 2 in the train (see [2]). Every train is transversely oriented by the 
velocity field of some (and then of any) one-parameter positive definite Hamiltonian (see 

[2] or Sec. 5 below). 

The transverse orientation of the train permits us to define the intersection index for 
oriented curves on it (under the assumption that the initial and final points are not lying 

on the train). 

In the neighborhood of the vertex the train is diffeomorphic with the variety of non- 
degenerate quadratic forms (generating functions) in R n. Consequently, it divides the neigh- 
borhood of the vertex into n ÷ I subsets (corresponding to the inertia indices of nondegener- 
ate forms -- generating functions of Lagrangian planes transverse to the vertex and close to 
it). The transverse orientation of the train defines an order of these subsets (according 
to increasing order of the positive inertia index). In particular, in the neighborhood of 
the vertex there is distinguished the "positive" domain maximal with respect to the indi- 
cated order (the corresponding quadratic forms are positive-definite quadratic functions). 

The index of any curve (with extremities outside the train) lying in the neighborhood 
of the vertex is equal to the increment of the positive inertial index of the generating 

function, and hence does not exceed n. 

Definition. The Maslov index of the path starting at a point ~, which does not belong 
to the train of the point ~, and ending at B, is by definition the index of intersection 
with the train of ~ of a close path starting at ~ and ending at a point $' close to $ and 
lying in the positive domain (Fig. I). 
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Fig. ] Fig. 2 

The index of the path (~) shown in Fig. ] equals 2. The index of a path is invariant 
under homotopies of the path in which the extremities of the path remain always transverse 
Lagrangian planes, i.e., as long as ~ does not intersect the train of 3. 

The homotopy class of a path connecting ~ to $ can be represented by a pair of points 
(&, ~) on the universal covering ~n of the manifold A n . We denote by m(~, ~) the Has!ov 

index of such a path. 

The fundamental group Z of A n acts on ~n by translations. We let +1 denote the action 
of the generator which intersects the train with index I. In these notations the results of 

[2, ]3] can be stated as follows: 

THEOREM. The Maslov index m(u, v) of pairs of points on the covering ~n has the follow- 

ing properties: 

]o m(u, v + ]) = m(u, v) + ]. 

2 ° re(u, v) + m(v, u) = n. 

3 ° m(u, v) + m(v, w) + m(w, u) = n + I(~u, ~v, ~w), 

where ~:~n *~ An is-the covering and the index I(~, B, y) of a triplet of pairwise transverse 

Lagrangian planes is defined by the next construction. 

Definition. For each pair ~, B of transverse Lagrangian planes in (R 2n, ~) we consider 
the adjoined quadratic form %[~, B] in R ~n, whose value on any vector is equal to the value 

of the symplectic form ~ on its components in ~ and $: 

~[~, ~] (~) = ~(~, ~), w ~  ~= ~+~, ~ ,  ~ .  
Definition. The index I(~, ~, y) of the triplet (~, ~, y) is the inertia index of the 

restriction to y of the form ~[~, 8] adjoined to ~ and $. 

Remark ]. Two arbitrary transverse Lagrangian planes can be transformed into two arbi- 
trary others by a symplectic transformation. Consequently, one can always introduce Darboux 
coordinates relative to which ~ :6p/~q, ~ is the coordinate p plane, and ~ is the coor- 

dinate q plane. Then ~[~, ~] = pq. 

In particular, the Lagrangian planes ~, $ can be uniquely reconstructed given the ad- 
joined form @. In fact, they are stable and unstable manifolds, respectively, for the Hamil- 

ton equations with Hamiltonian ~. 

Remark 2. The index of a triplet of planes enjoys the following properties: 

~° I(~, ~, ¥) + I(~, ~, ¥) = n. 

2 ° I(~, ~, y) = I($, ¥, ~). 

The first is a consequence of the equality ~[$, ~] = -~[~, 3], while the second follows 
from the fact that @[~, B]IY is taken into +[~, ¥][~ by the projection of ] onto a along ~ 
(incidentally, both properties follow from the theorem). 

Proof of the Theorem. I ° The path corresponding to the pair (n, v + I) is obtained 
from the path corresponding to the pair (u, v) bv adding a loop whose index of intersection 

with the train of the plane ~v equals 1. 

2 ° . The index m(u, v) does not change under deformations of ~he path as long as ~u 
does not intersect the train of ~v. When intersection does occur, and in positive direction, 
m(u, v) decreases by ~, whereas m(v, n) increases by ]. It therefore suffices to verify prop- 
erty 2 ° for a single yet arbitrary path. To this end we can choose the path (~5) sherbet in 
Fig. ] contained in a single chart (then ~ corresponds to a negative-definite form, and 6 to 
the nnll form). In this case m(~, ~) = n (the inertia index grows from 0 to n). For the 
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inverse path (which can be chosen so that it will not intersect the train), m(~, ~) = 0. 

3 ° . The sum is invariant under deformations of the triplet (u, v, w) provided that the 
planes remain transverse. The substitution of u by u + I does not affect the sum since, ac- 
cording to I ° and 2 ° , the first (third) component decreases (respectively, increases) by one. 

Shifts of v and w also do not affect the sum. Thus, the sum depends only on the triplet 
of Lagrangian planes, and not on the paths joining them. 

For special paths the sum can be calculated explicitly. Fix two transverse Lagrangian 
planes ~ and ~. We identify the variety of Lagrangian planes y transverse to B with a space 

of quadratic forms on ~ (to the plane 7 we attach its generating function Sy = ~y~[~, B]/2, 
where ve¥:~ ÷ y is the projection along $: in Darboux coordinates, y has the equation q = 

dS/6p). 

To the plane ~ there corresponds the form S~ = 0, while to the planes of the train of ~ 
there correspond degenerate forms. Let y be a Lagrangian plane transverse to both e and B. 
We connect ~ and y to B by the paths corresponding to the form 

S~÷~p,  S~÷~P (O~<~<oo), 

where P is some positive-definite form. Now connect ~ to a by the straight line ~S¥ in the 
space of forms. The indices of the constructed paths are calculated directly according to 
the definition: m(~, ~) = 0, m(~, ~) = 0, m(~, &) = the negative inertia index of the form 
Sy (the increment of the positive inertia index on the path from Sy to ~P, ~ > 0). By I ° and 
2 ° , m(&, ~) + m(~, ~) + m(~, &) = n + 0 + I(~, ~, y), as asserted. 

3. An Example: The Case of Two Degrees of Freedom 

Proposition. The train of a point in Ae is diffeomorphic to a quadratic cone in RP 3 
(homeomorphic to a sphere with its poles identified). 

Proof. The manifold of degenerate quadratic forms in the plane is a quadratic cone as 
well as the representation of the train in the chart {Sy} centered at the point in question. 

Proposition. Ae is the nonoriented total space of the nontrivial bundle with fiber the 
sphere S a and with base the circle, glued from S e × [0, I] by means of the antipodal involu- 

tion of the sphere. 

Since the incorrect statement Ae = S e × S I is "proved" twice in the textbook of Guillemin 
and Sternberg [6], we give the proof of the proposition. The bundle A2 ÷ S I is defined by the 
mapping uO ÷ det 2 u. Its fiber is SU(2)/SO(2) = $3/S I= S a (Hopf bundle). Multiplication of u 
by the scalar e ~ results in multiplication of det 2 u by e ~i~. For 0~<~/2 the image of the 
fiber fills out the bundle's total space. For ~-----~/2 ei~ = i. Multiplication by i takes every 
Lagrangian plane into its orthogonal complement. Therefore, the gluing map S 2 ÷ S 2 is the 
antipodal, involution. It changes the orientation of the sphere. Consequently, the bundle is 

not trivial and Ae is not orientable. 

In terms of this bundle, the disposition of the train of some point, say, of the North 
pole ~ of the fiber over zero, can be described as follows. 

As the point of the base moves along the circle, the trace of the train on the fiber 
looks first like a small parallel near the North pole, which then passes through the equator 
to eventually shrink, when the point on the base completes its trip around the circle to the 
South pole of the fiber (which pole is taken by the gluing mapping into the North pole). 

To visualize the relative position of the train of two points ~ and $, we shall assume 
that ~ is the South pole of the same fiber (the general case can be reduced to this one by 
the action of the symplectic group). The train of the point ~ consists of parallels symme- 
tric to the parallels forming the train of ~ relative to the equator of the fiber. Both 
trains intersect transversally along the equator of the fiber opposite to the original one 

(Fig. 2). 

None of the trains divides the total bundle space A2. The complement of the train of a 
point in A2 is diffeomorphic to the three-dimensional Euclidean space. 

In fact, fixing a pair of transverse Lagrangian planes ~ and ~, we have earlier identi- 
fied the set of Lagrangian spaces y transverse to ~ with the space of quadratic forms Sy on 

the plane ~. 
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On passing to the covering ~2, the train of the point $ is covered by the infinitely 
sheeted surface obtained by rotating a sinusoid around the abscissa axis. This surface 
divides the covering into domains diffeomorphic to the Euclidean space [and labelled by the 

values of the index m(', ~)]. 

The union of the trains of two transverse planes ~ and B divides A2 into three regions. 
Under the identification of planes y transverse to ~ with their generating functions Sy 
(quadratic forms on ~) these domains pass into the domains consisting of the forms of signa- 
ture (+, +), (+, --), and (--, --) (Fig. 3). Figure 4 schematically shows the transverse orien- 
tations of the two trains and the contiguity of domains [as in the Kerr solution (of Ein- 
stein's equation -- translator's note)]. 

• o . 

4. Quadratic Forms and the Raylelg~-Gardlng Inequalities for 

Hyperbolic Polynomials 

Sturm's theory is based on the following simple lemma. 

LEMMA I. Suppose some quadratic form in R n, depending smoothly on a parameter, is de- 
generate for some critical value of the parameter, and its derivative with respect to the 
parameter is positive-definite on the kernel of the degenerate form. Then the positive in- 
ertia index of the form increases at the passage of the parameter through the critical value 
(and the increment is precisely the dimension of the kernel). 

Proof. For the case where the degenerate form is the null form the lemma is obviously 
true. The general case is reduced to this one by isolating the nondegenerating part as a 
component smooth in the parameter (see also Lemma 2 below). 

THEOREM. If a degenerate quadratic form varies so that the velocity of its variation 
is positive-definite on the kernel of the form, then the indicated velocity vector does not 
belong to the tangent cone to the variety of degenerate forms at the given point. 

Proof. Every vector of the tangent cone is tangent to a smooth curve lying completely 
in ~he variety of degenerate forms (this is obvious in the case of the null form, to which 
the general case reduces again by isolating the nondegenerating part). If the velocity vec- 
tor would belong to the tangent cone, the corresponding curve would provide a deformation 
contradicting Lemma I. 

Remark I. The cone of positive-definite forms, translated at a point of the hypersur- 
face of degenerate forms in the space of all forms, does not intersect this hypersurface in 
a sufficiently small neighborhood of the given point. 

This is a consequence of the Rayleigh--Fischer--Courant inequalities for eigenvalues. As 
a matter of fact, the same property is enjoyed by the hypersurface given by any homogeneous 
hyperbolic polynomial (the discriminant of a quadratic form is a hyperbolic polynomial) with 
respect to the convex cone constituting any of the connected components of the domain of 
hyperbolic vectors. This follows, for example, from the generalized Rayleigb-Fischer--Courant 
inequalities carried out by G~rding [5] to arbitrary hyperbolic polynomials. 

Remark 2. The following sharpening of Lemma I is often useful: 

LEMMA 2. Suppose the derivative of the quadratic form with respect to the parameter is 
nonnegative, and for the critical value of the parameter the restriction of the derivative 
of the form to its kernel has rank k. Then at the passage through the critical value the 
number of positive squares increases at least by k. 

Proof. We use an auxiliary Euclidean structure. Consider the positive eigensubspace 
P of the form A(t) for the critical value t = 0 of the parameter and the positive eigensub- 
space Q of the restriction of the derivative to the kernel of A(0). For small t > 0 the 
form A(t) is positive-definite on P + Q. In fact, for ~P, 0~Q, and t > 0, we have, 
using that A(0)~ = 0, 

(A (t) ~, ~ ) ~ C l l  I ~ ll 2, (A (t) 0, 0 ) >  c~t II 0 II ~, I (A (t)o, ~) I <  cat I[~ I] ]1011, 

whence  (A (t) (~ + N), (~ + 0)) ~ ca (II ~ II ~ ÷ t II o lid ( b e c a u s e  tV. II ~ 11 f / '  II 0 tl ~ t~/' [I ~ il ~ ÷ t't~ II 0 liD. T h e r e -  
fore, the form A(t) increases by at least k on passing from t = 0 to t = +s. This is the 
more so true on passing from t = --~ to t = +g, since this number is a monotone function of t 
(the Rayleigh--Fischer--Courant inequalities 
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Fig. 3 

5. Transverse Orientation of Trains 

- -~  ~ __~ ~ 
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7 : : 
F i g .  4 

Definition. We call positive vectors on the Lagrangian Grassman manifold the velocity 
vectors of motions of Lagrangian planes under the action of systems with positive-definite 
Hamiltonians. 

THEOREM. A positive vector does not belong to the tangent cone of any train. 

The positive vectors at an arbitrary point form a convex (open)~cone. We show that 
this cone is entirely contained in one of the subsets into which the tangent cone to the 
train divides the tangent space to the Grassman manifold. 

Let ~[~, ~] be the quadratic form in phase space adjoined to the pair (~, ~) of trans- 
veserse Lagrangian planes (see Sec. 2). We shall denote with a dot the derivative in the di- 
rection of the Hamiltonian vector field with Hamiltonian H. 

LEMMA. $[~, $]I~ = 2H. 

Proof. We choose Darboux coordinates in which ~ is the p plane and ~ is q plane. Then 
~ = pq, and hence $ = ~q + p~ = pHp -- qHq. For q = 0 Euler's theorem yields $ = 2H. 

Proof of the Theorem. Let y be a Lagrangian plane which is not transverse to ~. Pick 
a Lagrangian plane ~ transverse to both ~ and y. The phase flow gt of the Hamiltonian H takes 
y into the Lagrangian planes ¥(t) = gty. Consider the generating functions of these planes, 
i.e., the following quadratic forms given on ~: 

~ = ~*  ~* g~* ~ [~, ~]/2, 

where i:y ÷ R 2n is the imbedding and ~:~ ÷ y designates the projection along ~. 

The form ~0 is degenerate, with kernel Y ~ ~. The form d~/~ is positive-definite on 
the kernel of ~ (this follows from the lemma, because the Hamiltonian is positive-definite). 
By the theorem of Sec. 4, ~/~ does not belong to the tangent cone to the variety of degen- 
erate forms. Hence, dy/dt does not belong to the tangent cone to the train of the point ~. 

COROLLARY ]. Every train is transversely oriented by the directions of positive vec- 
tors. 

COROLLARY 2. If a Lagrangian plane evolves under the action of a system with (possibly 
time-dependent) positive-definite Hamiltonian, then the index of intersection of the corre- 
sponding path on the Lagrangian Grassman manifold with the train of any point is nonnegative. 

6. Proof of the Nonoscillation Theorem 

Equation (]) or (2) is equivalent to the Hamiltonian system (3). 

LEMMA ~. The derivative of the function ~ = pq along the Hamiltonian field is equal 
to 2L, where L = T -- U is the Lagrangian. 

Proof. 
(pq)" = pq" + p ' q  = p B - ~ p  - -  q A q  : 2 ( T  - -  U) .  

Suppose the evolving Lagrangian plane y(t) is vertical (i.e., not transverse to the plane 
q = 0) for t = to. Suppose the Lagrangian is nonnegative (the potential energy is nonposi- 
tive). Let g~0 denote the phase transformation from time to to time t. Consider on y = y(t0) 
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the quadratic form ~t = i*(g~0)*¢" 

Its derivative d@/dt is, according to Le~na I, nonnegative (because L ~ 0). Hence, the 
number of its positive squares may only increase as t grows. 

LEMMA 2. At the passage of t through any moment of verticality the number of positive 

squares of the form @t increases at least by I. 

Proof. The kernel of the form *to contains the intersection of y with the plane q = 0. 
On this intersection the derivative is positive-definite (for q = 0 we have L = T). By 
Lemma 2 of Sec. 4, the number of positive squares increases, on crossing the value to, by at 
least the dimension of the intersection. The lemma is proved. 

Since the number of positive squares of an increasing form in R n cannot increase more 
than n times, the number of moments of verticality does not exceed n. The theorem is proved° 

Remark I. We have simultaneously proved the following symplectic generalization of the 
theorem: if the Poisson bracket of the quadratic forms H and ~[~, B] is positive-definite, 
then a Lagrangian plane evolving under the system with Hamiltonian H becomes transverse to 
e at most n times (actually, it suffices that the Poisson bracket be nonnegative, but its 
restriction to ~ must be positive-definite). 

Remark 2. The number of zeros of an individual solution of the Newton equation with 
(time-dependent) negative-definite potential energy can be infinite, as shown by the inte- 
grable example of a uniformly rotating potential hump in the plane (in a rotating coordinate 
system one obtains an autonomous system). 

7. Proof of the Theorem on Zeros 

We consider the evolution ¥(t) of a Lagrangian plane y under system (3), the Hamiltonian 
of which is positive-definite on the Lagrangian plane ~. 

For example, in the case of systems (I) or (2) the last condition is always fulfilled 
on the vertical plane q = O, since the kinetic energy is positive-definite. 

LEMMA I. The contribution of the moment T in the index of intersection of the path 
{y(t)} with the train of the point ~ is equal to the dimension of the intersection~ = ?(~) N 
~. 

Proof. Pick a Lagrangian plane B transverse to both ~ and ¥(T). The generating func- 
tion for ¥(T) has the kernel 6. Its derivative is positive-definite on 6 (on 6 it coincides, 
by the lemma in Sec. 5, with the Hamiltonian). Hence, on passing through the point • the 
number of positive squares increases, according to Lemma I of Sec. 4, by dim~, as claimed. 

Consider a family, depending continuously on t, of paths F(t) from y(t) to ~. We assume 
that y(tl) and y(ti) are transverse to ~, and label the objects related to t I (ti) by the in- 
dex I (respectively, 2). 

LEMMA 2. The number ~ of points of verticality of the plane ¥(t) in the interval between 
tl and ti, counting multiplicities [i.e., the sum of the intersections of all planes y(t) with 
~], is equal to the difference between the Maslov indices of the paths F~ = F(t~) and F~ = 
F(ti). 

Proof. Each time the plane becomes vertical, the Maslov index of the path decreases 
by the dimension of the respective intersection (by Lemma I and the definition of the index). 

Proof of the Theorem. Let now y'(t) be the evolution of a different Lagrangian plane 
under the action of the same system, and let F'(t) be the corresponding system of paths. In 
the covering space we pick a point ~ over ~ and we cover the paths F(t) and F'(t) by paths 
~ and ~' which end at g; their origins are denoted by ~ and ~', respectively. In the nota- 
tions of Sec. 2, the assertion of Lemma 2 is: 

~ = m ( ~ ,  ~2) - -  m (~ ,  ~1)o 

By the theorem of Sec. 2, 

m(~,  ~ (t)) + m (~(t) ,  ~ ' ( t ) ) - - m ( ~ ,  ~' (t)) = ~ ( ~ ,  V (t), V' (~). (4) 

The middle term does not depend on t, since the index is symplectically invariant. The right- 
hand side lies in the interval between 0 and n for all t. Consequently, the increment of the 
left-hand side between t~ and t2 is bounded in modulus by n. Hence, 
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I[m(~, ~ ) - - m ( ~ ,  ~) l - - [m(~,  ~ ) - - m ( ~  ~)] I ~ n .  

By Lemma 2, ]~' -- ~I ~ n, as claimed. 

We next turn to the proof of the alternation theorem. In the above notations, the num- 
ber of moments at which y(t) is not transverse to ~ is 

~ = [ (~, ~, ~) - -  m (~, ~)  

[by (4) and Lemma 2 of Sec. 7]. In exactly the same way 

v~ = I (~,  w ,  ~ )  - m  (~, ~)  

[it is important that the subtrahend does not depend on the way in which the path {~(t)} is 
lifted to the covering]. Since 0 ~ I ~ n, the modulus of the difference does not exceed n, 

as asserted. 

8. Proof of the Comparison Theorem 

Repeating the reasoning of the proof of the theorem on zeros we obtain for arbitrary 
t relation (4) for the planes 7 and y' evolving under the systems with Hamiltonians H and H', 
but now M(t) = m(~(t), ~'(t)) depends on t. 

LEMMA. If H' ~ ~, then M(t) does not decrease as t grows. 

Proof. Suppose now that H' -- H is positive-definite. Let T be a moment of nontrans- 
versality of the planes y(T) and y'(~). The symplectic diffeomorphism (g$)-l, defined by 
the system with Hamiltonian H, takes y(t) into y(T) = e and y' into a Lagrangian plane o(t). 
The Hamiltonian controlling the motion of o is positive-definite on ~ (for t = T it is equal 
to H' -- H). But M(t) = m(~, ~(t)), since the Maslov index is symplectically invariant. 

According to Lemma I of Sec. 7 (and the definition of m given in Sec. 2) the last index 
grows (does not decrease) as t is increased. In the case H' ~ H the lemma is proved by pass- 

ing to the limit. 

Subtracting relation (4) with t = t2 from the same relation with t = t~, we get 

~ ' - - v  ~ I ~ - - I ~ + M ~ - - M ~ .  

By the lemma, M2 ~ MI. Since 0 ~ I ~ n, we get ~' ~ ~ -- n, and the theorem is proved. 

Remark I. The fact that the rotation of the Lagrangian plane y(t) is accelerated on 
increasing the Hamiltonian H(t) follows from the following Liouville-type formula for the 
angular velocity of the squared determinant: A(t) = det 2 y(t), where det~: U(n)/0(n) ÷ S ~ 

(see [2]). 

Rotation Theorem. i = 2ihA, where h = trHiy(t ) [the trace of the quadratic form (Ax, 
x)/2 in Euclidean space is the trace of the operator A]. 

Proof. Let ~ = y(t0), 8 = is. In the plane ~ we choose an orthonormal base. We de- 
note the corresponding coordinates in ~ and in B by p and q, respectively. The Lagrangian 
plane y(t) has a generating function S(t), i.e., is given by the equation q = SZ/~p. 

From Hamilton's equation we get $S/~tlt 0 = HI~. We denote by s this quadratic form. 
The operator E + isVs takes the indicated orthogonal basis in ~ into an orthonormal basis 
in y(t 0 + s) with error 0(~2). Consequently, 

A(to + ~) = det ~(E + ie~Ts) + O ( e ~ )  : i + 2 i e t r s  + O ( e ~ ) ,  
as asser ted.  

Remark 2. This paper is the outcome of an attempt of understanding the result of Petrov 
[7] on nonoscillation of complete elliptic integrals. Although in this way I have not ob- 
tained a proof of Petrov's theorem, I believe that the symplectic [8] and variational aspects 
of the Gauss--Manin connection deserve a careful investigation, which may lead to generaliza- 
tions of Petrov's theorem (at least to the hyperelliptic case) and hence to new estimates 
of the number of limit cycles arising in Hamiltonian systems under polynomial perturbations. 
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FILTERING BASES, COHOMOLOGY OF INFINITE-DIMENSIONAL LIE ALGEBRAS, 

AND LAPLACE OPERATORS 

F. V. Vainshtein UDC 513.836 

We denote by Lk(n) the Lie algebra of polynomial vector fields on n-dimensional space 
over the field Q of rational numbers, having trivial k-jet at the point 0. In this paper 
we are mainly concerned with the algebras Lk(1) , whose notation is sometimes abbreviated to 
Lk. We note that the vector fields e i = xi+~d/dx (i = k, k + ],...) constitute a basis in 
Lk, and the commutation operation is given by the formula [ei, ej] = (j -- i)ei+ j. 

The basic result of the present paper is the construction of a special basis in the 
exterior complex of the algebra L k. We call this basis filtering since it defines a filtra- 
tion in the exterior complex of the algebra Lk, which is very useful, in particular, for cal- 
culating the cohomology. Thus, we get a proof of the famous theorem of Goncharova on the 
cohomology of the algebras Lk. 

The problem of calculating the cohomology of these Lie algebras (with trivial coeffi- 
cients) was posed by I. Mo Gel'fand at the 1970 mathematical congress and he formulated the 
conjecture there that 

Iq-~k--~) (q-~k--2~ 
dimHq(L~)~ k k--I -~ k--i 7" (1) 

The motivation for posing this problem was the key role which the cohomology of the al- 
gebras Lk plays in the calculation of the cohomology of various Lie algebras with coefficients 
in a broad class of modules (cf. [I, 2]). Subsequently it turned out that this cohomology 
is of great value in the theory of representations of infinite-dimensional Lie algebras (cf. 
[3-5]) and in algebraic topology (cf. [6]). 

The first proof of Gel'fand's conjecture was published in 1973 by Goncharova [7]. Al- 
though a very interesting idea lies at its foundation, it is very complicated and it is not 
easy to understand it. Hence in the following years a number of attempts to get different 
proofs of Goncharova's theorem were made. Four papers relating to this theme are known to 

TsNIIPromzdanii Gosstroya SSSR. Translated from Funktsional'nyi Analiz i Ego Prilo- 
zheniya, Vol. 19, No. 4, pp. ~-22, October-December, ~985. Original article submitted July 
26, 1984. 
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