
Now take ~ = v in (2) and any b, c in L. It follows from Lemma 5 that f = h = O. So 
0 = g = <u, v>Hbc = ~HbC. The theorem is proved. 

The author is deeply grateful to G. I. Ol'shanskii: the first variant of the proof was 
erroneous and the second one too "coordinate." 
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HIGHER BRUHAT ORDERS, RELATED TO THE SYMMETRIC GROUP 

Yu• I. Manin and V. V. Shekhtman UDC 512.542.7;519.1:531.i9 

I. As it is known, the triangle or Yang--Baxter equations express a "factorizability" 
condition for a certain matrix-valued function S on the symmetric group ~n, n ~ 3 (see [I])• 
This interpretation is a consequence of the fact that as a complete system of relations in E n 
one can take the Coxe~er relations• In the present note we derive objects which play the role 
of E n relative to the equations of Zamolodchikov's d-simplexes [2, 5] (the latter form a mul- 
tidimensional generalization of the Yang--Baxter equations). More exactly, for all n ~ k ~ I 
we define partially ordered sets B(n, k) such that B(n, I) is isomorphic to E n with the weak 
Bruhat order [3] and B(n, k) is the quotient set of the set of maximal chains in B(n, k -- I). 
The fundamental result of the paper is the purely combinatorial theorem of Sec. 2, in which 
for B(n, k) one establishes the an~alogues of the classical properties of E n. The "Coxeter 
relations" in B(n, k) have length k + 2 (see Example 3). This stipulates the fact that the 
equation of the (k + 2)-simplexes has in the left- and right-hand sides a product of k + 2 
operators• The solutions of these equations, constructed in [5], give examples of linear 
representations of B(n, k). The sets B(n, k) are closely related with the combinatorial 
structure of the convex hull of the general orbit E n in R n. It seems that the investigation 
of the sets B(n, k) and their representations may have an independent interest. 

We are deeply grateful to O. V. Ogievetskii, the discussion with whom has generated the 
scheme of the proof of the theorem in Sec. 2, and also A. V. Zelevinskii for valuable criti- 
cism and for pointing out reference [3]. 

2. Let n, k be integers, n ~ k ~ I. Let C(n, k) denote the set of k-element subsets 
of the set {I, 2 .... ,n}. The elements of C(n, k) will be denoted by (ili2 ... ik), I ~ il < 
i2 < ... < i k ~ n. For c=(~1...~)~C(~,~) we denote by c~ ~C(~,~--i) (~<7<~) the subset of c 
obtained by removing the element ij. 

Definition I. A(n, k) is the set of those total orders on C(n, k) such that for each 
d ~ C ( n , k + l )  either ~ < d ~ < . . . < d ~  or d ~ > d £ > . . . > d ~ .  

The e l e m e n t s  a ~ A  (n, k) w i l l  be  w r i t t e n  in  t h e  f o r m  of  c h a i n s  a = c ~ . . . c ~ ,  ~ ~ (n, ~, c~<c~ 

<...<~S, ~=(~) • By the inversion of an element ~N(~,~) we mean a 
~ ~ 

subset ~ C(~, ~+ i) 

such that~f<~<...<~ • The set of the inversions of ~ is denoted by Inv (~) and the num- 
ber of inversions by inv (~). 

Example I. If ~min is the lexicographic order in C(n, k), then Inv (~min) = ~; if ~max 
is the order opposite to the lexicographic one, then Inv (~max) = C(n, k + I). 

~ V. Ao Steklov Institute of Mathematics, Academy of Sciences of the USSR. institute for 
the Problems of Microelectronics Technology, Academy of Sciences of the USSR. Translated from 
Funktsisnalnyi Analiz i Ego Prilozheniya, Vol. 20, No. 2, pp. 74-75, April-June, 1986. Origi- 
nal article submitted July |7, 1985. 
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We say that for a,a'~A (~,k) we have a ~ a' if ~' is obtained from ~ = cl ... c N by the 

permutation of two adjacent subsets cj and cj+l, containing in the aggregate at least k + 2 

elements. 

Definitien 2. B(n, k) is the quotient of A(n, k). with respect to the equivalence gen- 

erated by ~. 

Let ~:A (~,k)-~B(~,~) be the projection. Clearly, the definition of an inversion can be 
carried over in a natural manner to the set B(n, k). 

Leta~A (;e,~). We assume that d EC(n,~-~i) is not an inversion of ~ and that the subsets 
~, d$,...,~÷~ are in a row relative to the order ~. By a rearrangement of ~ with the aid of 

d, denoted pd(a), we mean an element- =' ~A (~, ~} obtained from ~ by permuting the subsets dl 
into the inverse order. For 6,6'~B(~,k) we shall write b' = Pd(b) if there exist=,~'~N(~,~) 

such that b = ~(~), b' = ~(~') and a' = pd(~). Clearly, Inv(b')= Inv(b)(J {d~. 

Now we introduce a partial order on B(n, k). 

Definitien 3. We say that b ~< b' if b' is obtained from b by some sequence of rear- 

rangement s. 

Example 2. B(n, I) = A(n, ]) is isomorphic to the symmetric group with the weak Bruhat 

order. 

We recall that a partially ordered set X is said to be ranked with rank function ~: 

X ÷ (integers) if for all x,.v~X, x<.~, and all incompressible chains x = x0 <x~ < ... < x n = y 
we have n = ~(y) -- ~(x). 

THEOREM. a) Relative to the introduced order, B(n, k) is a ranked order set, where the 
_ _  

rank is the inv function. In B(.n, k) one has unique minimal bmi n = ~(amin) and maximal bma x = 
~(~max) elements (see Example ]). 

b) Let a =: d~d~. . . d M ~ A (n, k-6 ~) • Then the elements brain, Pd, (brain), Pd,Pd~ (brain) ..... PdMPdM_ 1 • • • 

Pd, (brn~n): bmax form a maximal chain in B(n, k). The- constructed correspondence defines a bi- 

jection between A(n, k + ]) and the set of maximal chains in B(n, k). 

c) Each element b ~ B (n, k) is uniquely determined by the set of its inversions Inv (b) ~ 

C(n, k + ]). 

The p2~Po.f ' is carried out by induction on n + k. For this we make use of the following 

Proposi.~ion..~ For each b ~ B (n: k) there exists a represe.ntative a = c~... c~ ~ A (n, k) in 
which all ci, containing ], are in a row. 

Example 3. B(n, n) = A(n, n)^consists of one element ~ = (]2 ... n); B(n, n -- ]) = A(n, 
n -- ]) consistS-of two elements: ~ ... ~ and ~ o.. ~. B(n, n -- 2) consists of 2n elements 
and represents 2 disjoint chains of length n, joining bmi n and bma x- 

3. Let x = (x~,...,x n) be a point in R n with distinct coordinates. We denote by S n the 
convex hull of the points oz = (~ ..... z~,~), a~ En (see [4]). (We are interested only in the 
combinatorial structure of Sn, which does not depend on the selection of x.) It is plausible 

that for all k, ] ~ k ~< n -- ], one has a unique bijection between the set of rearrangements,. 
i.e., the incompressible chains of length ~ in B(n, k), and the set of k-dimensional faces of 
Sn, combinatorially isomorphic to Sk+~. For k = ] this is the known interpretation of the 
weak Bruhat order. 

4. Relation with Hyperplane Configurations. Let ~----(H~ ..... Hn) be a set of affine 
.hyperplanes in general position in Rk, n >~ k. We set H (i~ .... , ~p) = H~, f] . . . (~ //~ We shall call 

~7~ an initial arrangement if for every (~...~+~i~ C(n,k-~ 2) : a) all points aj = H(i~, .... 

ij ..... ik+ ~) for j = ~,...,k + ] lie on the same side of Hk+2; b) moving in the direction of 
these points parallel to itself, Hk+2 meets them in the order a~, a2,...,ak+~. We fix the 
projection T:R k ÷ R ~ ("time"). Let H ~= T-~(t), t~ll~. Let '~(n,k) be the space whose points 
are general arrangements ~ such that a) none of the lines H(i~,...,ik_~) for(i~...6.~)~ 
C(n, k- ~) is parallel to H°; b) for sufficiently small t the arrangement (H~ ~ H t ..... Hn ~ll t ) 

is initial. Let ~ (n, k)~(n, k) be the subspace of such arrangements for which all T(H × 
(i~ ..... ik)) for (6...~)~C(n,k)are distinct. Let#~aC-(n,k). We order the elements (i~,..., 
$~)~C(n,k) according to increasing T(H(i~,...,ik) ). We obtain the element A(n, k). This 
defines the malpping~(n,k): no.~(n,k)~A(n,k ) . In a similar manner one defines .~ (n, k): ~o~(n,k)~ 
B(n, k). 
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Conjecture. For all (n, k), ~ (n, k) and ~(n, k) are bijectionso From the previous 
results one can Herive that this conjecture is true if n -- k ~ 2 or k = ] or (n, k) = (5, 2). 
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REPRESENTATIONS OF THE SYMMETRIC GROUP IN THE FREE LIE (SUPER-) 

ALGEBRA AND IN THE SPACE OF HARMONIC POLYNOMIALS 

A. I. Molev and L. M. Tsalenko UDC 5]9.4 

This note contains the following results: 

I) The character of the natural representation of the symmetric group S n in the free 
Lie algebra @~ with n generators is computed (since this representation is infinite- 
dimensional, the notion of a character needs to be clarified which is done in part ]). 
This result is a generalization of two known results: the formula for dimensions of 
homogeneous components of @n [I] and the theorem on the structure of the subspace of 
polylinear elements in ~n as an Sn-module [2]. 

2) All these results are extended to the action of Sn in the free Lie superalgebra ~ 
with n odd generators. 

n(n-1)/2 k 
3) The r e p r e s e n t a t i o n  of  Sn on the  space of  harmonic  p o l y n o m i a l s ~ n  =k__~0.~a, w h e r e ~  

a r e  homogeneous ha rmonic  p o l y n o m i a l s  o f  deg ree  k i s  s t u d i e d .  I t  i s  known t h a t  the  r e p r e s e n t a -  
t i o n  o f  S n i n ~ n . i s  i somorph i c  to  t h e r e g u l a r  r e p r e s e n t a t i o n  ( c f .  [3, 4 ] ) .  Here ,  a gen-  
e r a l i z a t i o n  of  t h i s  f a c t  i s  o b t a i n e d  d e s c r i b i n g  the  s t r u c t u r e  of  r e p r e s e n t a t i o n s  of  
Sn in  subspaces  of ~fn of  the  form $ .~.$, where r d i v i d e s  n,  m i s  a r e s i d u e  modulo 
r .  k~m(modr~ 

These results imply a peculiar corollary saying that the spaces of polylinear elements 
in ~n and ~ are isomorphic as modules over S n to natural subspaces in ~. It would be 
interesting to construct these isomorphisms explicitly. 

n ~ 
]. Let F=@ V ~ be a Z+-graded space, where ~ denotes an n-tuple of numbers(Z~,.. Zn)~Z+. ~ "~ 

n 
The symmetric group S n acts in ~+ by permutations of coordinates: if ~ ~ S~., then o(l~ ..... ~) = 
(~-,(I), .... ~-,(~)). Suppose that V has an Sn-m0dule structure with ~(F 0 ~ V~(O . The character of the 

the module V is the power series over the n-tuple of auxiliary variables t = (tl,...,tn): 

ch~ (~, t)~= ~ tr ~ I~ "fl' ( 1 ) 

where the  summation i s  Per fo rmed  f o r  l~Z~.  such t h a t  ~(~) = ~. One example of  an Sn-module of  
the described type is the free Lie algebra ~n with generators xz,...,x n. Suppose that Sn is 
given as the group of permutations of x~,o..,x n. Then S n naturally acts in @~ by automor- 
phisms. For each n-tuple ~ ~ ~ we denote by ~$ ~ ~ the subspace of elements of degree ~i 
in each generator x i. Then, clearly ~(~)~(o. 

THEOREM ]. 

C h s n ( ~ , t ) = ~  ~ ~ ( : i ~  l) ¢d(l+a(l)+'"+o'Gl±l(l)) ( I l l - -  t)' I II ' ( 2 )  
d ~ I  l~Z~ 
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