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Abstract 

Casein kinase II is a protein serine/threonine kinase that is ubiquitously distributed in eukaryotes. Molecular cloning 
studies and protein sequence analysis of purified proteins have demonstrated the existence of two related, but distinct, 
isozymic forms of its catalytic subunit in mammals and birds. At present, the precise role of the individual casein kinase 
II isoforms in biological responses is poorly understood. However, a great deal of evidence indicates that casein kinase 
IIis an important component of signalling pathways that control the growth and division of cells. In particular, casein 
kinase II is known to phosphorylate, and in several cases, regulate the activity of a variety of regulatory nuclear proteins 
including nuclear oncoproteins, transcription factors, and enzymes involved in other aspects of DNA metabolism. In 
this review, we will summarize evidence relating to the involvement of casein kinase II in signal transduction events that 
are relevant to cell proliferation. (Mol Cell Biochem 127/128: 187-199, 1993) 

Key words: casein kinase II, protein kinase, protein phosphorylation, signal transduction, transcriptional regulation, 
cell cycle 

Introduction 

The phosphorylation and dephosphorylation of pro- 
teins is a major mechanism controlling a variety of cellu- 
lar processes which include events relating to the growth 
and proliferation of cells [1-3]. Furthermore, genetic 
and biochemical studies have demonstrated the exist- 
ence of networks of protein kinases that are involved in 
the regulation of cell division and in the transmission of 
regulatory signals [1-7]. One component of these net- 
works is casein kinase II (CKII), a protein serine/threo- 
nine kinase that is ubiqitously distributed in eukaryotic 
cells [8-11]. While its precise role in biological responses 
remains poorly characterized, a great deal of recent evi- 
dence indicates that this enzyme is involved in the regu- 
lation of proliferative events. Since the biochemistry of 

CKII and a detailed discussion of its substrates have 
been the topic of previous reviews [8-11], this review will 
focus on the most recent information that indicates that 
CKII is an important component of regulatory signall- 
ing pathways relevant to the growth and division of cells. 

Subunit composition of casein kinase 
II 

In most organisms, CKII is a tetrameric enzyme com- 
posed of two ~ (and/or o~') subunits and two [3 subunits, 
although exceptions to the tetrameric structure may ex- 
ist in some organisms (reviewed in [8, 9]). Through 
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molecular cloning studies [12-16] and direct protein se- 
quence analysis of purified proteins [17, 18], the exist- 
ence of an isozymic form of the a subunit (designated c~') 
has also been demonstrated in yeast, mammals and 
birds. These studies clearly indicate that the isozymic 
forms of CKII are products of distinct genes. Sequence 
analysis demonstrates that the conserved consensus mo- 
tifs of protein kinase family members [19] are all found 
within the deduced sequences of the o~ and or' subunits 
(see Fig. 1). In mammals and birds, the a subunits (391 
amino acids) and o( subunits (350 amino acids) exhibit a 
very high degree of identity. For example, over the 330 
N-terminal residues of their deduced sequences (con- 
taining all conserved protein kinase motifs) the human o~ 
and ~' subunits exhibit approximately 85% identity 
(identity exceeds 90% when conservative substitutions 
are considered). Interestingly, the C-terminal domains 
of o~ and o( are completely unrelated suggesting that 
functional differences between the two isoforms may re- 
sult from differences within these domains (see also be- 
low). Sequence comparisons also demonstrate a very 
high degree of conservation for the o~ and 0~' subunits of 
CKII between species (see Fig. 1). Chicken [16] and hu- 
man [14,15] ~ subunits exhibit 98% identity while the a" 
subunits from these species exhibit 97% identity. By 
comparison with the a subunits of CKII, the [3 subunit 
does not share any identity with the catalytic or regu- 
latory subunits of other protein kinases [20-27]. The 
CKI113 subunit has considerable sequence identity with 
the protein encoded by the stellate gene of Drosophila 
melonagaster, but the functional significance of this ob- 
servation is unknown [281 . While its precise functions 
remain poorly understood, the CKII [3 subunit displays 
extraordinary conservation; remarkably the deduced 
amino acid sequences of human (as reported by Jakobi 
etal., and Teitz etal. [21, 25]), mouse [24, 26] and chicken 
[16] 1~ are identical (see Fig. 2). Furthermore, the [~ sub- 
unit of Xenopus laevis differs from the [3 subunit of birds 
and mammals by only a single amino acid. Clearly, the 
exceptional degree of conservation exhibited by the a, 
(x' and [3 subunits of CKII suggests that functional prop- 
erties of CKII have been conserved throughout evolu- 
tion. 

As implied from sequence homology with other pro- 
tein kinases, the isolated o~ subunits of CKII have pro- 
tein kinase activity [29-31]. A precise role for [3 has not 
yet been established, but it appears to have a role in en- 
hancing or stabilizing the kinase activity of the c~ subunit 
[32-36]. The [3 subunit is known to be autophosphorylat- 
ed in vitro [8, 9] and in cells [37]. However, the function 
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of autophosphorylation has not been determined since 
deletion of the autophosphorylation site has no appar- 
ent affect on the ability of recombinant [3 to associate 
with, and enhance the kinase activity of o~ [36]. Biosyn- 
thetic labeling studies [38] indicate that nearly all of the 
newly synthesized a subunit is rapidly incorporated into 
holoenzyme and that significant quantities of free c~ sub- 
unit do not exist in exponentially growing cells. By com- 
parison, [3 appears to be synthesized in excess over c~ and 
is more slowly incorporated into holoenzyme. The o~ and 
[~ subunits that assemble to form holoenzyme appear to 
have a very long half-live, in contrast to free [~ which is 
rapidly degraded. Collectively, the experiments that 
have been summarized above suggest that [3 is an impor- 
tant component of CKII; however, its precise functions 
remain elusive. 

Substrate specificity of casein kinase II 

The substrate specificity of CKII has been determined 
by identifying the sites that are phosphorylated in its 
substrate proteins and by the systematic analysis of syn- 
thetic peptides (reviewed in [8, 9]). Collectively, these 
studies indicate that the consensus sequence for CKII is 
Serine(or Threonine)-X-X-Acidic where the acidic ami- 
no acid can be glutamic acid, aspartic acid, phosphose- 
rine [3941] or phosphotyrosine [42], but apparently not 
phosphothreonine [41, 42]. Although the composition of 
the X amino acids has not been comprehensively exam- 
ined it is apparent that certain amino acids, i.e. proline in 
the 1st X position) could prevent substrate phosphoryla- 
tion by CKII [43]. In general, it seems that the best CKII 
substrates appear to have several acidic residues on the 
C-terminal side of the phosphorylatable residue. It 
should also be noted that CKII phosphorylation sites 
that do not conform to the Serine-X-X-Acidic motif 
have been identified [8, 9, 44]. The observation that 
phosphorylated amino acids can serve as specificity de- 
terminants for CKII is of interest because it suggests that 
CKII will phosphorylate some proteins only after prior 
phosphorylation by a distinct protein kinase, an exam- 
ple of hierarchal phosphorylation (as reviewed by 
Roach [45]). 

Localization of casein kinase II 

CKII is known to phosphorylate a variety of regulatory 
cytosolic and nuclear proteins, a result that suggests that 
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CKII may be located in different cellular compartments. 
Indeed, biochemical studies relying on measurements of 
CKII activity had indicated that it is localized within the 
cytoplasm, the nucleus and may be associated with other 
structures within cells [8, 9]. In recent years, more pre- 
cise analyses have been performed by immunofluores- 
cent and immunoelectron microscopy. These studies 
have confirmed that CKII is localized within the nucleus 
and the cytoplasm. However, there are very significant 
differences in the observations made by different inves- 
tigators. Initial observations made independently in dif- 
ferent laboratories using polyclonal antibodies raised 
against the CKII holoenzyme demonstrated that CKII is 
localized within the nucleolus, an observation that is 
consistent with the observation that nucleolar proteins 
can be phosphorylated by CKII [46, 47]. Alterations in 
the nuclear/cytoplasmic distribution of CKII have also 

been documented. More than one laboratory has sug- 
gested that the nuclear population of CKII is more 
prominent in proliferating cells than it is in quiescent 
cells, and that there may be a regulated nuclear trans- 
location of the enzyme [47, 48]. The latter suggestion is 
supported by the observation that microinjection of 
[3-specific monoclonal antibodies results in an apparent 
decrease in the nuclear accumulation of CKII [49]. 

The localization of the individual subunits of CKII 
has also been investigated using antipeptide antibodies 
specific to the different subunits of CKII. The studies of 
Yu et al. [50], indicate that CKII a may be primarily cyto- 
solic and CKII a '  primarily nuclear in G 1 cells. Interest- 
ingly, when cells entered S phase, CKII 0~' was reported 
to leave the nucleus. In contrast, the studies of Krek et aL 

[51], suggested that the ~, (z" and ~ subunits are all local- 
ized predominantly to the nucleus. Both studies indicat- 



ed that a population of CKII became associated with the 
mitotic spindle in dividing cells. It is difficult to explain 
the discrepancies between the two studies. However, it 
may be significant that Yu et al. [50] did not utilize o~' 
specific antibodies for their studies and instead deter- 
mined the localization of CKII o~' by examining the dif- 
ference in immunoreactivity observed when using anti- 
bodies that recognized both a and 0~' and antibodies that 
exclusively recognized a. Krek et al. [51] also noted that 
[3-specific antibodies detected a signal (perhaps centro- 
somes) that was not detected with ~ or c~'-specific anti- 
bodies. Despite indications that [3 may have functions 
independent of ~ or o~', it should be noted that the sub- 
units of CKII have normally been found in tetrameric 
complex. 

Clearly, there appear to be a number of unresolved 
issues regarding the precise localization of CKII species 
within cells. At least some of the apparent discrepancies 
that have been reported may result from the fact that 
different laboratories have used different cell lines, anti- 
bodies and fixation procedures for immunolocalization 
experiments. Nevertheless, it does appear that CKII is, 
at least in part, a nuclear enzyme that could play a signif- 
icant role in the transmission of regulatory signals within 
the nucleus. 

Casein kinase II in signal transduction 

There is a great deal of circumstantial evidence that sug- 
gests that CKII is an important regulator of proliferative 
events. In particular, studies indicate that the activity of 
CKII is elevated in rapidly proliferating cells as com- 
pared to quiescent cells and in proliferating tumour tis- 
sue compared to non-tumour tissue [52, 53]. At least in 
some instances, it appears likely that increases in CKII 
activity reflect corresponding increases in levels of CKII 
protein. More direct evidence that CKII has an impor- 
tant role in proliferative events comes from studies in 
the yeast Saccharomyces cerevisiae. Disruption of the 
CKA1 gene (encoding o 0 or the CKA 2 gene (encoding 
o~') does not produce an obvious phenotype [12, 13]. By 
comparison, disruption of both CKA1 and CKA2 results 
in a complete loss of viability which can be restored by 
introduction of a cDNA encoding a functional o~ subunit 
from Drosophila, but not a kinase-deficient Drosophila 
(z subunit [54]. These results indicate that the kinase ac- 
tivity of CKII is essential for viability and demonstrate 
functional conservation between the a subunits of dif- 
ferent organisms. Similarly, it appears that the CKII o~ 
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subunit is essential for the vegetative growth of Dictyos- 
telium discoideum, since attempts to obtain disruptants 
of the gene encoding the protein were not successful 
[55]. 

Studies in mammalian cells also support the sugges- 
tion that CKII is an important component of signalling 
pathways relevant to the control of proliferation. Pre- 
treatment of primary human IMR-90 fibroblasts with 
antisense oligonucleotides for the a and [~ subunits of 
CKII delayed entry of these cells into S phase following 
mitogenic stimulation [56, 57]. In a similar vein, microin- 
j ection of [3-subunit specific monoclonal antibodies par- 
tially inhibited serum-induced proliferation perhaps by 
preventing the nuclear translocation of CKII [49]. The 
role of CKII in mitogenic signalling has also been inves- 
tigated by microinjection of purified protein into mam- 
malian cells. Microinjection of CKII into quiescent rat 
embryo fibroblasts by Gauthier-Rouviere et aL [58] in- 
duced c-los expression presumably through a mecha- 
nism involving phosphorylation of serum response fac- 
tor (SRF). By comparison, microinjection of CKII was 
shown by Lin et aL [59] to suppress induction of AP-1. 
Although, as noted by Lin et aL, that there may be exam- 
ples of AP-1 induction without c-los expression, it would 
appear that the results of the microinjection studies are 
contradicatory. Collectively, these results suggest that 
CKI! may play a role in regulating proliferative events. 
However, before the precise roles of CKII in cell regu- 
lation are completely understood, a number of apparent 
discrepancies must be resolved. 

Phosphorylation of regulatory nuclear 
proteins 

In recent years, a role for CKII in the regulation of nu- 
clear events through the phosphorylation of regulatory 
nuclear proteins has rapidly emerged. Particularly 
prominent on its list of probable physiological sub- 
strates are a number of nuclear oncoproteins, a tumour 
suppressor protein, transcription factors and proteins 
involved in DNA metabolism. For a partial list of its po- 
tentially important nuclear substrates see Table 1. For all 
of these proteins, evidence suggests that CKII can phos- 
phorylate sites that are known to be phosphorylated in 
cells. In some cases, phosphorylation appears to affect 
functional properties of the proteins, whereas in other 
cases (i.e. c-Myc [60, 61], N-Myc [62, 63], c-Erb A [64]) 
effects of phosphorylation have not yet been observed. 
Since the phosphorylation of many of these proteins has 
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been thoroughly reviewed, the forthcoming discussion 
will emphasize the most recent findings that suggest a 
role for CKII in the control of functional properties of 
nuclear regulatory proteins. 

As indicated in Table 1, various forms of the Myc fam- 
ily of oncoproteins (including c-Myc and N-Myc) have 
been shown to be phosphorylated by CKII. In the case 
of c-Myc, CKII phosphorylation sites have been local- 
ized to two regions of the protein; a central region of the 
protein and a C-terminal region that is adjacent to its 
basic helix-loop-helix/leucine zipper domain [60]. Muta- 
tion of the CKII phosphorylation sites within the latter 
region to non-phosphorylatable (alanine or aspartic 
acid) residues did not have a significant effect on Myc 
activity when analysed in a co-transformation assay [61]. 
However, since CKII sites within this region are highly 
conserved throughout evolution, it remains possible 
that CKII phosphorylation of c-Myc could have some 
functional effects that have not yet been characterized. 
Recent evidence has demonstrated that c-Myc functions 
as a transcriptional regulator when part of a heterodi- 
meric complex with another basic helix-loop-helix/leu- 
cine zipper containing protein designated Max [65, 66]. 
Two forms of Max, generated by alternate splicing, have 
been identified; both forms can be phosphorylated in 

vitro by CKII at sites (Serine2 and Serinell) that are 
phosphorylated in cells [66, 68]. Initial studies of Ber- 
berich and Cole [67] indicated that CKII phosphoryla- 
tion of Max could inhibit the DNA binding activity of 
Max:Max homodimers, but not Myc:Max heterodimers. 
However, a more detailed kinetic analysis indicates that 
CKII phosphorylation of Max increases the exchange 

rate for DNA binding of Max:Max homodimers and 
Myc:Max heterodimers [68]. 

Phosphorylation by CKII has been shown to negativ- 
ely affect the DNA binding activities of two nuclear on- 
coproteins, c-Myb [69] and c-Jun [59]. In the case of c- 
Myb, CKII phosphorylation occurs at serine residues 
(Serinell and Serine12) that are deleted in oncogenical- 
ly-activated forms of Myb [69]. This observation sug- 
gests that the loss of regulatory phosphorylation sites 
may contribute to oncogenic potential. However, there 
is as yet no direct evidence that indicates that CKII 
phosphorylation of c-Myb can regulate its DNA binding 
activity in cells. Furthermore, mutation of the CKII 
phosphorylation sites in c-Myb has no apparent effect 
on its transactivation of a reporter gene (M. Oelges- 
chlfiger and B. Liischer, unpublished observations). 
Phosphorylation of c-Jun, a component of the AP-1 tran- 
scription factor complex, by CKII occurs at two residues 
(Threonine231 and Serine 249) that appear to negatively 
regulate DNA binding activity [59]. Microinjection of 
synthetic peptide inhibitors of CKII into living cells re- 
sulted in induction of AP-1 activity. The effect of inhib- 
itory peptides could be overcome by increasing cellular 
CKII levels by microinjection of purified enzyme. Mi- 
croinjected CKII also inhibited phorbol ester-induced 
increase in AP-1 activity. Collectively, these results sug- 
gest that CKII has a role in suppressing AP-1 activity in 
resting cells by inhibiting the DNA binding activity of 
c-Jun. 

In addition to its apparent role in the negative regu- 
lation of transcription factor activity, CKII has also been 
shown to activate the DNA binding activity of other 

Table 1. Regulatory nuclear proteins phosphorylated by casein kinase I1 

Protein Function Effects of phosphorylation Refs. 

c-Myc transcription factor 
N-Myc transcription factor 
Max transcription factor 

c-Myb transcription factor 
c-Jun transcription factor 
SRF transcription factor 
c-ErbA transcription factor 
PU.I transcription factor 
p53 tumour suppressor 

UBF 
E7 
large T 
topoII 
DNA ligase 1 

nucleolar transcription factor 
transforming protein of HPV type t6 
transforming protein of SV40 
DNA topoisomerase 
ATP-dependent ligation of DNA 

? 60, 61 
? 62, 63 
inhibits DNA binding of max/max homodimers 67 
increases on/off rate for DNA binding of max/max and myc/max 68 
alters DNA binding 69 
inhibits DNA binding 59 
increases on/off rate for DNA binding 58, 70-73 
? 64 
promotes interaction with NF-EM5 80 
activates DNA binding 75 
mutation of CKII site abolishes anti-proliferative potential 74 
apparent transactivation of RNA polymerase 1 dependent transcription 81, 82 
mutation of CKII sites decreases transformation potential 89, 90 
increases nuclear transport 87 
increases decatenation activity 84, 85 
increases activity 83 



transcription factors. The DNA binding activity of se- 
rum response factor (SRF), a transcription factor that 
binds to the serum response element within the promo- 
ter region of the c-los proto-oncogene, was initially 
shown to be dependent on phosphorylation by CKII, a 
result that suggested CKII had the potential to regulate 
c-los expression by controlling the phosphorylation of 
SRF [70]. Moreover, increasing the levels of CKII activ- 
ity in quiescent fibroblasts by microinjection of purified 
enzyme resulted in enhanced phosphorylation and stim- 
ulation of c-los expression [58]. However, other studies 
suggest that the role of CKII in regulating SRF activity 
and c-fos expression may not be so straightforward. De- 
tailed kinetic analyses [71, 72], indicate that CKII actual- 
ly enhances the on/off rate for DNA binding by SRF 
without significantly altering binding affinity. Also, re- 
cent studies by Manak and Prewes [73] demonstrate that 
there is no change in the extent of SRF phosphorylation 
by CKII when cells are stimulated with serum. The latter 
observations suggest that phosphorylation of SRF by 
CKII may not be the primary regulatory event that con- 
trols c-los expression. Nevertheless, the CKII phospho- 
rylation sites on SRF are known to be phosphorylated in 
cells and are known to be highly conserved throughout 
evolution. Thus, it is plausible that CKII may control 
certain functions of SRF, or protein complexes contain- 
ing SRF, that have not yet been examined. 

Another protein that appears to require CKII phos- 
phorylation in order to bind DNA is p53, a tumour sup- 
pressor protein with a postulated role as a transcription- 
al regulator [74, 75]. CKII has been shown to associate 
with p53 and can phosphorylate a residue near the C- 
terminus of p53 that does not conform to the Serine-X- 
X-Acidic consensus for CKII phosphorylation [76-78]. 
Recent studies demonstrate that phosphorylation of this 
residue by CKII can activate the binding of p53 to DNA 
[75]. Furthermore, mutation of the CKII site in p53 abol- 
ishes its antiproliferative activity suggesting that CKII 
may play a role in regulating the activity of p53 in vivo 

[74]. Given that the activity of p53 could be regulated 
during the cell cycle [79], these observations imply that 
CKII, or perhaps its interactions with p53, could also be 
regulated during the cell cycle. While the precise func- 
tions of p53 remain poorly defined, it may be involved in 
arresting cell cycle progression in response to DNA 
damage. Interestingly, the cDNA encoding the 13 subunit 
of CKII was shown to confer a degree of UV resistance 
to Xeroderma Pigmentosum cells of the complementa- 
tion group D [25]. Although the mechanism by which 
this effect was induced remains uncharacterized, the re- 
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sults suggest that CKII, or perhaps the free [~ subunit, 
may have a role in some aspect of DNA repair. At this 
stage, there is no evidence that indicates any kind of con- 
nection between the role of CKII in DNA repair and its 
interactions with p53. However, it is tempting to spec- 
ulate that there may be some functional relationship be- 
tween these events. 

Phosphorylation by CKII also appears to regulate the 
transactivation activity of a B cell specific complex con- 
taining the PU.1 and NF-EM5 proteins that interact with 
a region of the enhancer of the ~; immunoglobulin chain 
[80]. Sequence specific DNA-binding by the NF-EM5 
protein requires complex formation with PU.1; phos- 
phorylation of PU.1 promotes association with NF- 
EM5. Furthermore, mutation of the CKII phosphoryla- 
tion site on PU.1 dramatically diminished the ability of 
the NF-EM5/PU.1 complex to stimulate transcription of 
a reporter gene in $194 plasmacytoma cells. 

Recent studies also suggest that CKII phosphoryla- 
tion may be involved in stimulating the transactivating 
activity of UBF, a nucleolar protein that functions as a 
transcription factor for the RNA Polymerase I depend- 
ent transcription of ribosomal RNA genes [81, 82]. The 
extent of UBF phosphorylation and its transactivating 
activity (but not its DNA binding activity) are at higher 
levels in proliferating cells as compared to resting cells. 
Since CKII appears to be the major kinase responsible 
for UBF phosphorylation, these results imply that CKII 
activity is higher in proliferating cells. CKII also appears 
to be involved in the activation o fDNA ligase I [83] and 
DNA topoisomerase II [84, 85]. Interestingly, phospho- 
rylation of the latter protein was significantly dimin- 
ished at the non-permissive temperature in yeast con- 
taining temperature-sensitive CKII suggesting conclu- 
sively that CKII is indeed a physiological kinase that tar- 
gets topoisomerase II [85]. In addition, phosphorylation 
of topoisomerase II by CKII appears to be maximal at 
the G2/M transition suggesting that the activity of CKII 
could be regulated during the cell cycle. 

Endogenous cellular proteins do not appear to be the 
only substrates that are affected by CKII. Large T anti- 
gen [86, 87], one of the transforming proteins of SV40 
and E7 [88-90] one of the transforming proteins of hu- 
man papilloma virus type 16 can be phosphorylated by 
CKII at sites that are known to be phosphorylated in 
cells. Evidence from Rihs et al. [87], suggests that CKII 
phosphorylation of large T at residues near its nuclear 
localization sequence may be involved in regulating its 
transport to the nucleus. In the case of E7, mutation of 
its CKII phosphorylation sites diminishes its ability to 
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transform NIH 3T3 cells or BRK cells [89, 90]. The 
mechanism by which E7 is regulated by CKII remains 
unknown since the binding of E7 to the Rb gene product 
was unaffected by mutation of CKII phosphorylation 
sites [89, 90]. 

In summary, a great deal of evidence indicates that 
CKII has a very significant role in the regulation of nu- 
clear protein functions. In particular, the involvement of 
CKII in the phosphorylation of proteins involved in the 
control of gene expression demonstrates that this en- 
zyme is a key component of regulatory pathways con- 
trolling proliferative events. 

Regulation of CKII in cells 

There are indications from studies in mammalian fibro- 
blasts [91] as well as amphibian and echinoderm oocytes 
that the activity of CKII may be regulated at different 
stages in the cell cycle [92-95]. There is also evidence 
that CKII may be activated by various stimuli (see Table 
2) including serum, insulin, IGF-1, EGE bombesin, tu- 
mour necrosis factor and phorbol ester [91, 96-104, 108, 
109]. However, the activation of CKII is not a universal 
response of cells to these stimuli, since measured chang- 
es in CKII activity are not always observed even using 

the same stimulus [97, 105-107] (see Table 2). Further- 
more, in most instances the observed increase in CKII 
activity is relatively modest, and in some cases cannot be 
observed until a cell extract has been subjected to chro- 
matographic ffactionation. There have also been sug- 
gestions that the activity of CKII is constitutively ex- 
pressed in cells and is not subject to acute regulation 
[7-9]. To gain a full understanding of CKII and its role in 
biological events, discrepancies regarding its activation 
in cells need to be resolved. 

At present, the precise mechanisms by which CKII is 
regulated in cells remains poorly characterized, but it 
does appear that several factors could be involved. 
There have been indications that CKII is activated by 
phosphorylation. Most notably, Ackerman et al. [102], 
demonstrated that treatment of human A431 cell ex- 
tracts with alkaline phosphatase could result in a return 
of EGF-stimulated C K I I  activity to basal levels. The 
protein kinases responsible for phosphorylation of CKII 
in response to EGF were not identified. It has also been 
shown that purified CKII can be phosphorylated and ac- 
tivated in vitro by purified p34 coo2 [110] or by purified 
protein kinase C [111]. In contrast to these results, it has 
been shown that the activity of purified CKII can be in- 
creased by dephosphorylation [112]. Since phosphoryla- 
tion sites were not analysed in any of the studies detailed 

Table 2. Regulat ion of  casein kinase II in cells 

Stimulus Cell type or tissue Effect Refs. 

Insulin mouse  3T3-L1 cells increase 96, 99 
rat H4-IIE cells increase 96 

mouse  Balb c/3T3 cells increase* 97 

rat adipocytes increase* t00 

rat adipocytes no effect 105 
rat liver decrease 107 

1GF-1 mouse  Balb c/3T3 cells increase* 97 

Epidermal  growth factor h u m a n  A431 cells increase 96, 101, 102 
Balb c/3T3 cells no effect 97 

human  A431 cells no effect 37 

mouse  Swiss 3T3 cells no effect 106 

serum h u m a n  WI.38 cells increase 91 

bombesin  mouse  Swiss 3T3 ceils increase* 103 

Tumor  necrosis factor mouse  Swiss 3T3 cells increase* 104 
mouse  L929 cells increase* 104 

phorbol  ester rat B R K  cells increase 208 
h u m a n  A431 cells no effect 101 

phorbol ester and ionomycin mouse  B cells increase 109 

* Increase in CKII  activity was measurable  only after chromatographic  fractionation of extracts. 



above, it is not possible to resolve apparent contradic- 
tions. To address the issue systematically, we examined 
the phosphorylation state of CKII in A431 cells and 
demonstrated that the [~ subunit of CKII is phosphory- 
lated at an autophosphorylation site (Serine2, Serine3) 
and at a residue (Serine209) that is phosphorylated in 
vitro by p34 cdc2 [37]. We subsequently demonstrated that 
the ot (but not or') and [3 subunits of CKII are dramat- 
ically phosphorylated in chicken BK3A cells and human 
Jurkat cells arrested at mitosis [113], a result that sug- 
gests very clearly that CKII could be a physiological sub- 
strate for p34 ~ (and/or other protein kinases that are 
activated at mitosis). Comparative phosphopeptide 
maps indicate that the mitotic sites on CKII-ot can be 
phosphorylated in vitro by purified p34 cdc2. Notably, the 
mitotic phosphorylation sites on the CKII c~ subunit are 
localized to its unique C-terminus, suggesting that this 
domain is involved in cell cycle dependent regulation of 
the CKII-0~ isozyme. Although it appeared that nearly 
all of the CKII ot subunit was phosphorylated in mitotic 
chicken BK3A cells, we did not measure any apparent 
change in CKII activity in extracts, or immunoprecip- 
itates, prepared from interphase or mitotic populations 
of cells [1131. This result suggests that the mitotic phos- 
phorylation of CKII does not directly alter its catalytic 
activity. Nevertheless, since the mitotic phosphorylation 
of CKII occurs to high stoichiometry, it is likely that cer- 
tain functions or properties of the CKII-ot isozyme are 
regulated by its cell cycle-dependent phosphorylation. 

As discussed previously, independent studies have 
shown that the nuclear population of CKII becomes 
more prominent following the stimulation of resting 
cells to re-enter the cell cycle suggesting that there is a 
regulated nuclear translocation of CKII. Also, immuno- 
fluorescence localization studies indicated that a pop- 
ulation of CKII became associated with the mitotic spin- 
dle in dividing cells. Although the factors that control 
the localization of CKII within cells remain uncharac- 
terized, these studies suggest that changes in the phos- 
phorylation of substrate proteins could be mediated by 
altering the distribution of CKII within cells without di- 
rectly altering its catalytic activity. This mode of regu- 
lation would be analogous to the targeting of other pro- 
tein kinases (i.e. cAMP-dependent protein kinase [114], 
p34 cda [115]), and phosphatases [3] that are regulated by 
association with regulatory subunits that control acces- 
sibility to different substrates. 

In vitro, the activity of CKII is dramatically affected 
by compounds including polyanionic inhibitors such as 
heparin and polycationic activators such as spermine 
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and polylysine (reviewed in [8, 9]). However, the role of 
these compounds in regulating CKII in cells is not yet 
known. It has been demonstrated that CKII can aggre- 
gate in vitro (under conditions of physiological ionic 
strength) to form ordered linear filaments [116]. As yet, 
the filaments have not been observed in living cells, and 
the effects of filament formation on kinase activity have 
not been precisely determined. A number of other cellu- 
lar proteins (including tubulin [117], p53 [76-78], hsp90 
[118-119], and an unidentified 49kDa protein [120]) have 
also been shown to interact with CKII. Associated pro- 
teins could directly regulate the activity of CKII, specify 
its localization within cells, or could simply be substrate 
proteins. The interaction with tubulin may be related to 
the interaction of CKII with the mitotic spindle [50, 51]. 
Furthermore, it wilt be of interest to determine whether 
the mitotic phosphorylation of CKII [113] is involved in 
controlling its interactions with the mitotic spindle. The 
association of p53 with CKII has been independently 
observed by different laboratories [76-78] and appears 
to be related to the involvement of CKII phosphoryla- 
tion in activation of DNA binding by p53 [74, 75]. Asso- 
ciation of CKII with hspg0 in vitro appears to result in 
kinase activation and inhibition of CKII filament forma- 
tion [119]. A more thorough understanding of how (or if) 
the functions of CKII are controlled by its interactions 
with other proteins requires further analysis. 

In summary, a number of potential factors or mecha- 
nisms by which CKII may be regulated in cells have been 
identified. However, as yet there is no consensus on how 
its functional properties are precisely controlled. 

Perspectives 

Based on its ubiquitous distribution and exceptional 
evolutionary conservation, it would appear that CKII 
plays a vital role in fundamental cellular processes. 
However, despite the rapid accumulation of evidence 
that supports a role for CKII in the regulation of prolif- 
erative events, its precise functions are poorly under- 
stood and a number of issues remain unresolved. In par- 
ticular, although it has been demonstrated that CKII can 
phosphorylate a number of regulatory nuclear proteins, 
there is (with the possible exception of topoisomerase II 
[85]) very little evidence that indicates when and where 
CKII phosphorylates its substrates in cells during differ- 
ent stages in the cell cycle or following stimulation with 
various agents. Without this information it is difficult to 
determine how CKII actually regulates the functions of 
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particular proteins in cells. This information is also re- 
quired to resolve apparent discrepancies regarding its 
subcellular localization and its regulation (or lack of reg- 
ulation) in response to various stimuli or at different 
stages of the cell cycle. Further study is also required to 
determine whether the isozymic forms are functionally 
redundant or whether they have specialized functions. 
By resolving many of these issues, we may ultimately de- 
fine the position(s) occupied by CKII in the regulatory 
protein kinase networks that control the growth and di- 
vision of cells. 
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