CONTINUATION OF DIFFEOMORPHISMS
RETAINING VOLUME

A. B. Krygin

1. In this paper we shall denote by M™ a connected, smooth, orientable, closed manifold of class C*®
by WM its submanifold with smooth boundary dWmM, and by @, the volume on MM, On M™ gome metric is
fixed, Wj are the connected components of W, Nj are the connected components of M\W, and id is the
identity mapping of M (with this, if A is a subset then id| A is the identity embedding A — M). For any re-
gion AC M we write 70, A> = fm ; here, w is a differential m-form. The different families of mappings

A
(f(x), Fi(x), etc.) are smooth functions of t and x of class C™; the exception is the family of diffeomor-
phisms entering into the lemma.

Let there be a continuous family of embeddings ft: 8W — M, with f, = id|dW; it is known (4] that then
ft can be continued to a family of diffeomorphisms. f¢: M — M, coinciding with f{ on W and with id when
t =0; we set Wt =W, Wit =F Wi, and Njt +ftN

THEOREM 1. Let the family of embeddings f{:3W — M possess the properties: f, =id|dW¥, ‘o, W;>
= {(ay, Wi,y and <o, N> = (o, N> for all i and j. Then, there exists a family of diffeomorphisms Fy: M —M,
such that Fv, = w,, with F, =id and F,|dW =f,.

LEMMA. There exists a continuous mapping ¥ of the set of positive definite m-forms w with identi-
cal <w, M> =<w,, M> into Diff(M) such that v (w) *w = w.

Proof of the Lemma. (Actually, we shall repeat the arguments of J. Moser, [1], Theorem 2, although
this assertion does not formally appear there.) w; =(1—t)w, + tw is the family of forms. We spec1fy a
vector field Vi such that the family of diffeomorphisms @¢: M —M defined by it has the property ¢ t“’t"“’o-

We perform the following computations:

d = .. s .
0= 7 $ror =@ (@ - Lyvo) = @ (0 - div,w)

(i denotes inner multiplication and L the Lie derivative). Hence, diviw; = —~@;. Moreover, <@, M> =0,
so that w¢ is an exact form. By using the expansion given in [2] (§31), we obtain diy {9t =—3d6Gw¢. From
the equation iygw: = 8 Gwt we uniquely find the field V¢ plus the corresponding famxly of diffeomorphisms
®i. We have the equation cpi*w =w,, i.e., mapping v (@) = ¢, is the one we seek. This mapping is continu-
ous as a mapping of the space of forms with the topology of C1 into the space of diffeomorphisms with the
topology C, n=1, 2, ...,%. Indeed, G is continuous as a mapping of the space of differential forms of
class C1 into the space of forms of class Cnﬂ, so that the mapping w; —Vt is continuous as a mapping of a
form into a vector field of class CR; finally, the continuity of mapping Vi — ¢, is, in essence, the theorem
on the continuous dependence of the solutions of differential equations on the right-hand sides of those
equations.

We note in passing that when n = * the mapping we obtain is a global section of the fibration consti-
tuting the diffeomorphism ¢ of form ¢ *w,., Whenn<wv is not a section of this fibration since if » is of
class Ch we then have the formula ¢ *w;, and this means that v (¢ %0 ) will, in general, be forms of class
C™1, 1t ig possible to consider v as a section of the fibration the space of which consists of the diffeomor-
phisms of class C2 with Jacobians of class CI, It is not hard to deduce from this that this space is the
direct product of the space of forms by Diff (M, w,) (the space of diffeomorphisms retain volume w,).
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Proof of Theorem 1, We set wp = {1— t)fti*ma + t{fi oft_‘) *w,, where ft is as above; then, <w¢, Wit>
= <w,, Wi>, <wi, Njt> and 0y = @, We set ¢¢ = vyt f, Njt = #Nj, Wlt = ¢¢Wi. The family of embed-
dings ¢¢|8W has the properties ¥, =F, = id, @; =J, so that ¢;|8W =f;, <w,, Wit> = <w,, Njt =<w,, Nj>.
Indeed,

{tdg, ﬁii> = {tgy ¥V (wt)QlNiﬁ = {V (Cﬁt)—lﬁ(ﬂo, N,‘i} = {4, N,’g> = gy Nj).

We now proceed to the construction of Fy. On ¢y 8W we define the vector field Vi(gx) = é Prpsk.
]
Ina e-neighborhood of 8W we introduce coordinate y transversal to 8W, We continue field V; in this neigh-

borhood in the following way: Vix(x, y) = Vox(x), and we find V(y(x, y) from the equation divw, =0 with
the initial condition Voy(x). By an analogous construction we proceed in ¢¢Ug OW. We obtain the closed
(n—1-form ivyw, in the corresponding neighborhoods of manifolds #8W. It remains to construct the fam-
ily of closed forms wt on M coinciding with iyw, in some neighborhood of manifold ¢; oW.

Let {zh}be the nonzero generators of Hp-y(M, R) lying in @{UgW (i.e., of Hp-y(OW, R)). There ex-
ists on M a unique harmonic form w, such that <wp, zp> =1 and <@h, z> =0 for all other cycles not de-
pendmg on zh. The cycles of Hp-4(¢¢Ug 6W, R), not depending on {zh} are formed by the boundaries N]t
and Wi;. The values of iygo, on them equal zero since

<iv g, 67\7,-0 = {div@,, ﬁj;) (L, [V.,t,:—_ii.

ds s e (Pt—‘)'ﬁ)o, _N]!> =0

seef
The form o, =iy, — Z Ciy 4, 24 0, has zero period and, consequently, is exact on ¢{Ug OW. Let

g€s: PtUgdW — U W be a mapping which, in terms of the coordinates introduced above, is such that
s(x, y) = (x, sy). We construct an operator on the forms ¥

1
ky = S "i‘l‘id/dyg:'lp ds.
°

Standard computations in the local coordinates show that kdey + dka = @y—gg &, where ay = (id| @1 dW) *
ayt is an (m~1)-form of zero periods on the closed manifold ¢4 8W. Using the expansion of [2] (¥ 31), we
obtain @ = dkay + dg, 8Gart. Let p(y) be a smooth function equal to 1 when ly} = (2/2) and equal to 0 when
Iyl = €, so that then the (m—1)-form

we = D ivyoy, 2> 04 -+ d[p(y) (kar +- godGay))
h
is closed, is defined on M, and coincides with ivge; in 9tUg / ;0W. Interms of it we uniquely reconstifute

vector field Vi and "motions" Ft, coinciding with ¢ on 8W and retaining volume w, by virtue of the closure
of wt.

By analogous and, in part, simpler arguments we prove

THEOREM 2, Let the family of embeddings f; : W — M have the properties: f, = idlw, f’:wn =@,
and <w,, Njt> =<wy, Nj>. Then, there exists a family of diffeomorphisms Ft : M —M such that Fyw; =
w, and Fy|W =ft.

Finally, for some connected components of manifold W one can specify "motions;' Jt : Wi =M, of
their boundaries f¢ : 3W1 - M.

Remark. An 1mportant special case is when W is the set of "balls" D™ on closed manifold MM, with
m >1. Theorem 1 asserts that for any two sets, D; and 5” with identical volumes of the corresponding
"balls" there exists a motion M retaining volume and translating D; into Di-

This agsertion is aiso true in the case of nonclosed M, which strengthens Lemma 1.1 of [5]. Indeed,
let ¢ : 8W — M be an arbitrary family of embeddings taking 8D into BDI. In M we choose a compact man-
ifold with boundary N such that N 2 Djt for all i and t. Splicing boundary N and that of the manifold N' we
can obtain a smooth closed manifold (double). On the union of N' and U 8Dj we specify a family of embed-
dings fi as follows: fyIN' =id and filopg = <Pt. In view of what was said above there exist a motion ®¢
of the closed manifold such that ®{w, = w,, @.D; = D, and ®¢|N' =id|N'. Then, the F we have been seek-
ing is defined by: Fgon N coincides with ®¢ and Fi = id outside N.
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2. We set <w,, Wj> =2j, <w;, Nj> = bj,a = {aj}, b = {bj}. If the embeddings f: W ~ M or f:8W —
M are diffeotopically identical we have then uniquely defined Wi(f) =J Wi, Nj( ) =f Nj where f :M ~ M
is related to id by means of the diffeotopy continuing the diffeotopy connecting f with id|W or with id}ow.
(It is clear then N; (f) does not depend on the choice of the continuation.)

We introduce the following topological spaces with C™~topology:

Egb(W, M) is the set of.embeddings f : W ~ M diffeotopic to id |W and with properties 1) <w,, Wi(f)>=
ai; 2) <wy, Nj(f)> = by;

EapW, M, wy) is the set of;embeddings f+W — M, diffeotopic to id]| W and with properties 1, 2, and
3) fFw, =wy;

Ezb(dW, M) is the set of embeddings f: 8W — M, diffeotopic to id|dW and satisfying conditions 1)
and 2);

E (W, M) and Eg(8W, M) are the corresponding sets of Egz5{W, M) and E;(8W, M) extended by
dropping condition 2).

The following mappings arise:

Dlﬁg (M (!)o} Diff (M, fﬂn} Eab (W, M) Ea{: (W; !M, mg) Ea (u;,s ‘M)

Ja o, U , =, Ve ' M
Ez (OIV M) Eu (W, M,0)  Eu (W, M) Eu(@W,M) E(0W,M)

{here, Diff, is the connected component of id in Diff, and 7 restriction mapping on, respectively, W or aw).
THEOREM 3. The triple (Diffy(M, @y, E4p(8W, M), 7} is a locally trivial fibration.

Proof. Our goal is the construction of a local section, i.e., a continuous mapping 1 of some neighbor-
hood fy € Egqp(8W, M) in Diffy(M, w,) such that n(f) = f = f, for all f of Uf,. With no loss of generality we
can assume that f, = id| ®W. Denoting the exponential geodesic mapping by exp, we construct the homotopy
Ji(x) = expx(i expxI (f{x))), joining f; and fq =f. It is known from Theorem 1 that there exists a family of
diffeomorphisms Fy retaining w, and such that F, = id and F{|8W =f. In the construction of Fy there is an
indeterminacy in the choice of f; : M — M, the continuation of f;. It can be eliminated by using the local
section y : Uf, — Diffy(M}, constructed by R. Palais in [3] (section 4). We set ?t = y(f¢), by which there
will be defined on Uf, the continuous mapping n(f) = Fy, q.e.d.

It immediately follows from Theorem 3 that the triples (Ez,p,(W, M), E 4, (W, M), M and (Egh(W, M,
W), Eah(8W, M}, m are locally trivial fibrations. By similar methods we prove the local triviality of the
fibraticn (Diffg(M; w(})r Eab(w; Mg w{})a t}'

THEOREM 4. The triple (Eg(W, M), Ez(dW, M), M) is a locally trivial fibration.

Proof. For a sufficiently small neighborhood Uf, there exist "balls" Dpj of radius £ such that Dp]
N3{f ) for for all f of Uf;. We put into correspondence with each f €U/,
Wy outside {J Doy,
I

m(f)={

@y -+ Ci(f) pi(x)w, in Dej

where pj(x) is a smooth function, equal to 1 in Dp ; and equal to 0 outside Dpj» while the c)-(’ f) are found
from the equation <w(f), Nj(f) > =<w,, Nj(f()>. Using the lemma we obtain the mapping &: U f, — Diff,(M),
where &{(f) = V(w(f)) and §(f) *w(f) =w,. Embedding &)1 f, belongs to EqhL(8W, M). Using the local
section 7, constructed for the proof of Theorem 3, we get n({() ™1 o f) o S(f 1o fo=§F) e for &(f) »

fo=f, where £(f) = &(f) o n(&(F)" o f) o &(f ™1 is a mapping of Uf, in the set of diffeomorphisms M leav~-
ing volume W invariant. Thus, the local section is constructed.

In conclusion, the author wishes to thank D. V. Anosov under whose direction our results were ob-
tained.

LITERATURE CITED

1.  J. Moser, "On the volume elements of a manifold,"” Trans. Amer, Math. Soc., 120, No. 2, 286-294,
issue 11 (1965).

149



2. G. de Rham, Differentiable Varieties [Russian translationl], ILI, Moscow (1956).

3. R. Palais, "Local triviality of the restriction map for embeddings,” Comm. Math. Helv., 34, 305-312
(1960).

4. R. Palais, "Extending diffeomorphisms," Proc. Amer. Math. Soc., 11, No. 2, 274~277 (1960).

5. D. V. Anosov and A. B. Katok, "New examples in smooth ergodic theory," Trudy Mosk. Matem. O-va,
23, 3-36 (1970),

150



