CONTINUATION OF DIFFEOMORPHISMS RETAINING VOLUME

A. B. Krygin

1. In this paper we shall denote by M^m a connected, smooth, orientable, closed manifold of class C^{∞} , by W^m its submanifold with smooth boundary ∂W^m , and by ω_0 the volume on M^m. On M^m some metric is fixed, W_i are the connected components of W^m, N_j are the connected components of M\W, and id is the identity mapping of M (with this, if A is a subset then id | A is the identity embedding $A \rightarrow M$). For any region $A \subseteq M$ we write $\langle \omega, A \rangle = \int_{\alpha}^{\infty} \omega$; here, ω is a differential m-form. The different families of mappings $(f_t(x), F_t(x))$, etc.) are smooth functions of t and x of class C^{∞} ; the exception is the family of diffeomorphisms entering into the lemma.

Let there be a continuous family of embeddings $f_t : \partial W \to M$, with $f_0 = id \partial W$; it is known [4] that then f_t can be continued to a family of diffeomorphisms $\overline{f}_t : M \to M$, coinciding with f_t on ∂W and with id when $t = 0$; we set $W_t = \overline{f}_t W$, $W_{it} = \overline{f}_t W_i$, and $N_{it} + \overline{f}_t N_i$.

THEOREM 1. Let the family of embeddings $f_t : \partial W \to M$ possess the properties: $f_0 = id \, \partial W$, $\langle \omega_0, W_i \rangle$ $=\langle \omega_0, W_{ii}\rangle$ and $\langle \omega_0, N_j\rangle = \langle \omega_0, N_{i1}\rangle$ for all i and j. Then, there exists a family of diffeomorphisms $F_t: M \to M$, such that $\mathbf{F}_{\mathbf{t}}^{\mathbf{t}}\mathbf{v}_0 = \mathbf{\omega}_0$, with $\mathbf{F}_0 = \text{id}$ and $\mathbf{F}_1|\partial \mathbf{W} = \mathbf{f}_1$.

LEMMA. There exists a continuous mapping ν of the set of positive definite m-forms ω with identical $\langle \omega, M \rangle = \langle \omega_0, M \rangle$ into Diff(M) such that $\nu(\omega) * \omega = \omega$.

Proof of the Lemma. (Actually, we shall repeat the arguments of J. Moser, [1], Theorem 2, although this assertion does not formally appear there.) $\omega_t = (1-t)\omega_0 + t\omega$ is the family of forms. We specify a vector field V_t such that the family of diffeomorphisms φ_t : M $-M$ defined by it has the property $\varphi_t^* \omega_t = \omega_0$.

We perform the following computations:

$$
0 = \frac{d}{dt} \dot{\phi_t} \dot{\phi_t} = \dot{\phi_t} \dot{\phi_t} + L_{V_t} \dot{\omega_t} = \dot{\phi_t} \dot{\phi_t} + d i_{V_t} \dot{\omega_t}
$$

(i denotes inner multiplication and L the Lie derivative). Hence, $\text{div}_{t}u_t = -\dot{u}_t$. Moreover, $\langle \dot{u}_t, M \rangle = 0$, so that $\dot{\omega}_t$ is an exact form. By using the expansion given in [2] (§31), we obtain div_t $\omega_t = -d\delta G \dot{\omega}_t$. From the equation $iV_f\omega_t = \delta G\omega_t$ we uniquely find the field V_t plus the corresponding family of diffeomorphisms φ_t . We have the equation $\varphi_t^*\omega = \omega_0$, i.e., mapping $\nu(\omega) = \varphi_1$ is the one we seek. This mapping is co ous as a mapping of the space of forms with the topology of $Cⁿ$ into the space of diffeomorphisms with the topology C^n , $n = 1, 2, \ldots, \infty$. Indeed, G is continuous as a mapping of the space of differential forms of class Cⁿ into the space of forms of class Cⁿ⁺¹, so that the mapping $\omega_t \rightarrow v_t$ is continuous as a mapping of a form into a vector field of class Cⁿ; finally, the continuity of mapping $V_t \rightarrow \varphi_1$ is, in essence, the theorem on the continuous dependence of the solutions of differential equations on the right-hand sides of those equations.

We note in passing that when $n = \infty$ the mapping we obtain is a global section of the fibration constituting the diffeomorphism φ of form $\varphi^*\omega_0$. When $n \ll \omega \nu$ is not a section of this fibration since if ν is of class Cⁿ we then have the formula $\varphi * \omega_0$, and this means that $\nu(\varphi * \omega_0)$ will, in general, be forms of class C^{n-1} . It is possible to consider ν as a section of the fibration the space of which consists of the diffeomorphisms of class $Cⁿ$ with Jacobians of class $Cⁿ$, It is not hard to deduce from this that this space is the direct product of the space of forms by Diff (M, ω_0) (the space of diffeomorphisms retain volume ω_0).

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 5, No. 2, pp. 72-76, April-June, 1971. Original article submitted September 7, 1970.

© 1971 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, ,~. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

Proof of Theorem 1. We set $\omega_1 = (1-t)f_+^{-1} \omega_0 + t(f_+ \circ \overline{f}_+^{-1}) * \omega_0$, where f_+ is as above; then, ω_1 , Wit > $=$ $\leq \omega_0$, W_1 >, $\leq \omega_1$, N_1 and $\omega_1 = \omega_0$. We set $\varphi_1 = \nu(\omega_1)^{-1} \circ \overline{f}_1$, \overline{N}_1 = φ_1 \overline{W}_1 , \overline{W}_1 = $\varphi_1 W_1$. The family of embeddings φ_t ∂W has the properties $\varphi_0 = \overline{f}_0 = \mathrm{id}$, $\varphi_t = \overline{f}_t$, so that $\varphi_t \partial W = f_t$, $\langle \omega_0, \overline{W}_t \rangle = \langle \omega_0, \overline{W}_t \rangle$ Indeed,

$$
\langle \omega_0, \overline{N}_{ji} \rangle = \langle \omega_0, \nu(\omega_i)^{-1} N_{ji} \rangle = \langle \nu(\omega_i)^{-1} \omega_0, N_{ji} \rangle = \langle \omega_i, N_{ji} \rangle = \langle \omega_0, N_{j} \rangle.
$$

We now proceed to the construction of F_t. On φ_t ∂W we define the vector field $V_t(\varphi_t x) = \frac{d}{ds}\Big|_{s=-a} \varphi_{t+s}x$.

In a ε -neighborhood of ∂W we introduce coordinate y transversal to ∂W . We continue field V_0 in this neighborhood in the following way: $V_{0x}(x, y) = V_{0x}(x)$, and we find $V_{0y}(x, y)$ from the equation di $V_0\omega_0 = 0$ with the initial condition $V_{0y}(x)$. By an analogous construction we proceed in $\varphi_t U_{\mathcal{E}}$ aw. We obtain the closed $(n-1)$ -form iv_t ω_0 in the corresponding neighborhoods of manifolds φ_t w. It remains to construct the family of closed forms w_t on M coinciding with $\psi_t \omega_0$ in some neighborhood of manifold φ_t ∂W .

Let $\{z_h\}$ be the nonzero generators of $H_{n-1}(M, R)$ lying in $\varphi_t U_{\xi} \partial W$ (i.e., of $H_{n-1}(\partial W, R)$). There exists on M a unique harmonic form ω_k , such that $\langle \omega_h, z_h \rangle = 1$ and $\langle \omega_h, z \rangle = 0$ for all other cycles not depending on z_h . The cycles of $H_{n-1}(\varphi_t U \varepsilon \, \partial W, R)$, not depending on $\{z_h\}$, are formed by the boundaries N_{jt} and \bar{W}_{it} . The values of $iV_t\omega_0$ on them equal zero since

$$
\langle i_{V_t}\omega_0,\,\partial\overline{N}_{jt}\rangle=\langle di_{V_t}\omega_0,\,\overline{N}_{jt}\rangle\,\langle L_{V_t}\omega_0,\,\overline{N}_{jt}\rangle=\frac{d}{ds}\bigg|_{s=t}\langle(\varphi_s\circ\varphi_t^{-1})^*\omega_0,\overline{N}_{jt}\rangle=0
$$

The form $a_i = i_{V,00} - \sum_{i} \langle i_{V,00} \rangle_{i}$ has zero period and, consequently, is exact on $\varphi_t U_E \partial W$. Let h $g_S : \varphi_t U_{\varepsilon} \partial W \to \varphi_t U_{\varepsilon} \partial W$ be a mapping which, in terms of the coordinates introduced above, is such that $g_S(x, y) = (x, sy)$. We construct an operator on the forms ψ

$$
k\psi=\int\limits_{a}^{1}\frac{y}{s}i_{d/dy}g_s^*\psi ds.
$$

Standard computations in the local coordinates show that $k d\alpha_t + d k \alpha_t = \alpha_t - g_0^* \bar{\alpha}_t$, where $\bar{\alpha}_t = (id | \varphi_t \partial W)^*$ α_t is an (m-1)-form of zero periods on the closed manifold φ_t aW. Using the expansion of [2] (§ 31), we obtain $\alpha_t = d k \alpha_t + d g_0^{\dagger} \delta G \alpha_t$. Let p(y) be a smooth function equal to 1 when $|y| \leq (\epsilon/2)$ and equal to 0 when $|y| \geq \varepsilon$, so that then the $(m-1)$ -form

$$
w_t = \sum_h \langle i_{V_t} \omega_0, z_h \rangle \omega_h + d \left[p \left(y \right) \left(k \alpha_t + g_0^* \delta G \overline{\alpha}_t \right) \right]
$$

is closed, is defined on M, and coincides with $iV_t\omega_0$ in $\varphi_tU_{\varepsilon/2}\partial W$. In terms of it we uniquely reconstitute vector field V_t and "motions" F_t, coinciding with φ_t on ∂W and retaining volume ω_0 by virtue of the closure of w_t .

By analogous and, in part, simpler arguments we prove

THEOREM 2. Let the family of embeddings $f_t : W \to M$ have the properties: $f_0 = id/W$, $f_t^* \omega_0 = \omega_0$ and $\langle \omega_0, N_{\text{H}} \rangle = \langle \omega_0, N_{\text{H}} \rangle$. Then, there exists a family of diffeomorphisms $F_t : M \to M$ such that $F_t^{\text{F}} \omega_0 =$ ω_0 and $\mathbf{F}_t|\mathbf{W} = f_t$.

Finally, for some connected components of manifold W one can specify "motions" $f_t : W_i \rightarrow M$, of their boundaries $f_t : \partial W_i \rightharpoonup M$.

Remark. An important special case is when W is the set of "balls" D_i^m on closed manifold M^m , with $m > 1$. Theorem 1 asserts that for any two sets, D_i and \overline{D}_i , with identical volumes of the corresponding "balls" there exists a motion M retaining volume and translating D_i into $\overline{D_i}$.

This assertion is also true in the case of nonclosed M, which Strengthens Lemma 1.1 of [5]. Indeed, let $\varphi_t : \partial W \to M$ be an arbitrary family of embeddings taking ∂D_i into ∂D_i . In M we choose a compact manifold with boundary N such that $N \supset D_{it}$ for all i and t. Splicing boundary N and that of the manifold N' we can obtain a smooth closed manifold (double). On the union of N' and U ∂D_i we specify a family of embeddings f_t as follows: $f_t | N' = id$ and $f_t | \partial D_i = \varphi_t$. In view of what was said above there exist a motion Φ_t of the closed manifold such that $\Phi_t^* \omega_0 = \omega_0$, $\Phi_1 D_i = \overline{D}_i$ and $\Phi_t | N' = id | N'$. Then, the F_t we have been seeking is defined by: F_t on N coincides with Φ_t and $F_t = id$ outside N.

2. We set $\langle \omega_0, W_1 \rangle = a_1, \langle \omega_0, N_1 \rangle = b_1, a = \{a_1\}$, b = $\{b_1\}$. If the embeddings f: W \rightarrow M or f: $\partial W \rightarrow$ M are diffeotopically identical we have then uniquely defined $W_i(f) = \overline{f}W_i$, $N_j(f) = \overline{f}N_j$, where $\overline{f} : M \to M$ is related to id by means of the diffeotopy continuing the diffeotopy connecting f with $id|W$ or with $id|\partial W$. (It is clear then $N_i(f)$ does not depend on the choice of the continuation.)

We introduce the following topological spaces with C^{∞} -topology:

 $E_{\mathbf{Z}}(W, M)$ is the set of embeddings $f : W \to M$ diffeotopic to id |W and with properties 1) $\leq \omega_0$, $W_i(f) \geq \omega_0$ a_1 ; 2) $\leq \omega_0$, N_j(f) > = b_j;

 $E_{ab}(W, M, \omega_0)$ is the set of embeddings $f: W \to M$, diffeotopic to id|W and with properties 1, 2, and **3)** $f^*\omega_0 = \omega_0$;

 $E_{ab}(\partial W, M)$ is the set of embeddings $f: \partial W \to M$, diffeotopic to idl ∂W and satisfying conditions 1) and 2);

 $E_2(W, M)$ and $E_2(3W, M)$ are the corresponding sets of $E_4 h(W, M)$ and $E_4 h(3W, M)$ extended by dropping condition 2).

The following mappings arise:

 $\text{Diff}_0(M, \omega_0)$ $\text{Diff}(M, \omega_0)$ $E_{ab}(W, M)$ $E_{ab}(W, M, \omega_0)$ $E_a(W, M)$ E_{ab} ($\partial W, M$) E_{ab} (W, M, ω_a) E_{ab} ($\partial W, M$) E_{ab} ($\partial W, M$) E_a ($\partial W, M$)

(here, Diff₀ is the connected component of id in Diff, and π restriction mapping on, respectively, W or ∂W).

THEOREM 3. The triple (Diff₀(M , ω _o), E_{ab}(∂W , M), π) is a locally trivial fibration.

Proof. Our goal is the construction of a local section, i.e., a continuous mapping η of some neighborhood $f_0 \in E_{\mathbf{a}}(b_0, \mathbf{w})$ in Diff₀ (\mathbf{M}, ω_0) such that $\eta(f) \circ f = f_0$ for all f of $\mathbf{U}f_0$. With no loss of generality we can assume that $f_0 = id \, \partial W$. Denoting the exponential geodesic mapping by exp, we construct the homotopy $f_j(x) = \exp_X(i \exp_X^{-1}(f(x)))$, joining f_0 and $f_1 = f$. It is known from Theorem 1 that there exists a family of diffeomorphisms F_t retaining ω_0 and such that $F_0 = id$ and $F_1 | \partial W = f$. In the construction of F_t there is an indeterminacy in the choice of $\mathcal{J}_t : M \to M$, the continuation of f_t . It can be eliminated by using the local section $\chi : Uf_0 \to \text{Diff}_0(M)$, constructed by R. Palais in [3] (section 4). We set $f_t = \chi(f_t)$, by which there will be defined on $U f_0$ the continuous mapping $\eta(f) = F_1$, q.e.d.

It immediately follows from Theorem 3 that the triples $(E_{ab}(W, M), E_{ab}(\partial W, M), \pi)$ and $(E_{ab}(W, M, M))$ (ω_0) , E_{ab}(3W, M), \vec{v} are locally trivial fibrations. By similar methods we prove the local triviality of the fibration (Diff₀(M, ω_0), E_{db}(W, M, ω_0), π).

THEOREM 4. The triple $(E_{\alpha}(W, M), E_{\alpha}(\partial W, M), \pi)$ is a locally trivial fibration.

<u>Proof.</u> For a sufficiently small neighborhood Uf₀ there exist "balls" D_{pj} of radius ρ such that D_{pj} \subset $N_i(f)$ for all f of Uf₀. We put into correspondence with each f \in Uf₀

$$
\omega(f) = \begin{cases} \omega_0 & \text{outside} \bigcup_i D_{\rho f}, \\ \omega_0 + c_f(f) \, p_i(x) \, \omega_0 & \text{in} \ D_{\rho f}, \end{cases}
$$

where $p_j(x)$ is a smooth function, equal to 1 in D_{ρ} and equal to 0 outside D_{ρ} , while the $c_j(f)$ are found

from the equation $\langle \omega(f), N_j(f) \rangle = \langle \omega_0, N_j(f_0) \rangle$. Using the lemma, we obtain the mapping $\zeta: Uf_0 \to \text{Diff}_0(M)$, where $\zeta(f) = \nu(\omega(f))$ and $\zeta(f) * \omega(f) = \omega_0$. Embedding $\zeta(f)^{-1} \circ f_0$ belongs to E_{ab}(∂W , M). Using the local section n, constructed for the proof of Theorem 3, we get $\eta(\zeta(f)^{-1} \circ f) \circ \zeta(f_0)^{-1} \circ f \circ f$ of or $\xi(f) \circ f$ $f_0 = f$, where $\xi(f) = \xi(f) \circ \eta(\xi(f)^{-1} \circ f) \circ \xi(f_0)^{-1}$ is a mapping of U f_0 in the set of diffeomorphisms M leaving volume W invariant. Thus, the local section is constructed.

In conclusion, the author wishes to thank $D. V.$ Anosov under whose direction our results were obtained.

LITERATURE CITED

1. J. Moser, "On the volume elements of a manifold," Trans. Amer. Math. Soc., 120, No. 2, 286-294, issue 11 (1965).

- 2. G. de Rham, Differentiable Varieties [Russian translation], ILI, Moscow (1956).
- 3. R. Palais, "Local triviality of the restriction map for embeddings," Comm. Math. Helv., 34, 305-312 (1960).
- $4.$ R. Palais, "Extending diffeomorphisms," Proc. Amer. Math. Soc., 11 , No. 2, 274-277 (1960).
- 5. D. V. Anosov and A. B. Katok, "New examples in smooth ergodic theory," Trudy Mosk. Matem. O-va, 2_33, 3-36 (1970).