STABLE RANK OF RINGS AND DIMENSIONALITY
OF TOPOLOGICAL SFACES

I.. N. Vasershtein

The concept of the stable rank of a ring, introduced by H. Bass, turned out to be very useful in treat-
ing the stabilization problem in K~theory. This papéer opens with the definition of stable rank and with an
investigation of its basic properties (the connection of the stable rank of a ring with the stable ranks of the
opposite ring, of the matrix ring, of the factor ring of ideals). - We then consider the connection of the stable
ranks of certain commutative rings with the dimensions of the spaces of their maximal ideals. For ex-
ample, the stable rank of the ring of all continuous real-valued functions on n-dimensional topological space
and the stable rank of the ring of polynomials in n unknowns with real coefficients both equal n + 1,

FORMULATION OF THE RESULTS

I. Let J be an associative ring. It will be convenient for us to consider J as being a ring embedded
as a two-sided ideal in some associative ring L with unity. Such an L could be, for example, the ring J!, ob~
tained by the formal adjunction of a unity to ring J. The definition of the stable rank of ring J, to be given
below, does not depend on the choice of L.

Definition. Column vector b = (bj)y=<j=p is called J-unimodular if by—1, bj €J (i > 1) and there exist
"
a3~1,2i €J (i> 1), such that 2 ab; =1,

=1
The following lemma shows that our definition coincides with that of [2].

LEMMA 1 (see, Lemma 2.0 of [4]). Let by~1,bj €J (i >1). Then, the following three assertions are
equivalent:

a) vector b = (bi) y=j=<y is J-unimodular,

n

b) 3 Lo =L,
i=1

C) §1‘ .HJ: =J.

i=1
Definition. By the stable rank of ring J (abbreviated as st. r. (J)) we mean the least natural number
m for which the following condition is met:

(m for any J~unimodular vector (bi)y=<i=m+; there exist vi €J, such that vector (bj + vibm+9y<i=m
is J-unimodular. If such a natural m does not exist we then set st. r. (j) = w,

Remark. If ring L is generated as the left ideal of its own infinite subset (b)) ¢ 5, then, for any
i €A, there exist vy € L, such that L is generated as the left ideal of elements (by + v;\b‘,)k €A-p

THEOREM 1, If st. r. (J)=m then, when n > m, for any J-unimodular vector (bj)y=<j=p there exist
vi €J such that vector (bj +vibp);<j=<p-4is J-unimodular, and vi = 0 when i >m. In particular, (Dn
(Dp+4 for any ring J and natural number n.
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According to this theorem, the expression "st. r. (J) = m" has here the same meaning as in [3, 4] and,
for rings with unity, the same meaning as the expression "m defines the stable rank for GL(J)" in [1].

It is obvious that the following two lemmas flow from the definition of stable rank.

n

LEMMA 2. If ring J decomposes into the direct product (of any number) of rings J3, then st. r. (J)
m%x (st. r. (J3)).
LEMMA 3. St. r.(J) = st. r. (J/rad J), where rad J is the Jacobson radical of ring J.

The following theorem eliminates the lack of equivalence of row vectors and column vectors in the
definition of stable rank.

THEOREM 2. St.r.(J) = st. r. (J%, where J° is the inverse ring to ring J.
We denote by Mp(J) the ring of all n' X n matrices over ring J. The connection of the stable rank of

ring J with the stable rank of ring Mp(J) was quite unexpected by the author.

THEOREM 3. St. r. (M,l(./))—l—:—[————ﬂ’:—‘].

n
Here, [r] denotes the integral part of the number r, i.e., the greatest integer not exceeding r.
From Theorem 3, by means of Lemmas 2 and 3, follows the evident

COROLLARY. If the ring J/rad J decomposes into the product of (any number of) matrix rings over
nonassociative division rings (for example, if J is a finite-dimensional algebra over a field), then st. r. (J)=1.

To be sure, this assertion can also be proven without the use of Theorem 3 (see [1] or [4]).

It is known (see [3] or [4]) that for any two-sided ideal Jy in J the inequalities st. r. (Jy =st. r. (J)
and st. r.(J/Jy) = st. r.(J) hold. In this paper we obtain bounds on the other side for the stable rank of
ring J.

THEOREM 4. For any ring J and twosided ideal Jy in J the following inequalities hold: max (st. r.
(J9), st. r. (J/Jy)) = st. r. (J) = max (st. r. (Jp), st. r. (J/J9) +1).

If, for each (J/Jy)-unimodular vector b = (bj)y<i=, where m =st. r. (J), there exists matrix A €
GL(m, L), such that modulo J; vector Ab is congruent with the first column of the unit matrix In, then st.
r. (J) =max (st. r. (Jy), st. r. (J/dy)).

Here, as everywhere in the sequel, we denote by GL(n, L) the group of two-sided invertible n Xn
matrices over ring L, and by In the unit element of this group.

COROLLARY. St.r. (JY) = max (2, st. r. (J)), where J! is the ring obtained by the formal adjunction
of unity to ring J.

Indeed, J1/J = Z, the ring of integers.

Remarks on Theorem 4. a) The author knows no counterexamples to the equation st. r. (J) =max (st.
r. (Jy, st. r. (3/Jy).

b). Let us show that for the validity of the inequality st. r. (J)) = st. r. (J) it is essential that J; is a
two-sided ideal. Let st. r. (J) =m; by our subsequent Theorem 5, m can take on any natural value. Then,
by Theorem 3, st. r. (M (J)) =2. Consider in ring Mm(J) the left ideal J4 consisting of matrices differing
from the zero matrix only in the first column. Then, J1/ rad J; = J/rad J, so that, by Lemma 3, st. r. Jy =
m.

II. Before formulating the theorems connecting stable ranks of rings of continuous functions on a
topological space with the dimensionality of this space, we provide the appropriate definition of dimen-
sionality.

—_—
On real n-dimensional space R we consider the ordinary distance o(a, b) = /Z (@:—b)* and the

i=1

corresponding Hausdorff topology.
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LEMMA-DEFINITION. Let X be a topological space, and let 2 : X — R be a continuous mapping.
The point O = (0, . . ., 0) is called an unstable value of mapping "2" if the following conditions, all equiva-
lent to one another, hold:

a) for any € >0 there exists a continuous mapping b: X —RD, such that p (2(x), b(x)) = & for all
X €Xandbx 9 O;

b) for any £> 0 there exists a continuous mapping b: X — RD, such that a(x) =b(x) when p (a(x), O) =
€ and b(x) » O;

c) for any £ > 0 there exists a continuous mapping b:* X — RRB, such that pla(x), b(x)) =g= P(b(x) 0)
for all x € X, anda (x) = b(x} when pa(x), O) = &,

Proof of the implication a).= b). We find b from a) and set

b'(x) =afp(a(x), O))a(x) -+ (1—a(p(alx), 0))b(x),
where

0 when r <
a(r) = 'r/e —1 when & <r < 2,
1 whenr > 2e.
Then b'(X) ? O and b'x) = 2 (x) when 2(x) = 2e.
Proof of the implication b) = c¢). We find b from b) and set

b (x) = 2P when (b (x), 0) >e,
- {Eb (x)/o (b{(x), O) when o(b(x), <O) ¢.

The implication ¢) = a) is obvious.

Definition. The dimension d(x) of topological space X is the greatest integer d for which there ex-
ists a continuous mapping 2: X — Rd with stable value O. If such a d does not exist we then set d(X) ==,

We note that if O is a stable value fora : X — RR, then this is also true for the composition of "a"
with a projection on any linear subspace in R. Therefore, for any n = d(X), there exists a continuous map-
ping X — R4 with stable value of O. It is easy to verify that d(X) coincides with the dimension defined in
[5] by means of the mapping of X, not in RP, but in the unit cube IR R1, It is known that for "good" spaces,
e.g., for metrizable separable X (see [5]), d(X) coincides with all the other dimensions (inductive, combin-
atory, etc.) which for any topological space are different, in general. For example, d(R®) =n.

We provide one further definition of dimension. We denote by Sh the n-dimensional sphere {2 € R
p@,0) =1} and by 8" = {g €SP|ay ¢ = 0} the equator of this sphere.

Definition. Continuous mapping @ : X — SN is said to be nonessential if there exists a continuous
mapping b : X — S®1, such that b(x) =a(x) whena(x) €s" 1,

It is readily verified that the nonessentiality of "a" is equivalent to the existence of a homotopy
at: X —S0 (0 =<t =1),a, =a, such that 2t coincides with "a" on @ 4S"™}) and a,(X) = s™1

Definition. The dimension d'(X) of topological space X is the greatest integer d for which there ex~
ists an essential mapping X — sd, If such a d does not exist we then set d'(X) = .

THEOREM 5. For any topological space X we denote by RX( respectlvely, by R(,X the ring of all (re-

spectively, bounded) continuous realvalued functions on X. Then, st. r. (R ) =st. r. (Rg() =d(X) +1=
d'(X) +1.

THEOREM 6. Let X be a topological space and let K be the subring in RX containing all constants.
We assume that for any bounded function f ¢ Rn and for any € > 0 there exists function g € K such that
[f(x)—g(x)| = & for all x € X. Then, st. r. (K) = d(X) + 1. We further assume that if g € Kand g(x) = &
for some £> 0 and for all x € X, then g™! €K. Then st. r. (K) =d(X) + 1.

Example. Let X be the ring of infinitely differentiable functions on R1, Then, st. r. (K) =n +1.

THEOREM 7. Let X be a topological space, CX the ring of all continuous complexvalued functlons
8h X, and K a subring in CX containing all constants. We assume that for any bounded function f ¢ Rn and
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£ >0 there exists function g € K N RX, such that If (x)—g(x)| = € for all x € X. Then st. r. (K) = st, r.
(CX) = [d(X) /2] +1. We further assume that if g € K and [g(x)| = £ for some € > 0 and for all x € X, then
g1 € K. Moreover, let g € K for any function g € K. Then st. r. (K) = [d(X)/2] + 1.

In this theorem, [r] is the integral part of number r.

III.- We recall that topological space X is said to be Noetherian if there does not exist an infinite
chain X; © X, 2 . . . of closed sets strictly'embedded within one another. A closed set is called irreducible
if it is impossible to represent it as the union of two of its proper closed subsets.

Definition. The dimension dim(X) of topological space X is the maximal length d of the chain X; 2
X; 2 ...2 X of different embedded closed irreducible sets.

The dimension dim(X) is usually used only for Noetherian spaces X; for a Hausdorff space X it is
always the case that dimX = 0. On the other hand, for a Noetherian space X, it is always true that d(X) =

THEOREM OF BASS (see [1] or [4]). Let K be 2 commutative ring with unity, the space X of maxi~
mal ideals of which is a Noetherian space of dimension dim(X) = d. Then, st. r. (K} =d + 1.

(On the space of maximal ideals, we are considering a topology in which the closed sets are the sets
of ideals containing some ring elements.)

It would be desirable, under the conditions of the Bass Theorem, to obtain a bound for st. r. (K) on
the other side. In this connection we succeeded in obtaining the following result.

THEOREM 8. Let k be any subfield in the field of real numbers R, and let K =Kk[ty, . . ., tn] be the
polynomial ring in n unknowns with coefficients from k. Then, st. r. (K) =n + 1.

The author knows no counterexample to the equation st. r. (K) = dim(X) + 1 under the conditions of
the Bass Theorem. If the condition of being Noetherian is dropped, it is then impossible, in general, to
characterize the stable rank of the ring only in terms of the topological space of maximal ideals . For ex-
ample, the spaces of maximal ideals of rings RX and CX (see Theorems 5 and 6) are isomorphic as top-
ological spaces, while, at the same time, st. r. (RX) =d(X +1and st. r. (CX) = [d(X)/2] +1,

PROOFS OF THE THEOREMS
1. Proof of Theorem 1. Let condition (1) y, hold, n > m, and let vector b = (bj)y<;=<, be J-unimodular,

i.e., 2 ab;==1 for some a; €L (see Lemma 1), We setb{ = bj(1 =i = m) and b, = 2 a;b:€J. Then

i=1 . i=ml

m
vector b' = (b) j< ;< 4, is J-unimodular and, by condition (1) m, there exist vi €J such that 3 Lb =L,

i=1
where b."=b-' +vibm+y =bi ©; S\ aib; . We set Ajj = viaj(l =i = m<j=n-1),vi= viap(l =i =m)
/_-m-—l n—1
and vi =0 when i > m. Then, b; = b; - v;b, + 2 Abi(lLi<m). We setbi"=bi whenm<i<nand A =
m n—i1

Loy -+ 2 2 Ajje; €GL(n—1, J), where A; ,jei,j is the matrix with Ai’j in position i, j and with zeros

i=1 j=m+1

elsewhere. Since vector b" = (b{');=<i=p-, is J-unimodular, vector A™%" = (b + vibn) y<j=p-, is also, q.e.d.

Proof of Theorem 2. Since (J))° = J, it suffices to prove the inequality st. r. (J= st. r. (J ). Let st.

m+1
r. (J) =m. We need to show that if > aibi =1 where 2y—1,b;—1 €J and ai, bji €J(i> 1), there then exist
m i=1
uj €J, such that 3 (& +amp)d =J.

i=1

Consider the matrix

1 a ) 1 0 ) ( 0 a° .
E= = €GL(m +2, L).
(O lm+1,v (—‘b 1m+1, —b lm«]—l)
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m
By condition (1) and Lemma 1 there exist v; € J and ¢j €J such that 2 ¢ (b + Uimisbmis) = — by, Then

i=1

10 0/ 10 0\/10 0
A=101, 0 (—v Im O )| 0 1m vamy, |E
0c 1/Y 00 1/\0oo0 1

0 a
A= (* * O)E GL{m +2,L),

—ul

has the form

where v = {(vy) 1=i<m is a column vector while ¢ and u are row vectors of length n, with uj €J. Matrix
10 0 0 &' apmy,) 0a"
B ::A(o Im o) has the form (* + 0 ), where 2' = (@j +2m+uj)y<i=<p,, 80 that, consequently, (* R )
Ou 1 00 1 ) ‘
€GL(m + 1, L), whence SlaL=L,q.ed.

i=c1

Proof of Theorem 3. Definition. Matrix B = Bi,y<j=p1= <k of dimensions n x k is said to be J~
unimodular if Bj ;~1, Bj,j €J wheni # j and if there exists 2 K X matrix A such that Aji~1 Ay €J

when i # jand AB = 1.

Example. Each n—dimensioual {Mg(J))-unimodular vector can be considered as a J-unimodular
{nk x k)~matrix.

"Theorem 3 is a special case of the following theorem.

THEOREM 3'. Let k be a natural number. Then, condition (1), is equivalent to the following con~
dition:

(1)11;1 for any J-unimodular ((m+k) x k)-matrix B there exist vi €J such that (l”’gk"‘ ;’) B= (f ) ,

where ((m +k—1) x k)-matrix B' is J-unimodular and u is the last row of matrix B.

For the proof of Theorem 3' we shall use the following readily verified

LEMMA. Matrix B of the form (é B”) , where u is a row vector with coordinates in J, is j-uni-

modular if and only if matrix B' is J-unimodular.

Proof of Theorem 3' is by induction on k. When k = 1 condition {1)m coincides with (1)},. We now
assume that k =2 and that we have already proven the equivalence (1} < ( 1)%‘1 for all n. We now show
that then (1)p & (1K for all n. -

Initially, assuming (1) and (l)lgji we obtain (1)1§n (we recall that by Theorem 1 (I);y = () for n> m).
Let B be a J-unimodular matrix of dimensions (m +k) X k. We consider its first column b which, cer-
tainly, is J-unimodular. By (1)m+k-4 there exist vi € J such that vector b' = (bj + vibm+k) ;=i=<m+K-g 18
J-unimodular. It follows from (1);m+k-, (see (c) on p. 411 of [4]) that Ab' = e, (the first column of the
unit matrix) for some A € GL(m +k=—1, J). The matrix

1 v w
B = A ( "‘g”_’ | )B has the form 0. .
: bris B’

Assertion (l)lfn simultaneously holds, or does not hold, for matrices B and B’ (i -

\ [ 31

)- Replacing B by

7 1 O
g’ ( (‘) ”‘“’l" ) , we shall assume that from the very beginning matrix B had the form ( 0 )
\ k—1 bnie B
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From the J~unimodularity of matrix B follows the J-unimodularity of matrix B'. By (1)11{1;_11 there

10 0 1 O
exist vi € J, such that (o Linc—s U)B = (* B"); where matrix B" is J-unimodular and, consequently, so
00 1 * U

also is matrix (
*

To. obtain the reverse implication (1)¥n = (1)m, it suffices to apply (1)1§n to matrix B of the form

Ly O
( kOl Ob) , Where b is any (m + 1)~dimensional J-unimodular column vector.

Proof of Theorem 4. As has already been mentioned, the inequality st. r. (J) = max (st. r. (Jy), st. r.
(J/34)) was proven in [3, 4]. Since the condition of the second part of the Theorem is automatically met if
st. r. (J/J) = m—1 (see [3, 4], it then only remains to show that, assuming this condition to hold, we have
the inequality st. r. (J) = m when m = max (st. r. (Jy), st. r. (J/3y).

Let vector b = (bj)y<j=<m+1 be J-unimodular. Since st. r. (J/J;) = m, we can then find vi €J, such
that vector Jy, (J/ Jp)-unimodular. By hynothesis, there exists matrix A € GL(m, L), such that Ab' =e
mod Jy. Assertion (1), which we shall now prove, is simultaneously valid or invalid for vectors b and

b =A ((l)m ‘1’) b. Replacing b by b" we shall assume that from the beginning by~1,bi €J4(2 =i =m).

/

Replacing ring L by J! we shall assume that Jy is a twosided ideal in L (this is convenient for the
m--1 m-1
use of Lemma 1). Since 2 Lb; =L andby—1 €Jy, then 2 aib; = 1 —b, for some a; €Jy, whence (@4 + 1)
m+1 =1 'lm 0 b=t
by + Y abi=1.i.e., vector (O o )b is Jy-unimodular. Since st. r. (Jy) = m there exist vi € Jy such
. m-1

that vector (bj +vi2m+bm+y 1=is=m 8 Jy-unimodular and, in particular, J-unimodular. This completes
the proof of condition (1) .

II. Proof of Theorem 5. We need to show the equivalence of the following four assertions:
(@ (U, for J =R,
() (I)p for J = RX,

(c) each continuous mapping b : X — SB is nonessential,

(d) for each continuous mapping 4 : X — RD the value O is unstable.

Proof of the implication (a) => (b). Letb = (bj) <, ., bean RX-unimodular vector and then f(x) =
p (b(x), O) > 0 for all x € X (this inequality is necessary and sufficient for RX-unimodularity). Vector
bi/f)i=i=n+1 I8 R¥-unimodular so that by condition (1),, assumed true for J = R, there exist vi € R{,
such that vector (bi/f + vibp+¢)1=i=p is Rg(—unimodular. Then vector (bj + vibn+y) <j=p is RX-uni~-
modular.

Proof of implication (b) => (¢). Let b : X — 80 be a continuous mapping. We denote by bj(x) the i-th
projection of vector b(x) ¢ R%"1, and we consider the RX-unimodular vector b = (bj);<;=<p4+y- BY (Un for
J = RX there exist vi €RX, such that vector a' = (bj + Vibn+9 <j=<q I8 RX-unimodular. We seta(x) =
a'(x)/p(a'(x), O). Then, 2 : X — 8P ! is a continuous mapping coinciding with b on b™1 (8%7}Y, i.e., on those
x for which bp44(x) = 0.

Proof of implication (¢) = (d). Letb': X — R be a continuous mapping, and let £> 0. We set
f(x) =pb'x), 0),

bx) = b; ’(x) when f(v) e, B (£) == 1 62— (X when [(x) < &,
&b; (x)/f (x) when f(x) > ¢, 0 when f (x) > e.

nd-z - - -
Then 3 b} = e*, By {c) there exists a continuous mappinga' : X — £8™! coinciding with b on b I(es™ Y,

We set =
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b (x) when f(x) >e,

a(x) =
a’ (x)/p(a’(x), O) when f(x)<e.

It remains to mention that 2(X) 9 O and, recalling definition b}, is. an unstable mapping.

_ Proof of implication (d) = (a). Let vectorb = (bj);<j<p4, be R(,X—unimodular which, obviously, is
-equivalent to the inequality . f (x) =p(b(x), O) =& for some £> 0 and all x € X..'Since for the mapping b' :
X — RN, given by the formula b'(x) = (bi(x)) ;< =y ; the value O is unstable [according to our assumed as-
sertion (d)], there then exists a continuous mapping a : X — RD for which p(2(x), O) Z£/2 for all x €X
and a(x) =b'(x) when p(b'x), O) = £/2.

We set

o0 = {400 BV ) v o6 (.0 <02
0 when 0(b (x), 0) >¢&/2.

Then, aj =bj + vibn+4 and vector @ = (bj +vibn+y) 1=i=qp i8 Rg(-unimodular. .

n

Proof of Theorem 6. It is necessary to show that if (1), holds when J = K, then the value of O is un~
stable for each continuous mapping 2: X —RD. Let1>e> 0. We set f(x) =p @(x), O) and

& (x) = {a (x) when f (x) < 2e,
2ea (x)/f(x) when f(x) > 2e.

Since ring K is dense in Rg( there exist b; € K, such that p(b'(x), 2'(x)) = e/2 for all x € X, where b' =
(bi) y<j<p» and in particular, p(b'(x), 2(x)) = €/2 when p@a(x), 0) = 2e. We set buy, (x) = (e/4)2 — S b (0.

Then, vector b = (bj) (<i=n+ is K-unimodular. We can find v; € K such that vector ¢' = (bj + vib:-;y 1<i<n
is K-unimodular. We set

ec’ (x)/4p (¢’ (x), 0) when bniy(x) >0,

(x) = {b' (x) when bnry (x) < 0.

Then, ¢c" : X — RD is a continuous mapping ¢"(X) » O and p(c"(x}, a(x)) = £ when p(a(x), O) = 2¢, Finally
we set :

c(x) =a(p(a(x), 0)a(x) - (1—a(p@x), 0))c (%),

where function a is the same as in the proof of the equivalence of the definitions of unstable mappings.
Then, ¢(X) % O and p(c(x), a(x)) = efor all x € X.

Now, let hold the additional condition of the Theorem's second part. We need to show that when
n = st. r. (ROX) condition (1) holds for J = K. For any K-unimodular vector b = (bj) 1=<i=n+; the vector

a1

b/f, where f(x) = p(b(x), O), is R¥-unimodular, since S (buff? =1. Consequently, there exist vi € RY,
i=1 n

such that vector b' = (bj/f + vibp4{/f )ISiSn is RaLunimodlilar, i.e., Z b; (x)*>¢ for some £> 0 and for

i=1

all x € X, We can find vi € K such that the inequality Z (v (x)—u; (*)? < (e/2 (for all x €X) holds. We
i=1 : :

set ¢ = (bj + Vibn+ <<+ Then, g(x) = pic(x/f (x), 0) = p(b'(x), O=p(b'(X), ¢(x)/f(x) = &/2 for all x € X.
Consequently, 2 (c/P) - ¢ = g*>¢e¥4, whence g2 €K, if 7% ¢K. For the proof of the K-unimodularity

=1 n+41
of vector ¢ it remains to show that f “2 ¢K. We recall that f*= > b;. Since vector b is K-unimodular
n+1 =1 n1
then Z ab; =1 for some 2zi € K. By the Cauchy-Bunyakovskii Inequality, f2s? = 1, where & -— Z al,

i=1

=1

whence (fs)™% €K and f2 ¢K.

Proof of Theorem 7. We shall show that if condition (1)p holds for § = K then d(X).= 2n—1, i.e., for
each continuous mapping a: X — R?" the value of O is unstable. Let €> 0. We set f(x) =p(a, (x), O) and

& () = {a () when f(x) < 2e,
2ea(x)/f(x) when [(x)> 2e.
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By hypothesis there exist bj € KN RX such that p(b'(x), a'(x)} = £/2 for all x € X, where b' = (b1)1< "
in particular, p(b'(x), a(x)) = £/2 when p(2(x), 0) = 2&. We set bj =bj +¥~1bphei €K, bn+y = (8/4)§

a8

— > (b€ K Then, vector b = (bi)y=<i=<p+1 Is K-unimodular. We can find v; € K such that vector ¢’ = (b; +
i=1

Vibn+y) i<, is K-unimodular.
We set

(%) = {ec' (x)/4p{c’ (x), Oy when bBuiy (¥} 220,
b (x) when bniy (x) <O,

Then, ¢" : X — R® ig a continuous mapping, ¢"(X) # O and pla(x), ¢c"x)) = e whenp(a(x), O = 2e, Fin-
ally, we define the continuous mapping ¢ : X — R the same as at the end of the proof of the first half of
Theorem 8.

Now, let the additional condition of the second half of the theorem hold. We need to show that when
2n = st, r. {RQX for J =K then condition (1) is met, For any K~unimodular vector b = (b;) =1 we set
f(x) = p(b(x), O), where b is considered as a continuous mapping X — R?, We set by/f =fi + Fl 1 fn+is

ErES)

where fi 6R{(1 =i = 2n +2). Then 2 fi ==1. Since st. r. (R = 2n there then exist v € RX such that

vector b' = (fi +v{ (fi4, +f2n+g))1< <2n is R0 ~unimodular, i.e., Z b (xf>¢ for some £>0andall x ¢ X.
[

We can find vi €K such that, for all x € X, the following inequality holds:

2 | {v; V:-f U.:z+i) (Fasr— V::—f fanse) — v B a4,

We set ¢ = (bj +Vibp+g i<y, Then, g(x) = p{e(x)/f(x), O) = £/2 for all x, whence g* = 2 (/) - ci > e¥4.

==

Therefore, g™ €K, if f™2 € K. To prove the K-unimodularity of vector c it remains to show that F~2 ¢K.

S
We recall that £ 2 bb;.

i=}

n41 .
Since vector b is K-unimodular then 2 ab; =1 for some 2; € K. By the Cauchy-Bunyakovskii In~
a1
equality, f%? 21, where s* = =S aay, whence (fs)™2 €K and ™2 €K.
fomy
Remark. It can be shown analogously that the stable rank of ring K of continuous quaternion-valued
function on topological space X equals [d(X)/ 4] + 1.

II. Proof of Theorem 8. The inequality st, r. (K) =n + 1 is contained in the Bass Theorem. It re~
mams for us to show that when J = K coundition (1) is not met. We setbi = tj (1 Si=n} and bp+y =

I— >_ . Vector b = (b;) 1<i<n+1’ obviously, is K-unimodular, Were there to exist v € K such that vec~

tor b' =(bj + vibn+y {=i=p Were K-unimodular, then we would be able to define a continuous mapping
a : R — RD by the formula

b (x),o(b (x), 0) when bnyy (x) >0,

@)= { when bny; (x) < 0.

Then, a(R®) 3 O and p(2(x), x) =2 for all x € R"., Whence, obviously, would follow the instability of the
value of O for the identical mapping of space RP which, as is well known, is false.

Remarks. a) When k = R the inequality st. r. (K) = n +1 in Theorem 8 follows from Theorem 6 as
applied to the unit ball X in R™.

b} Applying Theorem 8 when k = R, we can obtain the mequahty st. r. (Clty, . . ., tpl) = /2] +1,
where C is the field of complex numbers.
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