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INTEGRAL GEOMETRY FOR~-COHOMOLOGY.IN q-LINEAR CONCAVE DOMAINS IN CP n 

S. G. Gindikin and G. M. Khenkin UDC 513.836 

Introduction 

A domain D in CP n is called (n -- q -- l)-linearly concave if for any point z~D there 
exists a q-dimensional analytic plane ~, such that z~ ~cD~ For q = n -- i, this is equiva- 
lent to the fact that the compactum CP~\D is linearly convex in the sense of Martineau 
[ii]. From (n -- q -- l)-linear concavity follows (n -- q -- l)-pseudoconcavity in the sense 
of Andreotti--Grauert [i]. Characteristic examples of (n -- q -- l)-concave domains in CP~ 
are CP~CP ~ and the domain, bounded by the quadratic (in homogeneous coordinates): 

{z: Iz°l~ ÷ l z l l ~ + . . .  ÷ I z ~ l ~ - I z ¢ + ~ l ~ - . . . -  iz~l~>OL 
A basic analytic fact relating to (n -- q -- l)-pseudoconcave domains is that the space 

Ha(D, ~P) (the s-dimensional cohomology with coefficients in the sheaf of holomorphic p- 
forms) is finite-dimensional for 0~s<q (Andreotti--Grauert [i]), and, in general, infi- 
nite-dimensional for s = q (Andreotti--Norguet [2]). From the point of view of complex an- 
alysis, the space Hq(D, ~P) plays the same role in a precise sense for (n -- q -- l)-pseudo- 
concave domains that the space of holomorphic functions does for pseudoconvex ones. By Dol- 
beault's theorem [7], Hq(D, ~P) can be realized as the quotient-space of theY-closed forms 

- -  

of type (p, q) by the D-exact ones. However, for many problems of complex analysis, it is 
important to canonically connect Hq(D, ~P) with some spaces of holomorphic forms (not only 
smooth ones as in Dolbeault's theorem). 

This paper is devoted to the proof of the fact that for an (n -- q -- l)-linearly con- 
cave domain D, there exists a holomorphic bundle E over D, such that all elements of Hq(D, 
~n) can be obtained by restricting some holomorphic closed forms in E to any fixed section 
of E. 

The inspirations for our construction were the results of Leray [8] and Martineau [ii] 
on the reconstruction of analytic functionals by means of their Fantapi~ indicatrices (see 

Sec. 1 here). 

The results of the present paper also develop the papers of Andreotti and Norguet [2, 
3], where the map ~o of the space Hq(D, ~q) into the space of holomorphic functions on the 
set of compact holomorphic cycles of D (obtained by integration over these cycles of differ- 
ential forms from Hq(D, ~q) is studied. Andreotti and Norguet proved, in particular, that 
for (n -- q -- l)-concave domains, the image and kernel of the map ~o, in general, are infi- 
nite-dimensional. To get more precise results, it is important to describe the kernel and 

image of the map ~o. 

In the present paper these problems are solved for the spaces Hq(D, ~P) in (n -- q -- l)- 
linearly concave domains D under the condition that p = n. The case of any p > q might be 
considered analogously. It turns out that under certain natural assumptions the map ~o does 
not have a kernel, and the image is explicitly described by the system of differential equa- 

tions indicated. 
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The advantage of (n -- q -- l)-linearly convex domains is that in this case one can take 
in D not all compact q-dimensional analytic submanifolds, but only q-dimensional analytic 
planes.Then the proof of the absence of a ~ernel can be carried out with the aid of the tech- 
nique of integral representations [7], and to describe the image, an analogy with the pro- 
blems of integral geometry, considered by Gel'fend, Graev, and Shapiro in [5] turns out to 
be decisive. The system of differential equations mentioned above, which describes the image, 
coincides with the system of ultrahyperbolic differential equations appearing in their papers. 
hyperbolic differential equations appearing in their papers. 

It is interesting to compare the results of the present paper for the space H~(D, ~) 
with the domain D = {z~CPS: Iz~l~-~Iz~l~-Iz~I~-Izsl~>0) with the recent results of Pen- 
rose [13] and Lerner [9] (see also [15]) on realizing solutions of Maxwell's equations in 
the form of elements of the space H*(D, ~). 

We conclude with a more detailed survey of the contents of the paper. Let D be an 
(n -- q -- l)-linearly concave domain in CP n, D* be the set of q-dimensional analytic planes 
~D, F(D*) be the set of flags (~, ~'), where ~D* and ~'C ~ is an anal~tic plane 
of dimension q -- i. If ~ is an (n, q)-form on D, then its Radon transform J~ is its inte- 
gral over ~D*. The result of integrating can be understood in two ways: either as an 
(n -- q)-form on D* or as a section of a one-dimensional bundle over F(D*). From the ~- 
closedness of ~ it follows that J~ is holomorphic. Here we use the second interpretation 
of 3~. As bundle E over D, one takes the bundle {(z, ~),z~D,~D*,z~$) or the larger 
bundle of pairs (z, v), where v is a collection of points v,, .., Vq such that the plane 
{z, v~, . ., Vq} lies in D. By analogy with [5] one constructs a differential operator 
~ +  ~ in the space of holomorphic closed (n + q)-forms on E. One proves that if the 
fiber of the bundle is contractible, then the restriction of x~ to any section of E over 
D is cohomologous with ~. It is characteristic that in contrast to [5], in the construc- 
tion of ~ from ~ , integration of the form is not involved but rather its restriction. 

Sections 1 and 2 of the paper are devoted to the case q = n -- i. Here Sec. 1 is es- 
sentially a recounting of the results of Martineau [ii, 12] with some additions. In Sec. 3 
the Radon transformation is constructed and an inversion formula for (n, q)-forms is proved. 
In Sets. 4 and 5 it is proved that under some additional restrictions the kernel of the Ra- 
don transformation consists of ~-exact forms (i.e., on cohomology classes there is no ker- 
nel). 

i. Radon Transformation of (n, n -- l)-Forms in Linearly Concave Domains in cpn 
and the Fantapi~ Indicatrix of Analytic Functionals 

Let D be a linearly concave domain in CP n, i.e., for each point z~D there exists an 
(n -- l)-dimensional analytic plane ~z with the properties z~ ~CD. Then the compactum 
Q = CP~O is linearly convex in the sense of Martineau [ii]. The set of (n -- l)-dimen- 
sional planes ~, contained in D corresponds to a domain D* in the Grassman manifold G~+I,,~----- 

(CP~ * 

We denote by H(EP~\D) the space of holomorphic functions of a variable z~CP ~ \ D 
and by /f* (CP~\D) the space of linear functionals on H(EP~\D). 

Let N be some hyperplane in D. We consider the space H~-I(D\~, ~) (the (n -- l)-di- 
mensional cohomology of the domain D~ with coefficients in the sheaf ~n of holomorphic 
n-forms). 

With each closed (n, n -- l)-form ~ which by virtue of Dolbeault's theorem represents 
some cohomology class in H~-~(D\N, ~) one can associate a functional ~*~H* (CP"\D) 
by means of the formula 

(~*,h)= ~ ~.h, 
(i.i) ~en 

where A~H(~P~D), ~ is a neighborhood of the hyperplane ~, which is relatively compact 
in D, such that the compactum ~ lies in the domain of holomorphy of the function h. 

This definition is proper since, firstly, by virtue of Stokes' formula_the integral of 
(i.i) is independent of the choice of neighborhood ~N, and secondly, for a ~-exact form ~, 
the integral of (i.i) is equal to zero (by virtue of the formula for integration by parts). 
One of the results of Martineau [II] can be formulated in the following way. 
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Proposition i.i (Martineau). For any linearly concave domain D and any hyperplane 
N Cq_ D , (I.I) establishes an isomorphism between the spaces H ~-~ (D \, N, Q~) and H* (CP ~ \\ D). 

Along with Proposition i.i, one also has 

Proposition 1.2. For any linearly concave domain D, the map @: H ~-~ (D, ~)-+ H* (CP~\ 
D), defined by (i.i), has zero kernel, and the image consists of those functionals ~*~ 
H* (CP ~ \ D) for which (~*, ~) ---- O. 

I n  t h e  d o m a i n s  D a n d  D*, we i n t r o d u c e  h o m o g e n e o u s  c o o r d i n a t e s  Z = (z  ° ,  . ,  z n)  and  
~ = (~0, • • ", ~ )  , r e s p e c t i v e l y .  Then  

z : z (Z) ~ CP n ~ ~ = ~ (~) =- {z: <~, Z> = 0}, where<~, Z> = ~ ~ z  ~. 
k=O 

Definition. Let the functional ~* ~ H* (£P" \ D). 
functional ~* we mean the functional of the form 

~ *  (~, ~) = (~*, <ll, Z> 
<~, Z> , ' 

w h e r e  .~ (D ~ D.  

Directly from the definition follow the relations 

~'~p* (Z~, ~q) = ~ ~ p *  (~, n), ~'qo* (~, ~) = (~p*, l ) ,  

By the Fantapi~ indicatrix of the 

(1.2)  

where ~, ~ C .  
~ <~, Z> 

If ~ is a closed (n, n -- l)-form in D, then for fixed ~ and ~ the form <LZ> is 
closed in the domain D~(~) and has a first-order pole on the hyperplane ~(~). We denote 
Leray's residue-form [8] for this form on ~(~) by <~,dZ>_J~-<N,Z> (see also (1.4)). In 
this definition, we use the sign _J since the ideal of the residue-form corresponds well 
with the ideal of the interior product of a form and a vector field. 

Definition. Let ~ be a smooth (n, n -- l)-form in D. By the Radon transformation of 
the form 9 we mean the function of the form 

3 ~ ( ~ , n ) =  ~ <L ~z> _] ~.<m z>, 
z~_~(~) 

w h e r e  ~ ( ~ ) ~ D ,  d Z  = (dz ~, d z  ~, . . . ,  d z ' ~ ) .  

Directly from the definition follow the relations 

~ (z~, p,n) = ~ .2~ (L ,~), m~o (~, ~) = o. (1.3) 

It follows from (1.3) that J~ is a section of some one-dimensional bundle over the set of 
flags (~, ~'), where $CO and ~' is an (n -- 2)-dimensional analytic plane in ~. 

- -  

Proposition 1.3. Let ~ be a smooth, ~-closed (n, n -- l)-form on D, and ~* be the func- 
tional in H* (CP n ~ D) which corresponds to it by virtue of (i.i). Then for any $, ~ such 
that ~(~)CD the Radon transformation ~and the Fantapi~ indicatrix ~* are connected 
by the relation 

~ ~ ~(~, ~)= ~ (L ~). 

- -  

COROLLARY. For a ~-closed (n, n -- l)-form% the Radon transformation~ depends holo- 
- -  

morphically on ~, ~. For a ~-exact form ~ the Radon transformation is equal to zero. 

Proof. If ~ ~ ~, then by virtue of Proposition 1.2 and (1.2), (1.3) we have 

i i ~ (~, ~) = - ~ r  ~ *  (~, ~) = - ~  (~*, ~) = 0 .  

Now l e t  ~ ¢ ~  and  l e t  ~ b e  some n e i g h b o r h o o d  o f  t h e  h y p e r p l a n e  ~,  r e i a t i v e l y  c o m p a c t  
i n  D. W i t h o u t  l o s s  o f  g e n e r a l i t y ,  o n e  c a n  a s s u m e  t h a t  t h e  h y p e r p l a n e  {z: <~, Z> = O} h a s  t h e  
f o r m  z ° = O, and  t h e  p o i n t  {~ = . . .  = z n = O } ~ C P  ~ H .  Then  we h a v e  t h e  e q u a t i o n  
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~ ¢  (~, ,~) = <~, dZ> ._j (,.). ~o = /~, ~ > _ j  ¢ (~). 
z ~)  z (D 

Now using Cauchy's formula, we get (by virtue of the definition of the interior and exterior 
products) 

=,,m-,,' l 4-0> 
. - 0  ,,,,, 0 , "  

tz: I<L z/z°>l=~lldl 

!o /< "> ~ o  2 ~  q~(z) ~, ~ . 
{z: <~, Zlz >=el~d} 

We note now that for any sufficiently small z > 0, the form ¢/<-~ ,~0> 
. 

~ ~ e }  Hence, Stokes' no singularities in the do.in ~I~{~: ~,~, . 

/< ~ in this do.in, by virtue of which we have the form ~ ~ , 

(l.4) 

is closed and has 

formula applies to 

/< ¢> ' ol '~ ~p (z) ~, = -~T ~ (z) , z"i'\zo / II1~ 
I~ . /~  ~ =~I z ~ 
I "N~ 

Whence and from (1.4), (i.i) follows the equation 

~ ' ~ C ~ ,  9)  = ~ ~(z)'z°l<~,z> = ~--~-fY~*(~, ~). 
z °~ I 

Proposition 1.3 is proved. 

We denote by H(D*) the space of holomorphic sections ~ of the one-dimensional bundle 

~(~) where ~(~)~D*, %~C. Further, we fix ~/)* and we de- over D* of the form ~(%~)---. ~ , 

note by Hn(D*) the subspace of those sections ~ in H(D*) for which ~(~) = 0. Let the homo- 
geneous coordinates in the domain D be such that {z I = z" ..... z" : 0} ~ CP~\ D, and the hy- 
perpiane ~ has the form N : {z: z °= 0}. 

Using these coordinates, for each function $ ~//n(D*) on the square {(z, ~)~ [D \ NIx 
D*: <~,Z> = 0} we define, following Leray [8] and Martineau [12], a holomorphic and closed 
(2n -- l)-form of the form 

/.~1~ (~, ~,) : (p~Ri)~-I ~ - 1  

~here e ' (~):  ~ ( - - i ) ~  ~ d~, e (Z)~  ~ 8z~. 
~=I ~ ~=1 

~EOR~ I. Let the linearly concave do.in D ~ CP ~ be such that any hyperplane sec- 
tion of the do.in O * ~ (~P=)* is contractible. Then: 

A) for each function ~ ( O  *) and any smooth ~p z~ ~, ~ O  ~N, ~ O  *,z~ ~, 
the restriction L~y of the form L~ to the graph ~ of the map z~ ~ is an (n, n -- l)-form 
in O ~ N, such that for the functional ~ ~$ in ~* ( ~  O) corresponding to it one has 

i ~=~ ~ (~ ~) (~, ~) = ~ (~), ~ ~ (~) ~ O*. 

B) If here ~(~) = 0, then the form L~ lies in the i~ge of the map 

e: ~-~ (O, ~) ~ ~* (CP~ ~ O) ~ ~-~ (O ~ ~, ~) 

and for any ~(~)~D * one has 

~ (p-~ p) (~, ~) = ~ (~). 

Remark. Assertion A) in this theorem for the case when ~ (~) = I/~, is equivalent with 
the integral fo~ula of Cauch~Fantapi~Leray [8]. 
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Proof. Let ~ be a neighborhood of the hyperplane N~D, such that the compactum 
EPn'N~, is convex. With each point z~O~n we associate the complex hyperplane ~, tangent 
to 3~ pas~ing through the point z. By virtue of the convexity of the compactum ~pn~n 
we have: ~z~D for all z~n. Since by hypothesis the set of hyperplangs {Sz }, passing % 
through the point z~D and lying in D, is contractible, the graphs y and y of the maps 
z~+ ~z and z~z, where z~O~n, are homologous. Whence, and from the closedness on the 
square {<~, Z> = 0} of the form LO, it follows that LOI Y and L@I Y are cohomologous (n, n -- 

$ . 
l)-forms on a~. Hence for the Fantapi~ indicatrix of the functional L@Iv, correspondmng 
by (i.i) to the form LO[¥, we have 

.i i ~ L@IF" <Lz>' • (1.5) yL~pl~= . L * I ~ ' ~ =  a ~ 

By Martineau's theorem [12] describing the analytic functionals over convex compacta in terms 
of Fantapi~ indicatrices, we have 

I Z0 
L~ I~ (z) ~ = ~ (~_). 2~i 

zea~ (i. 6) 

for all those $, such that ~(~)~n. This same equation is valid for all ~(~)~D, since 
the function @(~) is holomorphic and the domain D*, by virtue of the hypotheses of the propo- 
sition is connected. Theorem I A) is proved. 

Now if ~(n) = 0, then from (1.6) we have 

L ¢ l } . i  = L~[V-~- = ¢(~).2~i = 0 .  
0~ 0 ~ 

By virtue of Proposition 1.2, this equation means that the form defined in the domain D \ N, 
lies in the image of the map 

O: Hn-1 (D, ~ --)- H* (CP n ~ D) "~ ~n]l (D \ ~, ~D- 

Now by virtue of Proposition 1.3 and (1.5) and (1.6), for all ~(~ ~ we get the equation 

~ (p-~L¢ Iv)(~, ~) = ~ (D. 

The validity of this equation for all ~(~D follows from the holomorphy of the function 
~(~) and the connectedness of the domain D*. Theorem I is completely proved. 

As the first application of Theorem I we have the following refinement of a theorem of 
Martineau [ii]. 

COROLLARY. Let D be a linearly concave domain in CP n, such that any hyperplane section 
of the domain D*~(EP") * is contractible. Then for any fixed ~D* the Radon transforma- 
tion ~ 5~ (.~ ~), where ~//~-~ (D~ ~n), is an isomorphism of the spaces H "-1 (D, Q~) and 
H,(D*), and the Fantapi~ transformation ~*~*(., ~), where ~*~H*(EP" ~ D), is an iso- 
morphism of the spaces H*(EP"~D) and H(D*). 

Remark. Independently~ S. V. Znamenskii obtained a result from which it follows that 
the assumption of the corollary is not only sufficient but also necessary for the validity 
of the assertion of this corollary. 

We note also that the second assertion of the corollary in the case when the compac- 
tum (EP"~D) is convex, is precisely a theorem of Martineau [ii, 12] (see also [4]). 

2. Radon Transform of (n, n -- l)-Forms (Change of Parametrization 
and a Generalized Inversion Formula) 

As in Sec. i, it will be assumed that inhomogeneous coordinates are introduced in cpn: 
c~+~ {o)-+ c~ .  z ~ It is convenient for us to rewrite the formula defining the plane ~ not 

Cn+l in terms of elements of the conjugate space ~ , but in terms of frames in ~. To each n- 
frame (w, vl, • • ., Vn-1) in C n+1 we associate the flag (~(w,v), ~'(v)), where 

{ ~'(~)= Z =  Y ~ t ~  , ~ ( m , v ) =  Z = t ° ~ +  . 
k = l  - -  
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Definition. Let ¢ ~ H "-* (D, fg') and ~ (w, ~) ~ D*. We get 

,~,~ (w, v) = , . . . . . . .  , i !w [w, v, dZ] 
[ w , v ,  ul z ~  ,~) lZ, v,u] --]q~' (2.1) 

where u is any vector such that {w, v, u} is a basis in C"+*,[Z,v, u] is the determinant of 
order n + I made up of the columns Z, v~, ., vn-~,, u. 

LEMMA 2.1 (i). The right-hand side of (2.1) is independent of the choice of u; 

(ii) we have 

,.q~ (~w, ~ = ~-~ (de~ ~ ) - ~ * ~  (w, ~,  ~ ~ C, ~ ~ GL (n, C), (2 .2)  

which means that J~¢ (w, v) drops to a section of a one-dimensional bundle over F(D*); 

(iii) the one-dimensional bundle sections ~ (~, ~) and J~ (~, ~ are compatible. 

Proof. (2.2) is verified directly. The compatibility of the sections in (iii) means 
that if ~(~,~ = ~(~), ~'(~ ~ ~'(~,~), then J~(~,~) and J~(~,~ differ by a factor inde- 
pendent of ~. We find ~(w, v) and ~u(V) from the conditions <~, Z> =[~, u, Z], <~=, Z>= [Z,v, ~]. 
Then ~ (~, ~= ~ (~), ~' (u)=~' (~, ~]=) and ~ (~, ~ = [~, ~, ~]~ (~, ~=). Moreover, (2.1) is not 
changed upon adding to u combinations of w a~d v (we use the fact that ~ (~, ~) =0) which 
means (1) is proved. We note that thanks to the factor i/[w, v, u] in the parametrlzation 
(w, v) there is no analog of the condition ~ ~ (~,~) = O. 

Remark. For given w and v one can choose a basis in C n+~ in which (2.1) appears par- 
ticularly simple. Thus, one can assume that w ~ = i, and ~ =6~+,,~<~<~--~, where 6i+~ 
is the vector whose (i + l)-st coordinate is equal to i, and the others to zero. Then by 
virtue of (2.2) one can restrict oneself to the section z ° = i (passing to inhomogeneous co- 
ordinates), and the plane ~(~,~), ~ = (~, ..., ~,), defined by the equation z ~ = w ~. Setting 
u = ~,, we get 

~¢ (z, a) = ~ dz ~ I ~. 
Z0~ I 

z l ~ l  

(2.3) 

Proposition 2.2. The function ~ (w, v) satisfies the system of differential equations 

a:~i'~p a ~  
~ ~ = 0 ,  t ~ . < f < n - - t ,  0 < ] ,  k ~ < . n .  (2.4) 

Proof. One can assume that f =~, ] =~, k =2, ~ =~+, for r > i, w ° ffi i, w r = 0 for 
r>2~0, v~ =~*, ~ ~, ~[ =0 for r > 2. Then on the section z ° ffi i, the hyperplane 
[(w, v) has the fo~ z * =w ~ + tv~, z~ =w ~+.t~, t~,, and one can assume that 

. 

~ = ( ~ ,  ( z ) d ~  A d ~ '  A .  • • A d ~  + O ,  ( z ) ~ '  A d ~ A  • • • A d~") A dz~ A • .  • A d ~ .  

Then, p a s s i n g  i n  (2 .~)  from (¢~, ¢~, ~s . . . . .  ~a) to  (w ~, w ~, t, za . . . . .  zn), we ge t  t h a t  ~ ( w ,  v) i s  
the sum of two su~ands of the form 

~ ¢,(~' + t~', ~' + t~',~' . . . .  ,~-)~'~t A ~ A ~ '  A...  A ~ - i ~ ' i . . . i ~  ~, 
~ 

whence one v e r i f i e s  d S r e c t l y  t h a t  each  of  t he  s u ~ a n d s  i s  a n n i h i l a t e d  by t h e  o p e r a t o r  a ~ a ~  
~ 

~w~ ~ • 

Let ~(w, v) be a holomorphic function on the manifold of frames (w, v). By analogy 
with the form L~ from Sec. i and [5], we introduce the holomorphic (2n -- l)-form 

~ =  (-1)" ~,  0"-',(z.~) ~v?A...Adv~q, Ae,(z), 
(2~0" ~z s~ . . . ~z ~ - ~  

$1 ,  - • • ,  " ~ 1  

where the su=ation is over all collections 0 < s~ < n, and ~*(Z)= ~=0 ~ (- ~)~z~ dz';" . 

L ~  2.3. Let ~(w, v) be defined for all (w, v), for which ~(w, v) ~D*, and let ~ 
s a t i s f y  ( i i )  o f  L e n a  2 .1  and ( 2 . 4 ) .  Then ~ d rops  to  D ~n Z, and in  v to  t he  c o r r e s p o n d i n g  
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set of (n -- 2)-dimensional analytic planes ~' (v). Moreover, the form ×~ is closed; in par- 
ticular, uJ~ is a closed form. 

Proof. That it is closed in Z follows from the fact that ×~ drops to D in it and has 
maximal degree there. That it is closed in v is a direct consequence of (2.4). 

Proposition 2.4. Let the holomorphic function ~(w, v) for ~ (w, v) ~ D* satisfy (ii), 
(iii) of Lemma 2.1 and (2.4). Let, further, z~-v(z) =(v~(z), ..., v~_~(z)) be a smooth func- 
tion on D such that ~ (z, v (z))~ D*. Then ~ Iv=~(~) (the restriction of ~ to the graph of the 
map z~+ v(z)) be a ~---closed (n, n -- l)-form on D and 

~ (u~ [~=~(~)) = ~ (w, v), ~ (w, v) ~ D*. ( 2 . 5 )  

In  o t h e r  words ,  t h e  Radon t r a n s f o r m a t i o n  o f  t h e  form ×~ I~=~(z) c o i n c i d e s  w i t h  ~. In  p a r t i c u -  
l a r ,  ~ (~ I~=~(~)) -~ ~" 

~roof. Since the bundle (Z,v)~-~(Z,~(Z,v)) has contractible fiber, we get (using Mi- 
chael's theorem [i0]), that the functions z ~+ v (~.) on D exist, and it suffices to verify 
(2.5) for one section v(z). Using Proposition 1.2, one can fix N ~D* and consider v(z) 
only on D \N, provided only that ×~l~=v(~) lies in the image of the map p~: H n-' (D, ~)-+ 
H ~-~(D \N, ~'). Let ~(i, 0 ..... 0)~D*, i.e., the hyperplane N = {~.0 _--0} be contained in 
D. We introduce inhomogeneous coordinates z ° = i. Let ~ ~ C~+~ {0}. We set 

v~ (~) - -  (o ,  ~,~, o . . . .  , o ,  - ~ 1 ) ,  
v2 (~) = (0,  0,  ~ ,  . . . ,  0,  - ~ ) ,  

v~_~ (~) = (0,  0,  0 . . . . .  ~ ,  - ~ _ ~ ) .  

It is clear that ~(Z, v($))= ~(~), if <~, Z> =0, and ~' (v(~)) is distinguished in ~ by the 
condition z ° = 0. For ~ (~) ~ D*, <~, z> = 0 we set ~ (Z, ~) = ~ (Z, v (~)). Then 

L# (Z, ~) = ~# (Z, v (~)). 

To p r o v e  t h i s  e q u a t i o n ,  i t  i s  c o n v e n i e n t ,  u s i n g  h o m o g e n e i t y ,  to  assume t h a t  ~n = 1. Then 
i n  ~ ( t a k i n g  a c c o u n t  o f  t he  s p e c i a l  form o f  v ( ~ ) )  t h e r e  r e m a i n s  o n l y  one s u ~ n d  

0 n - 1  a 
c (O~)~_~ ~ (Z, v) dr; ~ . . . / ~  dv~_~ ~ dz' ~ . . .  ~ dz", 

0 0 
whence, substituting v~ =--~ and considering that here -~-$ ~=~ we get that the equa- 

tion is proved. 

As a result, for any section z~ ~(z) over O~N, from Theorem 1 we can construct a 
map ~(Z,~(~(z))) for which (2.5) is satisfied. The proof is concluded. 

Remark. From Proposition 2.4 and its proof, it is evident that it admits a signifi- 
cantly wider choice of sections over D, and by the same token, a wider class of inversion 
formulas for the Radon transformation than in Theorem I. The inversion formulas of Theorem 
I correspond to the cases when in Proposition 2.4, v(z) is chosen so that ~'(v(z)) lies in 
a fixed hyperplane NED*, i.e., they are connected with some fixed affinization of projec- 
tive space. 

3. Radon Transformation of (n, q)-Forms in 

(n -- q -- l)-Linearly Concave Domains in CP~_ 

Let D be an (n -- q -- l)-linearly concave domain in CP~; O*~ G~+1, q+ I be the set of q- 
dimensional analytic planes contained in D; F(D*) be the set of flags (~,~'),~O*,I~'C ~ 
being a (q -- l)-dimensional analytic plane. We introduce homogeneous coordinates in CP n 
and just as for q = n -- i, we consider two parametriz~tions of thespace of flags, by means 
of frames in the original or conjugate space: 

a)  ~ ( w ,  ~ . . . . .  ~ )  = ~ ( ~ ,  v)  = { Z  = t ° ~  + t~v~ + . • . + t ~ v q } ,  ~' (v) = {Z = t~v l  + . . • + t ~ } ;  
• 

b) ; ( ~  . . . . .  ~_,) = ~(~) = { Z :  < ~ , Z >  = 0  . . . . .  <~g_a, Z> = 0}, ~ ' (~ ,n )  = { Z :  z~_ ; (~) ,  <N,Z> = 0 } .  

For given flags of F(D*) it is convenient to require in addition that any n -- q of the 
hyperplanes <~i, ~> = 0 ..... <~-~, ~> = 0, <N, ~> = 0 should intersect in an element of D* 
(i.e., in a q-dimensional plane lying in D). 
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Accordingly we give in two variants formulas for the Radon transformation. 

Definition. Let 9 be a~-closed (n, q)-form on D; we set 

i f  ~ (~) ~ D*, and 

~ 9  ( ~ ,  • • :, ~..-~; n) = .~!(~) <~, dz> A... A<$~, dZ> _39" <% Z>--:, (3.1) 

• ~ 9  (w, v~ . . . . .  v~) = l ~ [w, v, dZl __j 9" [Z, v, up-q, 
[w' ~' ul"-q z~{(m,~) (3 .2)  

where ~ (m, v)~ D*, ~ ----(u, .... , u~_~)_is an arbitrary frame of n -- q vectors supplementary to 
the frame w, y, [m, ~, dZ] = Ira, y, ..... yq, dZ ..... dZ] is the determinant of the matrix in 
which the column dZ is repeated n- q times, while in the formation of the determinant the 
exterior differentials are multiplied. 

LEMMA 3.1. (i) (3.2) is independent of the choice of u; 

(ii) 5~9 (~, ~) = (det ~)-*%~-qb~ 9 (~, N), where ~ ~ GL (~ -- q; E), % ~ E; 

(iii) 5~9 (%m, w~) = %q-"-* (det w)-~5~ 9 (m, Y), where % ~ E, ~ ~ GL (q, E). 

Thus, in both variants of the definition, 5~9 drops to a section of a one-dimensional 
bundle over F(D*). 

(iv) The bundle sections 5~ 9 (~, ~) and ~9 (~ ~) over F(D*) are compatible, i.e., 
~9 (~, ~) =e(~,~,m,~)J~9(~,v), where c is independent of 9, if ~(~) ---- ~(w, ~), ~'(~,.~) = ~'(v). 

The proof does not differ from the proof of Lemma 2.1, excluding (iv). To prove (iv) 
we can, for fixed flag (~, ~'), choose appropriate bases in C-+I,(~-+~). and frames, without 
changing (~, ~'). If one assumes <~],Z> =z ~, <~],Z> ----~ i.e., that ~ on {Zo = I} has the 
form {z TM ..... Z ~ ---- 0}, then 

~9 (~, n) = ~ d~+~ A.-. A dz-_] 9. 

Analogously, if v!~=Si, ui =Sq+i, w ° =~ =i, then [Z,v,u] =[w,~, u] =i, Ira, v, dZ]= 
cdz q+~ A . . . A  dz" and ~ 9 ( ~ , ~ ) = 5 ~ 9 ( w , ~ "  

We note that for ~i ..... ~n--* = N , the function ~9 (~, N) has a zero of order n -- q; 
in (3.2), this zero is extinguished by the factor i/[w, v, u]. 

We denote by 9ih ..... ~n_~;~ the restriction of the form <~z, dZ>~ .../~<~_~,dZ>~9<N, 
Z> ~-~-~ to the subspace {Z: <~,Z>=0, .... <~_~, Z>=0}. One verifies directly that this op- 
eratlon preserves 8---closedness. Comparing ~he definitions, we get the following assertion. 

LEMMA 3.2. We have 

~9 (~, ~ . . . . .  ~-~; ~) = ~ + ~  ...... ~_~; ~ (~ ,  ~), 

where on t he  r i g h t - h a n d  s i d e  i s  t h e  Radon t r a n s f o r m a t i o n  i n  ~P~+~ 
o f  ~ and n i n  t he  q u o t i e n t  space by { ~ u ~ z ~ - . . . q - l n - q ~ - ~ ) .  

Lemma 3 .2  a l l o w s  one to  reduce a s e r i e s  o f  q u e s t i o n s  about  t he  Radon t r a n s f o r m a t i o n  i n  
(n -- q --  1 ) - l i n e a r l y  convex domains f o r  any q to  the  ease q : n -- 1 c o n s i d e r e d  i n  Sees. 1 
and 2. I n  p a r t i c u l a r ,  one has 

COROLLARY. The f u n c t i o n s  5~ 9 (~, ~), 5~ 9 (m,y) drop t o  h o l o m o r p h i c  s e c t i o n s  o f  o n e - d i -  
mensional bundles over F(D*). 

form 

Just as in Sec. 2, one proves 

Proposition 3.3. The function ~9 (w,~ 

~ ~ , ~  
o~-J~o,~ o ~ i  = o, 

By ana logy  w i th  Sec. 2, f o r  a holomorphic f u n c t i o n  ~(w, v) 

( 3 . 3 )  
N 

and ~,, ~ are the images 

satisfies the system of differential equations 

i•i•q, O<],k~<n. (3.4) 

one introduces the (n + q)- 
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( - t ) q  ~-~ oq¢(z . , )  ~'~ ---__ 
(2.~i)q-1 Z_~ a z s , .  . . o z S q  

81, ..., Sq 

dv~' /'k . . . A dv*~ q A ~o* (Z).  (3 .5)  

LEMMA 3.4. Let ~(Z, v) be defined and holomorphic for all (Z, v) for which ~(Z,v)~D*. 
Let, further, ~ satisfy (iii) of Lemma 3.1 and (3.4). Then the form ×~ drops to D in Z, ~ 
and in v to the corresponding set of (q -- l)-dimensional planes ~'(v). Moreover, the form 
u~ is closed. In particular, u~ is a closed form. 

The proof is no different from the case q = n-- 1 of Sec. 2. 

THEOREM II. Let D be an (n -- q -- l)-linearly concave domain in CP n, such that for any 
point z~D the set of q-dimensional analytic planes in D passing through z is contractible. 
Let, further, ~(w, v) be a holomorphic function on the set of those frames (w, v) such that 
~(w,v)~D*, satisfying the hypotheses of Lemma 3.4. If z ~ ' - v ( z )  is any smooth map into the 

. 

set of frames {v~ ..... vq}, for which ~ (z, v (z))~ D*, then ~ I,=,(*) , the restriction of ~ 
to the graph of v(z), is a ~-closed form on D, while 

~ (u¢  Iv=t(z)) = ¢.  ( 3 . 6 )  

Proof. By virtue of the conditions imposed on the bundle, a section v(z) with the prop- 
erties necessary exists, and the restrictions of ~ to different sections are cohomologous. 
Thus, it suffices to prove (3.6) for one section v(z). Further, if we want to prove (3.6) 
for some fixed pair (w, v), one can restrict the section v(z) to any subdomain D~D, con- 
taining the plane ~(w, v). The section over D~ can be deformed in its own right, providing 
only that ~(~,v(z))~D*, without worrying about whether the section obtained over D~ extends 
to a section over all of D. Thus, let the pair (w, v) be such that .~(w,v)~D*. Without 
loss of generality, one can assume that w ° = l,v~ =0,1~i~q, ~ =0, I ~.i~q, ]~q. Then, 
passing to inhomogeneous coordinates (z ° = i), it will be assumed that z = (z',z"),z' ~ (z ~, 
.... :), z" = (z q+~ ..... z~), i.e., our plane is defined by the conditions z" ~ w", v" = 0, z' 
~ ~(w',V'). We include it in the domain D~ = D' × D" where D" is a small neighborhood of w" , , 

and D' is a linearly concave domain in the subspace C~ +~, . If T is an (n, q)-form on D~, 
then by Lemma 3.2, its Radon transformation coincides with the Radon transformation of the 
form ~,, = ~(z")~ for fixed w.~_D,, i.e. (we note that v" : 0), for $(w,v)~D~,~(w', 
v') = ~ ~ : ( w ' , v ' ) .  One verifies directly that × ~ ( z , v ' )  = ×(~,,~,)~ (z',  ~", v ') ,  where on the right, 
t h e  o p e r a C o r  × i s  a p p l i e d  f o r  f i x e d  z " .  As a c o n s e q u e n c e ,  i f  we c o n s i d e r  o v e r  D~ a s e c t i o n  
z ~ . - v ( z ) ,  s u c h  t h a t  ~ ( z , v ( z ) ) ~ D ~ ,  t h e n  t h e  v a l i d i t y  o f  ( 3 . 6 )  w i l l  b e  a c o n s e q u e n c e  o f  t h e  
a n a l o g o u s  a s s e r t i o n  f o r  q = n --  1 ( s e e  P r o p o s i t i o n  2 . 4 ) .  Whence ,  a s  r e m a r k e d  a b o v e ,  i t  f o l -  
l o w s  t h a t  t h e  a s s e r t i o n  i s  p r o v e d .  

4. A Criterion for ~-Exactness of Closed (n, q)-Forms in the Domain 

(~ ~ c - :  ~ + I,~' I" + ... + I : - ~ - '  I~<1 : - ~ 1  ' ÷ ... ÷ I : i * < M  "} 
I n  ~h~s  s e c e ~ o n  we w ~  a d a p t  ~he a r g u m e n t s  o f  [7 ]  ( s e e  Sn [7 ]  e h e  s e c t i o n  d e v o t e d  eo 

ehe  XocaX s o ~ u e $ o n  o f  3 ,  Kohn~s  e q u a t $ o n )  ~o d e r i v e  a c r i t e r i o n  n e e d e d  S a ~ e r  f o r  ~he 3 ~ 
e x a c e n e s s  o f  c ~ o s e d  ( n ,  q ) - f o r m s  ~n a d o m a i n  o f  e h e  f o r m  

D~ ~ - -  { w ~  C=: I + I ~ I ~ + . . .  + I :-~-~1~ < l  : - ~ 1  ~ + . . .  + i : 1 ~ <  M~}, 
w h e r e  w : ( w  ~,w ~, . . . ,  w'*), q = 1 , 2  . . . . .  n ~  1, i < M < ~ .  

We s e t  w' = (w I . . . .  , w':-a:~), I w' I ~ = I w '  I ~ + • • • + I w ~-q-i I ~, dw'  : dw t ~ ,  . . A dw'*-~-~; w" : 

(w '~-~ wn). By D M ~ .... , q,z' we denote the section of the domain D of the form 

D M M w' q , z ' = D q  ~ {w: = z'}. 

THEOREM I T I .  I n  o r d e r  t h a t  ~he ( n ,  q ) - f o r m  f ,  w h i c h  i s  c o n t i n u o u s  a n d  c l o s e d  on  ~q~ 
- 

b e  ~ - e x a c t  i n  t h e  d o m a i n  D , i t  s u f f i c e s  t h a t  f o r  a i 1  w ~, t h e  (q + 1 ,  q ) - f o r m  d z ' _ ~ ( ~ )  b e  

- S - e x a c t  on t h e  s e c t i o n  D ~ ~ q,w" o f  t h e  d o m a i n  D , 

In the formulation of Lemma 4.1, the following notation is used (see [7]): 

¢ (w, ~) = >_J pj (w, z) (~; - zJ), 
j = l  

~, =) (~,~" ::), @,. (~v, =) -- ~ pj t~,,, - 
j=l. 
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I '  ( . , ,  z) = ( P x ,  P . , ,  • • .., P . )  = ( ~  . . . .  , ~ ' - " - ~ ,  - -  ~" -~  . . . . .  - -  ~'~),, 

po  (w, ~) = ( p~, ?o~, . . ., ?~) = (o, . . . ,  o, ~ - ~ ,  . . . ,  ~.), 

% = { w  ~ o D y :  I ~'1'  < M~} ,  

ox = {w ~ OD~ ~ : t + l w' l ~ < l w" l ~}, Oo~ = Oao, ~ o  = O~.  

We orient the space C n with the variable w so that the form (--i)"o (~)/~o (w) is positive. 

Weequip the manifold OD~ i with the orientation induced by the orientation of the domain 
D ~ .  W have ~ , o  = - - O o , .  

LEMMA 4 . 1 .  F o r  a n y  w~_S~  and z ~ D ~  , we h a v e  

• (w, z) ~= 0. (4.1) 

For any W ~ o ~  and z ~ D ~  we have 

• o (w, z) 4 = 0. (4.2) 

It is also convenient for later formulations to introduce the following differential 
forms. In the space C sn of the variables (~, w, z) on the analytic surface 

{(~,w,z): ~ ~,(w~--z ~)=i} (4.3) 
k = l  

we consider the holomorphic form 

~ '  ( ~ ) / ~  ~ (w) /k ~ (z). (4.4) 

If ~ = ~(m,z,E) is a function of w, z, and the parameter %, then in view of the closedness 
of the form (4.4) on the manifold (4.3), we have the equation 

~ -- 

dxo' (~) + Owo' (~) + Ozo' (~) = O. ( 4 . 5 )  

We represent the form (4.4) in the form 

~--I 

~ ~q'(~)/~(w)/~(z), (4.6) 
q = O  

where ~(~) is a form of order q with respect to dE and correspondingly of order (n -- q -- l) 
with respect ~ to d~ and d%. From (4.5) and (4.6) follows the following relation: 

• ~ 

d ~  (~) + ~w~ (~) = "--~z~q-x (~), q = t ,  2 . . . . .  n - -  t .  ( 4 . 7 )  

F o r  a n y  c o n t i n u o u s  ( n ,  q ) - f o r m  f on D ~ ,  by  v i r t u e  o f  Lemma 4 . 2 ,  t h e  f o l l o w i n g  (0 ,  q ) - f o r m  
is well-defined: 

I I = ~ ~  ~- l ( ~ ) ~ ( ( i - ~ )  e ( ~ , ~  ~(~,z) + ~  ') Oo(~, z) ' 
w~O~ ~ ' ~ l o  

7~[o, ~] 

where z ~ D~. 

Now we take a step toward the proof of Theorem III. 

LEMMA 4.2. Let f be a continuous V-closed form on ~ such that the (q + i, q)-form 

dw' _J / (w) is Y-exact on any section Dq,~z• of the domain D~. Then the (0, q)-form Kqf is ~- 

exact in the domain Dq M. 

~f 

Proof. Since for any z ~ D~ the form dm~_J /(m) is exact on the section D~.~,, and the 

function [~-~ (~-~ -- z~-q) ~- • • • + ~ (m~-- z~)]-~-~ is holomorphic in the variable w~ ~ ~ D~:~, 

by means of integration by parts over the closed manifold ~ ~ D~.~, , we get the equation 

I dw'_A / Oo) = 0 
I f  (z) = |? ' -~ (w"-a - -  : -w)  + . . .  + p ( , :  _ :)l~+~ 

~ : ,  ~ ~ ~ ~ ~ z } 

(4.8) 

for any z~O~ ~. 
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Using Martinelli's formula (see [7]), one verifies directly, on the other hand, that 
one has the equation 

~ - - q - - 1  ~'_~:(~)~{ :~ ( - , ) ~ - ~ , ~ ' } / ~ '  
tt.=l  

I . f (z )  = l i r a  ~ m ~ + l l l ~ , _ ~ , p +  " . . + l ~ S - l _  = ~ - l l ~ ] n ~ - *  ( 4 . 9 )  
~ { , ~ , :  I ~ ' - z ' l = e }  

Combining (4.8) and (4.9), we have 
~ --q --I , 

I ( ' ) A  ~ (--~)~(7~-~) A ~ 
l im ! ~=~ ~ e-o {,~a,: I '"-z*]=~} ¢q+11 w' - -  ~' I ~(~-g-~) = 0. ( 4 . 1 0 )  

We set, further, @~ =l~'--z'p, P~ " (~--~, ..., ~-¢-~--~-a-~, ,0, ..., 0). 
tion shows that (4.10) itself implies 

Direct verifica- 

~r d (z) = ~im ~!; ;~ 
~- ,o { ,v~o : - '1 =~}  

' ~, P P~ 
:(.,) A ~ ((t - )~-  ÷ ~. ~1)  =0, 

where lqf (z) 

(4.11) by means of Stokes' formula. We have, taking (4.7) into account, 

l I ~r~l (~) = -- lira I (w) A c%' e, (w, z) +]im I (~) A e'~ P (~ =) + 
r~0 (,v~o~: I,~'-z'l~e} e~o 1,~;~o,: I,v'-z'l~e} 

+ ~ :(~) a ~: ((' -- ~) ~ + ~ # )  -- ~ ~ S(~) a ~;-1 ((' -- ~ ) ~  + ~ ~ )  " 
~ t o  ~ O l  

X~[o, ~] ~[o,  ~] 

(4.ll) 

M Now we transform the left side of is a form of type (0, q) in the domain Dq. 

(4.12) 

Since the first summand on the right-hand side of (4.12) is equal to zero (the vector-func- 
tion PI/~I has null components!), it follows from (4.11) and (4.12) that a (0, q)-form of 
the form 

is -~-exact in D~. 

~:= i : ~ ) / ~ ° : , ( ~ )  + I :~';(('-~)" "~,~, ".,:~,~,, "~" + ~ @'~) ( 4 . 1 3 )  
~.E[e, *] 

Now we set 

(:~ = ~1 ( w l  -- zl) ..~ . • • ...IL ~ r ~ - q - I  ( W ~ , l - q - 1  __ Z~ ' l -q - - l ) ,  

p2 = (~I ..... ~n-q-1, 0 ..... 0). 

The second summand in (4.13) can be transformed with the aid of Stokes' formula as follows: 

I s~4 (~,-,~-~ +,~ ~) = '1~ i.~ 
~[o, ~] 

/)2 p t  

= I : / ~o '~ ( ( ' -~ )~ -+~ )+  I / ,a~:(~ ' -~)- -<+~-<- , ) -  
1~=:(~1~ ~=01o 

7~[o, ~] ~ [o ,  ~] 

--~, f i A 4 _ , ( ( , _ ~ , _ ~ )  ~ ,~, , ,  -~ + ~' -¢V, + x2-~7) " (4.14) 
t~:~l~lo ~,+~<I 

%,, k~>o 

N o t i n g  t h a t  t h e  s e c o n d  summand on t h e  r i g h t - h a n d  s ± d e  o f  ( 4 . 1 4 )  i s  e q u a l  t o  z e r o  ( t h e  v e c t o r -  
p~ 

f u n c t ' ~ o n  ( t - - ) ~ ) ~  @ X - ~  h a s  n u l l  c o m p o n e n t s ! ) ,  we e x t r a c t  f r o m  ( 4 . 1 4 )  and t h e  e x a c t n e s s  
,~ 

of the form Kqf that a (0, q)-form of the form 
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I 'lt~_(:;l ~l~,~_ffle 
~[o ,  ~] 

is ~-exact in the domain D~. 

Finally, the second su~nd in (4.15) can be transformed to the fo~ 

(4.15) 

I +'. 
'lm~o',,~ 

~ [  o, ,] 

~ ~ ~ _ p* 
= 

~ ~ 
~[o ,  ~] ~[o ,  ; ]  

-~ .  ~ IA~-,(~ ~ ~,1, p. ,o _ _  ~ + ~ $ ~ + ~ , ~ )  , (4.16) 
~ 

~+~ 
~,, X,~ 

Noting here that the second su~nd on the right-h~d side of (4.16) is equal to zero be- 
po . 

@, we deduce from cause of the holomorphicity in z of the vector-function (I--~)~ + % 

(4.15) and (4.16) that the (0, q)-form Kqf is ~-exact in the domain D~. Lena 4.2 is proved. 

~other essential step in proving Theorem III is the following variant of the integral 
representation of (n, q)-fo~s in piecewise smooth domains (see [7, 14]). 

L ~  4.3. ~y continuous, ~-closed (n, q)-form f on ~ is cohomologous in the space 

H q (D~, ~") to an (n, q)-fo~ of the fo~ 

i p(w, ~)~ I I ~ ~ 
~ [ o ,  ~] 

where z ~ D~. 

The assertion of Theorem III follows directly from Le~ss 4~2 and 4.3. 

A~(~), 

5. Description of (n, q)-Forms f, for which the Radon 

Transformation ~[ is Equal to Zero 

Following [2], a compactum K on an n-dimensional complex manifold ~ will be called (n -- 
q -- l)-pseudoconvex with respect to R, if for any two neighborhoods ~0, ~z (~0 ~C ~,) of the 
compactum K, one can find in the domain ~z ~ n o an (n -- q -- l)-psuedoconvex function p, 
such that pI0no----0 and ~0~=~. 

We recall (see [i]) that a smooth function ~ is called (n -- q -- l)-pseudoconvex on the 
~nifold ~, if for any z (in local coordinates) the restriction of the quadratic form 

~ 0~(z) ~ to the plane ~, ~p m~ 0 has at least q positive eigenvalues. 
~z~ ~7 ~ ~ ~fl = 

~i, ~m i=~ 

~EO~M IV. Let D be an (n -- q -- l)-lin~arly concave do.in in CP n, such that for 
some q-plane ~(~), the eompactum ~ ~ D is (n -- q -- l)-pseudoconvex with respect to the 
do.in ~ ~ ~. If under these conditions for the (n, q)-form ~, the Radon transformation 
~ (~, ~l) (for some fixed ~) is equal to zero in a neighborhood of the point $, then the 

-- 

fo~ ~ is ~-exact in the domain D. 

We fix in CP n homogeneous coordinates Z = (m °, . ., z n) and we consider a q-linearly 
concave domain Dq of the following special form: 

D~ = { z ~ . C ~ : ] z  " l  ~ + . . .  + ]z ' -a  p - -  I z~-a-l[ ~ - .  . . - -  I z~ I ~ - - I  z° [~ > 0}. 

L e e ,  g u r e h e r ,  t h e  h y p e r p ~ a n e  ~ i ~  Cpn h ~ v e  t h e  ~ o ~ o w i n g  s p e c i ~  g o r m :  ~ : {z ~ EBb: z ° : 0}. 

L ~  5 . 1 .  S u p p o s ~  f o r  a c o n t i n u o u s  and  ~ - e ~ o s ~ d  i n  ( n ,  q ) - f o r m  ~ ~n D~ t h ~  Radon  
t r a n s g o r m  ~ ( ~ , ~ )  = 0  g o t  a n y  q - p ~ a n ~  ~ = ~ ( ~ ) : D ~ .  Th~n ~ o r  a n y  H < ~ t h ~  gorm ~ s  
~ - ~ x a e t  ~n a d o ~ n  og  t h ~  gorm 

~ : {~ ~ ~ :  I ~ P + • • • + I z~-~ p < ~ 1  z° P~. 
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Proof. We consider in Dq a q-plane ~ = ~(~), having the form 

; = ; (~) = {z ~ De: z* . . . . .  Z ~ - q - 1  = <~, Z> = 0 } ,  

w h e r e  ~ = ~ _ ~ g  ~ + ~ \  {0}. 

By v i r t u e  o f  ( 3 . 1 )  and  Lemma 3 . 1 ,  t h e  e q u a t i o n  :$~  (~, ~) = 0  f o r  t h e  g and  ~ c h o s e n  h e r e  
be written in the form 

I (dz' A dZ>) _.A ~(z°) '~-~ <L O. 
{Z: Z t . . . . .  z n - q - - l = < ~ ,  Z > = 0 }  

(5.1) 

(5.1) means that the (q + I, q)-form dz'_J~. (z°) ~-~-~ in the section of the domain Dq of the 
(q + l)-plane ~ ..... z ~-q-* = 0 has Radon transform equal to zero. 

By virtue of Proposition 1.3, in this same section the Fantapig indicatrix ~,is equal 
to zero, i.e., 

i & ,  ~ ~ . (~0)- -~  = 0 ( 5 . 2 )  
<~, Z> 

z~OOq~ {z: z~ . . . . .  zn-q-l=o} 

for all E such that the q-plane ~(~)~Dq . Differentiating (5.2) q times with respect to 
the parameter Eo, we get 

i dz'l~'("°)"~ --0, ~(~)~Dq. 
<~, Z> q+~ 

z~OO qf"l~,z: z'=O} 

F o r  e a c h  p o i n t  z ~ D ~  we s u b s t i t u t e  i n t o  ( 5 . ~ )  a v e c t o r  ~ ( z )  o f  t h e  f o r m  

~ (z)  = ( -  I ~ l ~, ~ ! ,  • • ,, ~ " -~ -~ ,  ~ - ~ ,  • • ", ~")" 

Then i n  i n h o m o g e n e o u s  c o o r d i n a t e s  (z ° = 1 ,  w ° = 1 ) ,  ( 5 . 3 )  a s s u m e s  t h e  f o r m  

(5.3) 

i d~ , '~  ~ 
• w~ODq~W: w'=0} 

( 5 . 4 )  m e a n s ,  i n  t h e  t e r m i n o l o g y  o f  [ 7 ] ,  t h a t  i n  t h e  
d i c a t r i x  K* (dz' ~ )  o f  t h e  f o r m  dz'_.]~ i s  e q u a l  

- -  

form dz '_j~ is ~-exact in the s_ection Dq ~ {z' = 0}. 
that the form ~ is for any M, ~-exact in the domain 

= 0 .  
[~"~-~ ( w'~-~ - -  F'-~) + . , -  q- :'~ ( w ~ -  =")l ~+1 ( 5 . 4 )  

section D~ ~ {z' = 0} , the Martineau in- 
to zero. By Theorem 1.4 of [7], the 
Whence, and from Theorem IV it follows 

D~. The lemma is proved. 

LEMMA 5.2. Let ~ be a continuous and ~-closed (n, q)-form in a neighborhood of the com- 
- -  ~ 

pactum Dq such that for sufficientl_y large M, the form ~ is ~-exact in a neighborhood of the 
compactum D~. Then the form ~ is ~-exact in the domain Dq. 

- -  - -  

~roof.... Since the form ~ is ~-closed in a neighborhood of the compactum Dq, for some 
6 > 0 the form ~ is ~-closed in the domain of the form 

Dq,~ = {z ~ CP=: (l & 25~)I z , I ~ - -  l a ' l  ~ - -  l a ° I s > 0}, 

w h e r e  z' = (z ~, . . . ,  z~-~-~), z" = (z ~-~ . . . .  ,z~).  

Let 

We introduce into consideration the domain of the form 

Dq+l = {z ~ CP'~: I z"l  = - -  I z ' l  2 + I z° / = > 0}. 

M > I/8. Then we have the inclusion 

Oq+~ ' \  D ~  ~ O,~,s. 

z ~ D q + t \ D ~ ,  t h e n  I. z O l ° - < g - " l a ~ 1 2 < : a 2 l a ~ l *  and .Iz" 2 - l z ' l = ÷ 2 I a ° [ 2  

(5.5) 

-I,.013>0. If 
Whence, we have (i ÷ 262 ) [z"l~.-- I g[2- I z°12>0, i.e., z~Dq.~. Now suppose in the domain 
D~,~ ~, {z: I z"12<M21z°l~} we have 

~ =~g, (5.6) 

where g is some (n, q- l)-form. 

We denote by X(Z) a smooth function in the domain Dq+1 such that 
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1 for 

%(z)= 0 for 

where D~, = {z ~ De+x: I z " l '  < M= I~° I q • 
form 

z ~ D e U (D~+~ \ D ~ ) ,  

z ~ ODe, a F] D~+I, 

Now we Consider in the domain Dq+~ a form of the 

(5.7) 

M 
De+ 1 ~ D~+~, 

~M D~+~ f-I D~, ~, 
De+~ \ D e ,  t. 

and D-closed in the domain Dq+~ and co- 

is (n -- q -- 2)-complete. Hence by the 

¢p, if z ~  

 xg, 
0 , if z ~  

By virtue of (5.5)-(5.7) the form ~ is well defined 
incides with the form ~ on Dq. 

We recall (see [2]) that the domain CP~+, 
theorem of ~dreotti~rauert [i], we have 

H ~ ( CP= X ~q+l, ~0) = 0 for 

By v~reue  of  ehe d u a l i t y  ~heorem (see  [~ ] ) ,  we have 
H q + l  I ~ D n  c ~ + t  ~ , ~ )  = O, 

kT>n--q--t .  
from this 

(5.8) 

where ~re+~ (~P~,~) is the (q + l)-dimensional cohomology of the space CP n with coeffi- ~ cpn\D~+l 

cleats in ~n and with supports in CP~X,D~÷~. In order to derive from (5.8) the equation 
Hq(O~+~, ~) = 0, we consider the following exact sequence of spaces and natural maps be- 
tween them (see [6]): 

• ...*IIq(CP n, ~ n ) - ~ I t a ( D ,  n").--> rre+t ' ~  ~")-~H~+t (CP ", ~")--> (5.9)  
~ C P n \ D  ~ ~ . . . .  

Prom (5.8), (5.9), and the known equation H~(CPn,~)=O for ~ ,  we get the assertion 

//~ (O~+~, ~) = 0. (5.10) 

By virtue of (5.10), the form ~ is ~-exact in the domain Dq+:. By virtue of the equation 
~ = ~ for ~O~ we get the ~-exactness in the domain Oe~O~+ ~ of the form ~" 

LEMMA 5.3. Let D be a domain in CP n such that for some q-plane ~ the compactum 
~ O  is (n -- q -- l)-pseudoconvex with respect to the domain ~ .  Then if the ~- 
closed (n, q)-form ~ in D is ~-exact in a neighborhood of the q-plane ~, then ~ is ~---exact 
in D. 

Proof. By virtue of the relative cohomology theory (see [6]), we have tb~ following 
exact sequence of spaces and natural maps between them: 

-~ ~(~P~, nD-~(o, nD-~ =e+~ 'c~ nD-*~÷~(cP ~, nD-+. (5.n) • ~Cp~\O~ ~ , • . • 

On the other hand, by virtue of duality theory (see [I]), one has a canonical isomorphism 

He+, ,Cn, ~n) ~_ ii,~-, (CP" \ D, ~0). (5.12) 
CP~D k ~ ~ 

From (5.10)-(5.12) it follows that to prove the ~-exactness of the form ~ in D it suffices 
to verify that ~ generates the null functional on the space H~-~-*(CP~D, ~o). 

In other words, it suffices to prove that for a fundamental system of neighborhoods 
{~9} of the compactum CPn~D we have 

0 (5.13) 

where ~ is an arbitrary D---closed (0, n -- q -- l)-form in ~--~. 

Let Dq be a neighborhood of the q-plane ~O, such that ~ =~g on mo. 

By virtue of-the (n -- q -- l)-pseudoconvexlty of the compactum CP~O with respect 
Cp~, one can use the approximation theorem of Andreotti-Grauert [i], which gives a se- 
quence of D---closed (~, n-- q--l)-forms {~k } in the domain ~P~O~, which approximates the 
form ~ uniformly on m~. Whence 

lira ~I~A~= ~ IA?, (5.14) 
~t,-~ ~ 0~% 
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On the other hand, by Stokes' formula, we have 

[ , , A , = -  J " 
Ota v 0 ODq ODcl 

From (5.14) and (5.15) fo l lows  (5 .13) .  The lemma i s  proved.  

The assertion of Theorem IV follows from Lemmas 5.1-5.3. 

(5.15) 
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