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The goal of the present note is to generalize the Serre duality theorem to projective 
supermanifolds. The dualizing sheaf turns out to be the shear of volume forms Ber X. The 
proof goes basically parallel to the classical one, but the characteristic singularities 
of supermathematics appear in it. 

If X is a smooth projective manifold over the algebraically closed field J£ , and ff is a 
coherent sheaf on it, then Serre's theorem asserts that there is a canonical isomorphism of 
finite-dimensional vector spaces: Exti(ff,~X) = Hn-i(X,J) * , where O~i~n, n=dim~,~X 

is the canonical sheaf, and * denotes the dual vector space. In particular, it follows from 

this that if ff is locally free, then H i(X, J)= H n-i(X, J* ~n~)* (cf., e.g., [3]). 

Now let X be a smooth supermanifold of dimension nlm over J[', 31<' = ~ and let C x be its 

structure sheaf (notation X= (X,C x)). If ~ is a sheaf of Cx-modules, then by~rea we shall 

denote the sheaf of O~d = ~x/~'Cx-modules ~/~ , where ~'6~ C xis the ideal of nilpotents. In 

the category of supermanifolds there is defined the functor Gr, which carries X into the 

supermanifold GrX = (X, A" (~/~2)), where A" (~/~2) is the Grassman algebra of the sheaf of ~red-- 

modules JF'/~ =. We call X decomposable if there exists an isomorphism between X and GrX. If 

a decomposition of X is given (i.e., an isomorphism between X and GrX), then any C x -module 

becomes an Cre~-module. 

In the category of C x -modules there is also defined the intrinsic functor ~0m: j~m(J,~) 

object representing the functor ~, JCom (~ ® ~, ~) . We denote £ (X,X ~,n)by Ho___mm, and the corres- 

ponding derived functors by Ext ~ and Ext i. 

We denote the functor which changes parity by ~, 

If ~ = ~0 G ~ is a sheaf of G x -modules, then the cohomology groups of X with coeffi- 

cients in ~ -- H ~ (X, ~) are J£-superspaces. 

For any locally free C x -module ~ of rank p[q there is defined an invertible @x-module 

Ber ~ of parity 1/2(1 --(--i) p+q) [1, 2]. 

We denote by ~kx the differential forms of degree k. Integral forms are defined by the 

equation En-m-~X = (~X)* ® Ber X [2] (by Ber X we denote (Ber ~ZX)* = E n mX)). 
NIM P = P denotes the projective space of dimension NIM over Jr. pNIM is canonically de- 

composable: pNl~ = (W~ A (M ~ (--~))) . 

LEMIIA i. Let X be decomposable, and Xre d be projective. Then Ber X is a dualizing 

sheaf, i.e., there is given an even trace morphism t: Hn(X, Ber X) ÷ Jf such that for any co- 

herent ~x -module ~ the pairing to~, where ~: Horn x (~, Bet X) × 11 n (X, ~) ~ H n (X, Ber X) , is non- 

degenerate. 

Proof. We denote .~/~by E o It is easy to verify that there exists an isomorphism 

o ' ~ x  ~ ( 1 )  Ber  X - -  A '  (E*)  ® -- ~ r e d ] "  
(C red  
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the trace morphism t is induced by the map Ber X + ~n(Xred) , and the nondegeneracy of Thus, 

the (even) pairing to~ follows from the equation Homx(~,BerX)~ HomXre (~, 9n(X~ea) (which follows 

from (i)) and from Serre duality for the coherent ~d-module~). 

THEOREM I. Let X be a closed subsupermanifold in P of codimension r[p. Then Ex___~(~x, BerP ) 

is a dualizing invertible sheaf of parity i/2(l--(--l)n+m). 

The proof of this theorem follows from the one one has in the purely even case (cf., 
e.g., [3]); :it is based on the duality for P. 

It follows from Theorem 1 that the ~x-m°dule Ex___J~(~x, BerP) does not depend on the projec- 

tive imbedding (up to isomorphism). We denote it by u X. Just as in the classical case one 

h a s  : 

COROLLARY i .  F o r  a c o h e r e n t  C x - m o d u l e  ~ o n e  h a s  

Ext~ (&~, ~x) ~ Hn-~ (X, ~-)*, Vi > j0 .  

R e m a r k .  I t  i s  n e w ,  c o m p a r e d  w i t h  t h e  e v e n  c a s e ,  t h a t  e v e n  f o r  a s m o o t h  s u p e r m a n i f o l d  

X t h e  e q u a t i o n  H n ( x ,  ~X ) = fff d o e s  n o t  n e c e s s a r i l y  h o l d ;  e x a m p l e  - -  X = (P~, A" (m~ (i))), m, n > j t .  

THEOREM 2. Let X C Y be a closed imbedding of supermanifolds of codimension rlp. 

T h e n  Ex_.j~ (@x, BerY) = 0 f o r  i # r ,  a n d  Extr~(~'x, BerY) = BerX.  

COROLLARY 2. For a projective supermanifold X the dualizing sheaf ~X is isomorphic 
with Ber X. 

The proof of Theorem 2 is based on properties of the Koszul complex and its dual. Let 

A be a supercommutative ring. We call a collection of homogeneous elements (y1, ..., yR) 

regular, if v L 1~<i~<R, one has AmlA/(y ~ y~_I)Y{=(Yi--(--I)~iyi). From a regular collection of ele- 

ments of A (yl. ,Ur ~i~ .... , ~ ), g : 0, ~ : I, generating ideal J, one can canonically construct a 

Koszul complex K{y, ~} and its dual/~{y,~} = Hom (K{v,~},A) . The members of the Koszul complex 

are the homogeneous components of the symmetric algebra S(HL), where L is a free A-module 

of rank rip with basis l~,. ,l+~,[{= 0, i~<r and li= I, i~r+i I its differential is the operator 

yi a 
~,{ (the sum over i is meant). 

Proposition: 

a) H o (K{y,~}) A/J; }[~ (K{~,n}) : 0 for i > 0. 

b)  [t r(f iy~) : Ber6f / JD* ;H ~(f{y,~)= 0 f o r  i #. r .  

Point a) shows that the Koszul complex constructed from a regular sequence of local 

equations of IX in Y is a locally free resolution of the sheaf C x. From point b) we get 

r E t~.(O xBerY)=:Ber(~/y2)*®BerY , where ~ is the ideal of X in ~y . It remains to prove the 
oy 

formula Ber (y/~)*® Bet Y = Ber X . This is the adjoint formula in the supercase and it can be 
~y 

verified by direct calculation in local coordinates. 

The following corollary follows directly from Theorems 1 and 2. 

COROLLARY 3. For projective X one has a canonical isomorphism: H ~ (X, ~X)= H ~-~ (X, E~-m-kX)*. 

Our proposition allows us to give the following invariant characterization of a Berezin 
module. 

COROLLARY 4. Let A be a supercommutative ring, M be a free A-module with basis e~, ..., 

e I N N eN~ , ..., e be the dual basis of M*, ~e ~, ..., ~e be a basis of HM*. We denote by 
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the symmetric algebra S(M*), ~: ~ A ® M. In S~(~-~) there is a canonical "homological" 
A 

differentiation D; in coordinates it has the form O~Y~ 0 (here yi a~ei are elements of A, equal 

to e i from M*). By S* we denote the dual complex to S~ (H~). Then H(S*) = Ber M. 

This assertion carries over completely to locally free sheaves of modules. 

We heartily thank Yu. I. Manin and A. N. Rudakov for very helpful discussions and great 
interest in the work. From an unpublished manuscript of P. Deligne we learned that Ber X is 
a dualizing sheaf. 
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REPRESENTATIONS OF THE LIE SUPERALGEBRAS ~[ (n, m) AND Q(n) ON THE 

SPACE OF TENSORS 

A. N. Sergeev UDC 519.46 

In what follows the ground field is always C. It is known (cf. [i]) that all irreducible 
finite-dimensional representations of simple Lie algebras of the series A can be obtained by 

n 
decomposing tensor powers of the identity representation. In the present paper, following the 
method of H. Weyl, we study the expansion of tensor powers of the identity representation of 
the Lie superalgebras gl (n, m) and Q(n). As a corollary we get a formula for the characters 
of the irreducible finite-dimensional representations of the superalgebra Q(n), appearing in 
the tensor algebra of the identity representation. Moreover, the results of the present 
paper clarify the use of Young diagrams for describing subrepresentations of the Lie super- 
algebra GL(n, m) in the tensor algebra as is done in [7, 8]. 

Let A be a free commutative superalgebra, generated by a family of generators {xi}i~1. 

For x = {xl, ..., x k) we define an element p(x) by the rule p(x) = (p(xl), ..., P(Xk)), 

where p(x) i is the parity of x i. If S k is the symmetric group of order k and o~£~, then 

c(p(x), o) is determined from the relationc(p(x),o)xl.. ~= xoa)...xo~) . It is easy to verify 

that c is a cocycle, i.e., c(p(x), oT) = c(o-lp(x), ~) c(p(x), o). Let V be the identity 

representation of ~ = S~(n, m) and W be its k-th tensor power, Pk be the corresponding represen- 

tation of ~ and U(g) (the universal enveloping algebra of the superalgebra ~). The group 

S k acts on W according to the rule ~(o)(~,I ®... ®v~)= c(a-~(p(~)),~)%-~O)Q... ~%-~(n). The decomposi- 

tion of the module W into irreducible ~ submodules is based on the following result, which 

also proves its complete reducibility. 

THEOREM i. ~(~)I= p~(U(~)) (~ is the notation for the commutant). 

To describe the decomposition of the module W we introduce the following objects (cf. 

[2]): p is a partition of k~, v is a partition of k2, where k = k~ + k2, ~ is a partition of 

k. By S ~ we denote the irreducible Sk-mOdule corresponding to ~, and by V ~ the irreducible 
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