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OF NEGATIVE CURVATURE 

G. A .  M a r g u l i s  

I. Notation and Definitions. Let  M n be an n-dimensional  compact manifold of va r i ab~  negative c u r -  
va tu re . i e t  Nnbe a universal  cover ing manifold of M n and let ~ be its proper  project ion M n -* N n. If  m EM n, 

• we denote by ~-I(m) the complete inverse image of point m under mapping ~. If n E N n, we denote by SR(n) 
the a r e a  of a sphere  of radius R with center  at  point n, and by DR(n) the volume of a ball of radius R with 
center  at n. Let  n i, n s E N n. Then we denote by anl, ns(R) the number of points of the set Jr-10r(ns)) inside 
a closed c i rc le  of radius R with center  at point n 1. 

We denote by b(R) the number of closed geodesics  on manifold M n of length not g rea te r  than R. 

We denote by W 2n-1 the space of unit tangcnt vec tors  of M n, i .e. ,  the set of pairs  of the form w = (m, ~), 
where m E Mn and ~ is the tangent vec tor  of unit lm,gth to M n at point m. 

The notation al(R) ~ as(R) signifies everywhere  that l i r a  a~ (R) = i. 
R--co a~ (R) 

H. THEOREM 1. There  exist  continuous posit ive functions cl(m), cs(m 1, m s) (m, m i, m s E M n) and a 
constant d,such that for any m,  m l, m s E Mn: 

1) SR(n) ~c i (m)e  dR for  any point n E ~-l(m); 

2) for any nl E x - l ( m  1) and n 2 E n-l(m~),it is t rue that anl,n~(R) ~ cs(m 1, ms)e dR. 

cl (m) e~a. Remark  1. It follows at once f rom 1) that D a (n)~ d 

Remark 2. If the curvature of manifold M n in any two-dimensional direction at any point is between 
the constants - K~ and -KI, then it may be asserted that (n-1)K s < d < (n-1)K I. 

In the ease when the curvature of M n is constant and equal to -K s, the following holds: 

THEOREM 2. The constant d in Theorem 1 is equal to (n-1)K, the function cs(m I, m~) is constant, 
and 

s (n - t )  
c2 (ml, m2) - 

2 "-~ (n -l)K V (M") 

where S(n-1)  is the a rea  of the unit sphere  in (n -1 ) -d imens iona l  Euclidean space and V(M n) is the volume 
of manifold Mn. 

ce dR 
THEOREM 3. There  exist  constants c and d such that b ( R ) - - - .  R 

Remark  3. The constant  d in Theorem 3 is the same as in Theorem 1. 

THEOREM 4. If the curva ture  of manifold M n is constant and equal to - K  s, then b (R)- 
~(n-,)K 
R (n --i) K 
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R e m a r k  4. It  is apparen t  f rom T h e o r e m  4 that  the asympto t ic  behav ior  of the function b(R) depends 
only on the d imensions  of  M n and not on the topology of M n. I t  is poss ib le  that  the topological  p r o p e r t i e s  
of  Mn have an effect  on the higher asymptot ic  t e r m s .  

R e m a r k  5. Some resu l t s  have been obtained in [3] on the behavior  of  a function in (R). 

HI. The geodesic  flux T t on the manifold W m - i  is a C-f lux ( some t imes  called U-flux; see  [1]). We 
denote by ~k  a foliation whose l aye r s  a r e  expansible  o r i s p h e r e s ,  and by ~ l + i  a foliat ion whose l aye r s  a r e  
cont rac t i le  l eaves .  

Let  X be the se t  of al l  subse ts  of manifold W m - i  sa t i s fying the following conditions: a) i f  x E X, 
there  is a l a y e r  ~(x) of fol ia t ion® k, such that  x ~  ~(x); b) x as  a subset  of  the manifold t(x) is a compac t  
open set  (it mus t  be s t r e s s e d  that t(x) depends on x). If we rep lace  ~ k  by ~/+1,  the se t  Y can be defined 
analogously.  

Definition. We say  that two xl, x~ E X (y~, Y2 E Y) a r e  £-equivalent  if  there  is  a h o m e o m o r p h i s m  x t x 

I h~ wn  (Yl x wn),  where  I is a unit segment ,  such that for  any w E xj(w E y ~ :  1 ) i f  hw = h(w, 1), then h w E Y 

(hw E X) and h w is  a smooth curve  whose length does not exceed £; 2) h(w, 0) = w, h(w, 1) E x2(h(w, I) E Y2) 

and the m a p p i n g h  under which w is taken into h(w, 1) is  a h o m e o m o r p h i s m  x 1 onto x 2 {y~ onto Y2) (the topolo- 
gy on x 1, x2, Yl, and y2 is induced by the topology of the l aye r s  on which they exis t ) .  

THEOREM 5. The re  exis t  a constant  c and a countably-addi t ive  m e a s u r e  ~X (~Y) defined on the a -  
a lgebra  genera ted  by subse t s  of  X{Y), such that for  any x ~ X (y E Y) it is t rue  that  ~X(X} < oo {~y(y)  < ~o), 

~x (rtx) _ ~t / ~v (z% t\ 

.x{*) ) 
and for  any 6 > O the re  is  an e > O such that if  x I, x 2 E X(yt, Y2 E Y) a r e  e-equivalent ,  then 

[Px (xl) -- Fx (x=) I < ~l~x(X=) (I I~r(gl) - I~v(Y--) I < ~Pv(Y-.))- 

Remark  6. Theorem 5 is used fo r  the p roo f  o f  Theorems 1 and 3. 

IV. I f  M n is a manifold of constant negative curva ture  - 1 ,  then M n is i somet r i c  to the space L n / F ,  
where  Ln is an n-d imens iona l  Lol~tchevski i  space and F is a d isc re te  subgroup, containing no elements o f  
f in i te  o rde r ,  of the groUp of motions of L n. Le t  n = 2. Then the group o f  motions o f  spaee L z is i somor -  
phic to the group SL(2, R)/Z~., where SL(2, R) is the group of  un imodular  mat r i ces  of second o r d e r  and Z 2 is 
a subgroup consis t ing of the m a t r i c e s  E and - E .  Let  T r ( g )  be the r e p r e s e n t a t i o n  of  group G genera ted  by  
the homogeneous space  G / F  (see [2], p.  35). 

He R 
The following t h e o r e m  is a re f inement  of T h e o r e m  2. We se t  d (R) = - -  

v(M") 

T H E O R E M 6 .  Let  %=.n= 1-~ In (an"" (R) --d (R)) Then: 
R-<o R " 

1) for  any subgroup r and for  any n t and n 2 the quanti ty O~nt,n 2 < 1; 

2) i f  in the decomposi t ion  of r ep resen ta t ion  T(g) into i r reduc ib le  r ep re sen t a t i ons  there  a re  no r e p r e -  
senta t ions  of the c o m p l e m e n t a r y  s e r i e s ,  then for  any n! and n~ 

i 
=~ .... < - : ,  

< 1 then in the decomposition of the representation into 3) if for any n I and n 2 the quantity ~nl,n 2 - 2"-' 

irreducible representations there are no representations of the complementary series. 

The author is grateful to Ya. G. Sinai for rewarding discussions. 
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