Note Added in Proof. After this article was sent to press, a létter from Professor
Atiyah informed us that analogous results were obtained independently of .us by Atiyah and
Hitchin was the aid of the Horrocks—Barth technique.
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THE SUPERREFLEXIVITY PROPERTY OF A BANACH SPACE IN TERMS
~ OF THE CLOSENESS OF ITS FINITE~DIMENSIONAL SUBSPACES
TO EUCLIDEAN SPACES

M. I. Kadets UDC 513.881

For a Banach space X and a natural number n we define the functional
© dy (X, n) = sup (d(Xp, &™) : Xo = X, dim X, = n).
In this note we prove the following theorem. '

THEOREM. Let X be a real Banach space. If for some natural number n

(X, <M, = (Zsin"‘%(v— 4 .))/uf—;':‘—ln n,

IO' [l

v=}
‘then X is superreflexive.

According to the James—Schiéffer criterion [1] (see also [2]), a space is not superre-
flexive if and only if for any n and € there is a collection {¢)] of normalized vectors in
-'it such that

u *2 ek+ \‘ e H}n(i—z) O m < n. )
=1

To simplify the calculations we introduce the ' idealized condition J'": for any n there is a
- collection of normalized vectors such that

n ) ‘
a 2, e+ 3 e'k“=n o<m<n). (Jo)
k=1- m41

The condition Jo can be given the equivalent form

Vm . n
I—- D re+ hkekll=1 (l.k>0. Mhe=1, 0<m<n). J,)
k=) m--1

In other words, a Banach space is not superreflexive if and only if for any n there is an
n-dimensional subspace E of it whose norm (to within €) coincides with the 7,-norm on those
vectors z = Zager, whose coordinates admit not more than one change of sign.
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LEMMA. If a basis (e} (exl=1) of an n-dimensional real normed space E satisfies the
condition J., then @(E,é”)>uwn, and the equality sign can be attained.

Proof. In E we introduce the coordinatewise scalar product. Define in E a linear op-
erator T acting according to the equations Tekx = ek+: for 1<k<n and Tey = —e,. With the
aid of T the condition J, can be rewritten as follows:

[TPz)=1 for 0K m<nandz = Qy={c kK, (x, e > 0, Z (z, &) = 1}.
We define some more sets in E: the (n — 1)-dimensional simplexes {p and their union
Qn =T"Q (0 m <L 2n)y = UQnm,
the parallelepiped

n

r[={;eE, | T <<, 0oSm<n, e=2ek}
1

and its faces
Op=TMI, Hy={ze, (z, ¢ = 1}, ol = Ulln.

It is not hard to show that TQ = @, TIl = I, and that each simplex @y lies on the correspond-
ing face Iy of the parallelepiped II. ‘

The (Banach—Mazur) distance from E to z§n) can be determined as

d(E, M) = mci)n {max [V @ (z): z & S)min [V Q (z): z € S]),

where Q runs over all positive-definite quadratic forms on E, and S is the unit sphere of E.
Since, by the condition J,, the unit ball of E contains the simplexes Qy on its sphere and
is itself contained in the parallelepiped II, the distance can be estimated from below as
follows:

: ("> inf } @ (Q), wh = max / mi ). 1
d (£, 17) > inf ) ¢ (Q), where @ (Q) = max Q (z) nin Q) (1)

The functional ¢, which is defined on the set of all positive-~definite forms, satisfies the
relations

PR =9(@Q (>0, ¢(Q+ Q) <max {p(Q) ¢ (@} (2)

Suppose that ¢ attains a lower bound on the forms Q; and Q.. Then, by (2), it also attains
its lower bound on any form Q=AQ;+ (1 —MQ, 0 <A< 1). Since the séts Q and 3l appearing in
(1) are invariant with respect to T, ¢ takes one and the same value on all the forms Qup(z) =
Q(T™z) (0K m< n). By the properties mentioned for the functional ¢ and the sets Q and 31,
for the greatest lower bound in (1) we can restrict our search to the forms that are invar-
iant under T: Q(x) = Q(Tx). Moreover, we can let x run over only o and I,, and not over
the sets @ and 3ll. Finally, we can require that Q(e;) = 1, from which it follows that Q(e)
=1(A<k< n). ; '

Each form satisfying these conditions can be represented in the form Q(x) = (Bx, x),
where B is a symmetric operator with positive spectrum that commutes with T and is normal-
ized by the condition (Bex e ==1(1<:k§5nL Since the operator T (more precisely, its exten-
sion to the natural complexification E'of the space E) is, with respect to the coordinate-
wise scalar product, an isometry with simple spectrum X, = exp(ni (2v — 1)/n) and eigenvectors

Ry =(Z7»Jkek) /Vﬁ(1<v< n), the operator B can be represented in the form
3

Bz= 3 b,-(z, h)-h, (bv >0, b, =n, b, = bn_,ﬂ)‘. (3)

v=1 /
Accordingly, we need to calculate
M= igf {max [(Bz, z): z & Qy]/min [(Bz, z): z € IIy}},
where B runs through the operators of the form (3). By the convexity of the form (Bx, x),

its maximum is attained on the boundary points, i.e., on the unit vectors ey, and, hence, is
equal to one. Therefore,
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M2 = inf [min (Bz, z)]-.
x&Tls

In the usual way we get that the minimum of the quadratic form (Bx, x) on the plane {z=E: (s,

e) =1} 1is attained at the point z,=B7e/(Be, ¢, which, as is not hard to show, belongs to
IIo. Thus ’ :

n

M2 = inf (Bz, 2)t = inf (B, ¢) = inf {2 53| (hy OF: b, >0, b, = n}. 4)

v==1

b —n'(h“, G)I E;l(h ,C)I .
v ( n ) (5)

From (4) and (5) we get that
1 R g
M"=W2“hv"“=7 2 ,Sm“‘,r(v-'z‘)-

It remains to prove the existence of a space E,; for which d (E,, ") = M,. We get such a space
if we take_ the unit ball to be the convex hull of the octahedron V={$:eE: 2](1, ep) | <1} and
the ellipsoid E={z< E:(Byz, x)<_u,:¢),where Bo is an operator optimizing (4).

The proof of the theorem foilows immediately from the lemma.

COROLLARY. If supd (X,, %) < My=7%, for all three-dimensional subspaces Xs; of X, then
X is superreflexive.
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ALGEBRAS OF CONTINUOUS FUNCTIONS ON LOCALLY CONNECTED
COMPACT SPACES

M. I. Karakhanyan ubnC 517.53

1., Let X be a locally connected compact space, and A a closed subalgebra of the alge-
bra C(X) of all continuous complex functions on X. It was shown in [1] that if A separates
points, contains the constants, and A = A* (i.e., each element in A has the form g g < 4),
then A = C(X). This general fact turns out to be useful in certain problems of multidimen-
sional holomorphic approximation. Generalizations are given in [2, 3]. In this note we de-
scribe some further advances.

Everywhere in the following article the compact set X is assumed to be locally connected.
The algebra A is assumed to have a unit. For an algebra with unit we denote by A™' the group
of invertible elements, by M(A) the maximal ideal space, by I'(A) the Shilov boundary, and by
I's(A) the Choquet boundary. The expression ufe= A™ means that uf = g@ for some function g <=
A and some function u such that |u| = 1 and u is constant on the connected components of the
complement to the zero set of f. If this is true for all {4, then we write uA = AR,

2. The following lemmas are established by the scheme described in [2].

LEMMA 1. If uA = A" for some fixed n>2, then the algebra A is symmetric.
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