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In this paper we present the results of computing the cohomologies of groups B(n) of 
n-thread braids. The study of braid group cohomologies was initiated by Arnol'd [i]. Up to 
the present time we knew the ring of braid group cohomologies with coefficients in Z2 (see 
[3]) and the cohomology ring of the group B(oo)=limB(n) (see [2]). 

Our method is close to Fuks' approach [3]. At first, using triangulation we compute 
the cohomologies with coefficients in Zp, p > 2, and then we compute the cohomologies of the 
Bokshtein complex. The information obtained, together with the results in [3] and the formu- 
la for the universal coefficients, enables us to compute the ring of integral cohomologies 
of B (n). 

i. Let G n be a subspace of spac E C n, consisting of points with pairwise distinct co- 
ordinates, Gn be the factor space of G n with respect to the substitution group S(n), and G~ 
be a one-point compactification of G n. It is well known (see [i]) that G n = K(B(n), I). 
By definition H* (B (n); Z) = H* (C~; Z). The Poincar~ isomorphism ~" (G,; Z)~ ~. (G~'; Z) reduces 
the computation of the cohomologies of B(n) to the computation of the homologies of Gn*. 

, 
Let us consider the triangulation of G n. It is made up from one 0-dimensional cell 

q 

oo~G,~ \Gn and the (n + q)-dimensional cells e(m~, ., mq), where q, mi>0, ~ mi---,s. By 
i=l 

e(m~, . . ., mq) we have denoted a subset of space Gn, consisting of points {% ..... z,}~Ga 
such that the points z~, . . ., z n of plane C lie on q pairwise distinct vertical lines and, 
moreover, exactly m i points from them lie on the i-th line, counting from the left. The 
characteristic maps have been described in [3]. The boundary of the chain e(m~, . .., mq) 
is expressed by the formula 

q--1 
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where P~=0. if ~--k~Imod2. and P~=C [~] in the remainiag cases ([~] is the integer 
, , [ m/~] 

part of number a). By C. (C~ ;Z) we denote the cell complex corresponding to the triangula- 
tion described. 

LE~. The complex ~. (~ ; Z) can be expanded into a direct sum of subcomplexes ~. (~ ; 
Z) = C0(6~ ; Z)@ K~(,0~ K,(n)~ ..,@ K,~(n), where K i(n) is the subgroup of C. (G~ ; Z), generated by 
by the cells e(m~, . ., mq) for which exactly i of the numbers m:, ., ~ are odd. 

The next statement shows that it is sufficient to compute the homologies of complexes 
Ka. 

Proposition i. The canonic isomorphism Hq(Ki(n))=g~_~(K~(n--i)) holds for any q~0 . 

COROL~RY i. For any l~l and q~0 the natural inclusion B(n) CB(n+l) induces the 
epimorphis~ H~ (B (n+ /); Z)~ Hq (B (n); Z) which are isomorphisms when n ~ 0 rood 2 and ~ = i. 

COROLL~Y 2. (Stabilization). The canoninic isomorphisms Ha {B (n); Z) = H~ (B (n + I); Z) hold 
for q < [q/2]. 

The statement on isomorphism in Corollaries 1 and 2 was first proved by Arnol'd (see 
[~]). 

2. Let ~ (k)= K~ (2k)~ Z~ and ~p = ~ ~p (k). We define a linear operator $ in the Zp-space 
k 

£~. Let (m~., . ., m r) be an integral vector with positive coefficients. By ~(r) we de- 
note the linear space generated over Zp by the substitution group S(r). We set 
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r - - 1  m i  . . . 

~, ..... ~, (~ ..... ~) = ~ ~ (,-~+,, ~÷~, ~) c,~÷~i~+~ (~ ..... %~, '~+~, ~, ~÷~ ..... ~,), 
q:l 

where ~(m, i, j) = 0 if m is not a power of p or if i < j. and 6(m, i, j) = 1 otherwise. We 
set E(, h ..... ~) = ~(~"h ..... ~r) ® ~ and we define the linear map ~m ...... ~: ~(~)~ ~p by the formula 

We now set 

W~, ..... %(++ ..... +~) = E (m+,, .... ,++,). 

., .... ~, -- )~(1,2, 0). mE(.~,., m,.)=w,,, ~, ( ( m~,,,..~ .... 
i----O 

Let ~ be the set of all finite unordered collections of nonnegative integers. For a ~ ~ 
we denote the set of ordered collections representing R by S(R). For B = {~ ..... ~} ~ ~ we 

• 

set N~(R)=p(~'+ .+pr'), ~(R):~, and 

E (,=~ ..... m~,, {~}, m~,+~+, ..... m~,) = ~, E (m, ..... ,%,, p'~', (p -- I) p~'. .... ~, (~ -- I) p%. m~,+2,+ , ..... .%). 
(i, ..... %~_s(~) 

Further, let ~ be the set of all finite collections, ordered strictly by growth, of nonneg- 

ative integers and let L=(l, ..... It)~. We set Nm(L)=ph+ ...+fft,~(L)=t and 

E(m~ ..... m~,,(L),m~+~+, ..... m~) = E(m, ..... m~,p ~' ..... p~t, m~,+,+~ ..... m~). 

Proposition 2. a) Each homology class of complex 2p is uniquely represented by a lin- 
ear combination of"cycles of the form 

~ E (I~}, (L)), (1) 

where a ~ ~,L ~ ~ (the collections R and L can be empty), and each chain of form (i) is a 
cycle. Thus, the homology space of complex £p is canonically isomorphic with the subspace 
generated over Zp by cycles of form <i). 

b) The space H¢(K0(2~; Zp) =Hq.(~p(~) is canonically isomorphic with the space generated 
by cycles of form (i) for which Np(R)+N~(L)= ~ and 2~(B)+ l(L) = q. 

We obtain the next statement as a corollary of Proposition 2. 

THEOREM i. The rank of group He (B(~; Z~) equals the number Nac,q +N~q +... +N[n/,],q, where 
Nk, q is the number of ways in which the number k can be represented as a sum of 2k -- q pow- 

ers of number p. (Among these powers there can be coinciding ones, while representations 
differing only by the order of the summands are reckoned llke.). 

3. The ring structure of 
following theorem. 

THEOREM 2. The ring H'(B 
generators z ~ , d l m ~  :~p~+~ -- 2,~ = 

the cohomologies of interest to us can be described by the 

(~);Zp) is a tensor product of a polynomial algebra with the 
0,i,..., and an exterior algebra with the generators d~m ~ =. 

2~-- i,/---- 0,I ..... The kernel of isomorphism H" (B(oo);Z~)-~ H" (B (n); Zp) is generated by the 

monomials Zr, • ... "zr, • y," ... • ylt with 2 (pr,+, 4- ... "5 ~ s+* "F ph -F ... + p~t) > ,. 

Let p be a prime and 8p be the Bokshtein homomorphism corresponding to the exact se- 
quence O - ~ Z ~ - . F . ~ - . Z p  - .  O. 

THEOREM 3. The following isomorphisms hold: 

/~0 (B (n); Z) = ~* (B (n); Z) = Z, 
He (B (n); Z) = ~ ~p H q-x (B (n); Z~). for q >~ 2, 

P 
where the sum extends onto all primes. The action of the Bokshtein homomorphism is described 
by the following formulas: ~pzi = Yi÷x, ~pYJ = 0. In particular, p U-torsion is absent in the 
braid group cohomologies. 

In conclusion the author is deeply grateful to D. B. Fuks for guiding this work. 
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INVARIANT ALGEBRAS OF FUNCTIONS ON LIE GROUPS 

V. M. Gichev UDC 519.46 

i. In this paper we examine algebras, invariant relative to left and right shifts, of 
continuous functions on Lie groups. Re reveal the connection of such algebras with the cones, 
invariant relative to adjoined representation, in the Lie algebras of these groups. 

In the following G denotes a unimodular linear Lie group. We shall say that A is an in- 
variant algebra on G if the following conditions are fulfilled: 

I) A is a closed and separating point of subalgebra Co(G); 

2) A is invariant relative to left and right shifts of G; 

3) A contains an approximate identity element; 

4) functions integrable relative to the Haar measure o of group G are dense in A. 

By ..J$~ we denote the space of maximal ideals of A, with its usual topology. 

II. Let %~ ~g.i. For arbitrary f~A we set ~(f) =~ f(gh)d~(g)d~(h), where ~ and ~ 
are representative measures for ~ and 4, respectively. From 3) it follows that ~ 0 for 
~,~ ~ ~ .  

THEOREM i. The multiplication defined above introduces in ~#~ the structure of a local- 

ly compact topological semigroup; here the multiplication on G coincides with group multipli- 
cation and the group of invertible elements of .~ equals G. 

III. We note that ~ ~ L~[~,o]C~[~,o]. Let A0=A ~ £~[~,~I and H be the closure of Ao 
in L=[G, o]. With each ~ ~ we associate an operator ~ in ~:N~ =~N;~(:). where ~ is 
the representative measure for % ~f(E)=f(::). All N~, ~J6~, commute with all left shifts, 
Ii~II< i, the mapping ~-,~ is continuous in the strong operator topology, ~ are multipli- 
cative on Ao, B ~  = ~ , ~ , ~  ~ d~.  

A continuous homomorphism y of the semigroup of nonnegative numbers with addition in 
~A , such that y(0) = e, where e is the identity element of G, is called a one-parameter semi- 
group in ~A . 

Proposition i. Let {T t} be a strongly continuous semigroup of operators in H, all Tt, 
~ O. commute with all left shifts of G; let X be its infinitesimal generating operator. In 
order that a one-parameter semigroup y exists in J~, such that T~ = R~(o,t~0, it is necessary 
and sufficient that the set A~=~/~A 0~(X) l X/~Ao} be an algebra and that fx, ~At be ful- 
filled for any X (~ ~)= (Xft)/~ +/,(X/~). 

We denote involution by *: /*(g)=/(g-*); from 2) and 4) it follows that A* = A; by the 
same token symmetry is introduced in ~A : ~*(~= ~(~*). By computation we obtain that R~. = R~, 

. 

where ~ is the operator adjoint to R~ in H. By an application of Stone's theorem (see 

[I, p. 472]), from Proposition 1 we obtain the following statement. 

Let 7 be a symmetric one-parameter semigroup in .~A, and X be the infinitesimal generat- 
ing operator of semigroup Ry(t). Then iX is the generating operator of the one-parameter 
group of right shifts of G. 

IV. Analogously to the way in which the existence of a one-parameter subgroup in the 
NSS-group was proved in [2], we can prove the following statement. 
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