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Genetic analysis of variation in age of onset of development milestones or psychopath- 
ological behaviors has been little researched, owing largely to the computational difficulty 
of dealing with "censored" observations. Censored observations arise when the only 
information on individuals is that they have reached a particular age but without onset 
having occurred. This paper shows how models can be simply fitted to such data using 
programs that can perform genetic analysis of categorical data by maximum likelihood. 
The method is illustrated using the program Mx with data on maternal report of the onset 
of puberty in twin sons from the Virginia Twin Study of Adolescent Behavioral Devel- 
opment. Frequently, data on age of onset is collected by retrospective recall. This can 
pose a variety of measurement problems. Suggestions are made for models that account 
for some of these problems or are robust to their presence. Substantial evidence for 
"telescoping" of onset dates is found for the puberty data. If left unaccounted for, these 
effects can artifactually inflate estimates of common env/ronment effects. 
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I N T R O D U C T I O N  

Data on twins that have been measured on some 
variable recorded on an ordinal scale of  measure- 
ment are common.  A crosstabulation of  the scores 
of  twin 1 against twin 2 for all twin pairs gives a 
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simple table o f  frequencies with ordered margins 
that can be easily analyzed using programs such as 
Mx (Neale, 1991). A variety of  such ordinal vari- 
ables can be tackled, such as those that refer to 
increasing frequency of  some behavior or event 
(e.g., never, sometimes, often), increasing strength 
and direction of  some attitude (e.g., strongly disa- 
gree, disagree ..... strongly agree), and those based 
on the direct categorization o f  some continuous 
scale, such that the categories correspond to partic- 
ular ranges of  scores or intervals on the scale. One 
such continuous scale is age or time. This suggests 
that these familiar models for ordinal data might 
have some scope for analyzing data on the age at 
onset of  developmental milestones or psychopath- 
ological behaviors, a form of  twin data that, unless 
it has been of  particularly simple form, has previ- 
ously been analyzed only using specialist software. 
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nsformed 
age of onset 

Fig. 1. Age-of-onset  intervals and thresholds on a 
distribution. 

This paper shows that this is indeed the case, il- 
lustrating how the multigroup approach commonly 
used for tackling missing data problems in pack- 
ages for structural equation modeling (Allison, 
1987; Muthen et aL, 1987; Dunn et al., 1993) can 
be adapted for use with right (and left) censored 
data, including censored survival data. 

Where ages of onset have been measured con- 
tinuously and have been observed for all subjects, 
then a straightforward approach to their analysis 
has been by transforming them to approximate nor- 
mality, say by taking logs, and then proceeding in 
the usual structural equation model fashion. Where 
the ages of onset are measured only to intervals of 
time (grouped) but all subjects have a recorded in- 
terval of onset, then again, analysis is straightfor- 
ward, using the crosstabulated ordinal data 
approach without modification. These models esti- 
mate cutpoints or thresholds along the dimension 
of some latent variable, and as shown in Fig. 1, the 
proportion of  the distribution falling between the 
thresholds is the expected proportion of subjects 
experiencing onset within that interval. The thres- 
holds represent locations on a transformed dimen- 
sion of age, one in which ages of onset are of some 
assumed distributional form, usually normal. How- 
ever, that transformation is extremely flexible, be- 
cause the thresholds, although ordered, are 
otherwise unconstrained parameters. This gives the 
ordinal model some advantage over the more par- 
ametrically constrained model for continuous data, 
most obviously where no good normalizing trans- 
formation of the age-at-onset data can be found. 
However, both approaches have been severely re- 
stricted by their inability to deal with censored ob- 
servations, that is, subjects who are part of the 
sample but who have not yet been observed as ex- 
periencing onset., 

It was largely to tackle such censored obser- 
vations that special statistical techniques were de- 

veloped for survival analysis. These models are 
constructed, not around the age-of-onset distribu- 
tion itself, but around the hazard function, the ratio 
of the density function of the age-of-onset distri- 
bution to one minus the cumulative distribution of 
ages at onset. Developments of these models for 
twin data have been made (e.g., Hougaard, 1986, 
Mack et al., 1990; Pickles et aL, 1994) but these 
involve considerable statistical complexity and spe- 
cialist programming. Most early applications of 
survival analysis and a number of their recent ap- 
plications to twin data (e.g., Meyer et al., 1991) 
have assumed parametric hazard functions. Al- 
though these parametric models may have some ba- 
sis in plausible biological mechanisms, they 
obscured the link between survival data and more 
ordinary ordinal data. More recently, with an in- 
creased use of nonparametric hazard functions, no- 
tably the Cox (1972) proportional hazards model 
and the piecewise constant or exponential (Bres- 
low, 1974), this simple link has been more widely 
recognized (e.g., Aitkin et al., 1989). In the absence 
of covariates, fitting an ordinal model with uncon- 
strained thresholds to age-at-onset data corresponds 
to the fitting of a piecewise constant discrete time 
survival mode but in a different parameter space. 
In the hazard model the survivor function for the 
probability of surviving into the jth age interval is 
given by IIL= ~ (1--hk), where each hk is a parameter 
for the hazard in the kth interval (Aitkin et al., p. 
312). If ~( .)  is the cumulative distribution function 
on the transformed age scale of the ordinal model 
with threshold parameters tk, then the correspond- 
ing survival probability is 1-~(tj_l), and hazard 
[dP(tk)--dP(tk_l)]/[1-#P(tk_~)]. In extending the 
ordinal model to deal with censored data, we pro- 
vide a powerful approach with strong links to the 
mainstream survival analysis literature and one that 
is straightforward to implement. 

CENSORED SURVIVAL DATA F R O M  
TWINS OF T H E  SAME A G E  

To appreciate our approach to analyzing age- 
of-onset data in twins, we first consider the sim- 
plest situation where all twins are observed at the 
same age, then generalize the approach to situations 
where twins are observed at different ages. This 
extension is achieved through grouping the twins 
such that each group is an example of the simplest 
"same-age"  situation. 
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Consider a prospective study in which data 
were collected annually on the birthdays of each 
twin pair and onset recorded as having occurred or 
not in the previous year. The simplest situation in 
which censored observations arise is where data 
collection has extended only as far as, say, their 
16th birthday. Any subject with no recorded onset 
would contribute a censored observation. However, 
on the assumption that all individuals in the pop- 
ulation are and remain at risk of the event, an as- 
sumption that is routinely made in most areas of 
study, e.g., cancer research, we know that the onset 
for such individuals must occur between their 16th 
birthday and some distant time in the future 
(though they might die before it occurs). Thus, for 
this sampling design, all subjects contributing cen- 
sored observations would be placed in a category 
of their own, a category on the underlying latent 
scale that extended from the last extimated thresh- 
old to infinity. Analysis then proceeds in the usual 
fashion as if there were no censored data. 

In practice it is rare that subjects are inter- 
viewed on their birthdays. Continuing with the 
above example, they would be more likely to have 
been last interviewed some time following their 
16th birthday, a time of varying duration depending 
upon the practicalities of fieldwork. With intervals 
of age of onset defined by chronological age, there 
will be some subjects who, though having no re- 
corded onset by their 16th birthday, may have ex- 
perienced onset in the period between that birthday 
and interview. For this approach such subjects 
would continue to be pooled with those subjects 
still without onset at the time of interview. Subjects 
in the latter category would thus be a mixture of 
censored and uncensored observations but all re- 
main properly described as not having experienced 
onset by their 16th birthday. This follows the treat- 
ment of observations in the discrete time hazards 
models of Aitkin et  al. (1989, p. 314), with cen- 
sored observations being treated as censored at the 
start of the interval in which they were last ob- 
served. Again, analysis proceeds in the usual fash- 
ion. 

CENSORED SURVIVAL DATA FROM 
TWINS W I T H  SLIGHT VARIATION IN 
AGE 

Adapting the above solution to data from sub- 
jects of mixed age relies on simply extending the 

last category where censored observations are al- 
lowed. To illustrate this, first consider a situation 
where subjects differ slightly in age, say being a 
mix of 15 and 16 year olds. If we are willing to 
throw away some information, by taking the start 
of the last interval as being age 15 rather than 16, 
then we could proceed as before. What we have 
lost is the information that distinguished individu- 
als who experienced onset between age 15 and age 
16 from those who still had not by age 16--both 
are being described as having survived without on- 
set to age 15. If most onsets commonly occur be- 
fore age 15, this may reflect only a minimal loss 
of information. 

CENSORED SURVIVAL DATA IN STUDIES 
WITH WIDE VAR/ATION IN AGE 

The above approach loses any discrimination 
in ages of onset for onsets occurring at ages greater 
than that of the youngest individual. Clearly, ex- 
tending this approach of reducing the age corre- 
sponding to the start of the last interval to the 
minimum age that any individual was last observed 
results in more and more loss of information as this 
minimum age declines. To solve this problem we 
group subjects by current age and fit the model as 
a multigroup problem, using the approch of Allison 
(1987) and Muthen et al. (1987) within each age 
group. 

Within each group the minimum observed age 
is used as the start of the last interval as in Section 
3, but this minimum varies from group to group. 
For onsets recorded (or being analyzed) within 
yearly intervals, forming groups of individuals de- 
fined by years of age would result in all the avail- 
able information being used. Constraining all 
parameters, including thresholds, to be equal across 
all such groups then ensures that the same expected 
age-at-onset distribution is used for all subjects. 

AN EXAMPLE:  AGE-OF.ONSET OF 
PUBERTY IN BOYS 

To illustrate this approach, we selected some 
preliminary data from the Virginia Twin Study of 
Adolescent Behavioral Development (VTSABD), 
in which an epidemiological sample of twins aged 
8-16 years of age was assessed in a variety of areas 
(Hewitt et aL, 1994). This longitudinal multiple co- 
hort study is following children initially aged be- 
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Table I. Age of Voice-Breaking in Male Twins from the 
VTSABD Study: Univariate Data 

I 

MZ twin numbers DZ twin numbers 

At On- At On- 
Age risk set Censored risk set Censored 

8 242 0 22 230 0 14 
9 212 0 30 192 0 38 

10 190 0 22 163 6 29 
11 159 5 31 131 5 26 
12 121 17 33 108 14 18 
13 89 29 15 76 21 18 
14 51 29 9 44 23 11 
15 18 10 4 17 11 4 
16 1 1 7 1 1 5 
17 0 0 0 0 0 0 

tween 8 and 16. Table I shows the data on reported 
voice breaking from the Child and Adolescent Psy- 
chiatric Assessment (CAPA) maternal interview 
(Angold et al., 1989) in the survival model format, 
with censored observations being treated as already 
described. Each boy is understood as having been 
"a t  risk" from birth up to their current age or the 
observed age at onset, whichever was the sooner. 
In fact the youngest recorded age of voice breaking 
was 10 [6 such boys among the dizygotics (DZs)]. 
Taking the age 12 interval for the monozygotic 
(MZ) twins as an example, at the start of the in- 
terval there were 121 boys at risk of onset during 
that interval, and from among these, 17 were re- 
corded as experiencing it. The number at risk at the 
start of the age 13 interval is obtained by subtract- 
ing the number experiencing onset in the previous 
interval (17) and the number censored at the start 
of the interval (15) from the previous at-risk num- 
ber, to give 89 (121-17-15). 

The distribution of the ages of the twins in the 
study has resulted in many of the observations be- 
ing censored. Using only data on twins aged 16 or 
older, the crosstabulated ages at onset by yearly 
interval, with censored observations being placed 
in the last interval, are as shown in the top of Table 
2. Observations from only 14 MZ and 13 DZ pairs 
could be used. Below these data are shown those 
obtained from the 15-year-old boys, a further 15 
MZ and 10 DZ pairs. As age declines, so an in- 
creasing proportion of the twin pairs fall in the bot- 
ton right-hand cell, and such tables generally 
provide less and less useful information for the an- 
alyis. By age 10 all twin pairs were placed into a 

single cell of the table and thus provided no useful 
data for the analysis. However, using the tables 
from those aged from 11 upward allows data from 
95 MZ and 80 DZ pairs to be included in the anal- 
ysis. 

Although we have performed the main com- 
putation using these 12 groups of twins (6 MZ and 
6 DZ), fewer groups could be used using the ap- 
proach outlined in Section 3. If carefully done, rel- 
atively little loss of useful information need occur. 
The details of the basic analysis using Mx are 
shown in the Appendix for just the two age group- 
ings shown in Table III, the 16+ group and a pool- 
ing of those aged 14 and 15. Although this 
simplified approach makes use of only 44 MZ and 
40 DZ pairs, as explained above they are likely to 
be the most informative pairs. 

The most important point that differentiates 
the Mx setup of the Appendix from the standard 
analysis of ordinal data are the cross-group con- 
straints. Specifically, the constraints on thresholds 
across all groups imply that thresholds 1 and 2 are 
the same for the twin pairs forming the 5 • 5 tables 
as for those forming the 3 • 3 tables. Thus the 
probability of a randomly sampled 14- or 15-year- 
old experiencing onset in interval 1 or 2 is the same 
as that of a randomly sampled child of 16 or more. 
Correspondingly, the probability of a 14-year-old 
child, by experiencing onset or by censoring, fall- 
ing into the third interval of the 3 • 3 table, is 
equal to the probability of a 16-year-old child ex- 
periencing onset in the third and fourth intervals or 
by onset or censoring falling into the fifth interval 
of the 5 • 5 table. 

Table IV presents the results of model fitting 
using the four groups in Table III. Table V gives 
those for the 12 groups in Table II. The fitted mod- 
els were of the standard ACE form (e.g., Neale and 
Cardon, 1992, p. 153) and were estimated with and 
without genetic effects. The sparseness of the con- 
tingency tables means that the goodness-of-fit chi- 
square approximates rather poorly the nominal 
chi-square distribution and is thus not expeciaUy 
informative about the overall fit of the model 
(Agresti, 1990). However, the LR chi-square ob- 
tained as the difference in the fit of nested models 
remains well behaved and gives values of 14.22 
(p  < .001) and 25.32 (p  < .001) for the 1 df test 
of genetic effects in the 4-group and 12-group anal- 
yses, respectively. The parameter estimates also 
suggest that genetic effects are the most important 
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Table II. Age of Voice-Breaking in Male Twins from the VTSABD Study: Bivariate Data 

MZ Twin 2 DZ Twin 2 

10 11 12 13 14 15 16+ 10 11 12 13 i4  15 16+  

Twins aged 16 or more 
Twin 1 

10 0 0 0 0 0 
11 0 0 0 0 0 
12 0 0 1 0 0 
13 0 0 0 2 0 
14 0 0 0 0 2 
15 0 0 0 0 0 
16+ 0 0 0 0 0 

Twins aged 15 

10 0 0 0 0 0 
11 0 0 0 0 0 
12 0 0 1 0 0 
13 0 0 1 2 0 
14 0 0 0 0 7 
15 0 0 0 0 2 

Twins aged 14 

10 0 0 0 0 0 
11 0 0 0 0 0 
12 0 0 1 0 1 
13 0 0 0 5 0 
14 0 0 0 1 7 

Twins aged 13 

10 0 0 0 0 
11 0 0 0 0 
12 0 0 3 1 
13 0 0 1 11 

Twins aged 12 

10 0 0 0 
11 0 2 0 
12 0 0 17 

Twins aged I1 

10 0 0 
11 0 16 

These last 2 add no 
information 

Twins aged 10 
10 11 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 0 0 
1 0 0 0 0 1 2 1 1 
3 2 0 0 0 0 1 1 2 
0 3 0 0 0 0 0 1 1 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
1 O 0 2 0 1 
1 0 0 1 0 2 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 2 
0 0 1 5 0 
0 0 0 2 7 

0 0 0 0 
0 0 0 0 
0 0 1 2 
0 0 0 9 

1 0 0 
0 0 2 
0 2 9 

0 O 
1 13 

16 

source of variation in age-of-onset of male puberty. 
These results are in good agreement with previous 
results (Pickles et al., 1994) obtained from a piece- 
wise exponential proportional hazards model with 
genetically structured random effects that followed 
a variety of distributional forms. 

The estimated probability of "surviving" to 
the kth age interval without experiencing onset is 
given by one minus the area of the normal curve 
from minus infinity to the (k-1)th threshold. This 

expression, evaluated at each age, gives the survi- 
vor function shown in Fig. 2. 

COHORT, PERIOD, AND RECALL BIAS 
EFFECTS 

An explicit assumption of the above approach 
is that the same model is fitted to twins of all ages. 
Depending upon the sample design, this specifi- 
cally excludes some or all of cohort effects, period 
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Table ITI. Age of Voice-Breaking in Male Twins from the 
VTSABD Study: Grouped Bivariate Data 

MZ Twin 2 DZ Twin 2 

12 13 14 15 16+ 12 13 14 15 16+ 

Twins aged 16 or more 
Twin 1 

12 1 0 0 0 0 0 0 0 0 0 
13 0 2 0 0 0 0 1 1 0 0 
14 0 0 2 1 0 0 1 2 1 1 
15 0 0 0 3 2 0 0 1 1 2 
16+ 0 0 0 0 3 0 0 0 1 1 

Twins of age 14 or 15 
12 13 14+ 12 13 14q- 

12 2 0 1 0 0 2 
13 1 7 0 1 5 2 
14+ 0 1 18 3 2 12 

Table IV. Parameter Estimates and Goodness of Fit: Two- 
Age Group Model 

Environment Genes & 
only environment 

Standardized variances 
Genetic 0.00 0.93 

Common environment 0.64 0.00 
Specific environment 0.36 0.07 
Thresholds 

1 --1.34 --1.34 
2 --0.53 --0.53 
3 0.17 0.17 
4 0.89 0.89 

X 2 61.01 46.79 
df 58 57 

effects, and recall bias effects  (and possible inter- 
actions involving such effects). In general,  cohort  
and period effects can be a major  problem,  for 
which there is a substantial literature (e.g., Holford,  
1992). Over  the century evidence for cohort  and 
period effects on age of  puber ty  is strong, arising 
f rom the general  trend of  improvemen t  in nutrition 
with, in some  populations,  occasional  reversals  due 
to starvation. However ,  in the example  considered 
here, with closely grouped cohorts and a relatively 
stable population and environment ,  such gross ef- 
fects would  seem implausible.  More  worry ing  are 
the potential  effects  of  recall bias. Omiss ion  or in- 
vention of  the pubertal  event  would seem unlikely 

in this s tudy because,  in the instance of  voice-  
breaking,  both  interviewer and mother  could check 
the response against each twins '  current status. A 
more  likely prob lem was the misplacement  in t ime 
of  the pubertal  event. 

A phenomenon  that is that thought to be  com-  
m o n  (Janson, 1990, Sudman and Bradburn, 1973), 
Bachman  and O ' M a l e y  1981, Bradburn et aL, 
1987) is the occurrence of  " t e l e s c o p i n g "  of  more  
distant past events into the more  recent past. Spe- 
cific studies compar ing  medical  records with 
w o m e n ' s  retrospective reports on their own age at 
menarche  have  found evidence of  heaping at mul-  
tiples of  12 months,  but otherwise the errors were  
generally symmetr ica l ly  distributed around zero 
and thus without  apparent  telescoping (see Hol t  et 
aL, 1991). Nonetheless,  voice-breaking in one ' s  
sons may  be less memorab le  and salient than one ' s  
own age at menarche and, thus, may  be more  sub- 
ject  to asymmetr ic  distortion. The mothers  of  older 
twins will be at tempting to recall the pubertal  event  
f rom a more  distant point  in the past  than mothers  
o f  younger  twins. The  presence o f  telescoping in 
these data is suggested by  noting that in Table  II  
the earliest clear onsets o f  puberty (two M Z  pairs 
at 11, one D Z  pair at 10, and single D Z  twins at 
10 and 11) are all reported for children aged 12 or 
less at the t ime of  interview. 

In the simplified approach,  with just  two age 
groups, it is a s imple matter  to allow one set o f  
thresholds for the mothers  of  boys  aged 16 and 
another for the mothers  of  boys  aged 14 to 15. Re- 
laxing the constraint o f  shared thresholds results in 
just two extra parameters  be ing estimated. How-  
ever, extending this approach to the analysis with 
six age groups would result in the need to est imate 
a large number  of  threshold parameters  (21 possi- 
ble thresholds, al though only 13 would have been 
empirical ly identified in this example) .  A more  fo- 
cused model  of  telescoping effect  can be con- 
structed as shown in Fig. 3 for a hypothetical  
three-threshold, three-age group example.  It  would 
seem reasonable that recall bias does not influence 
current status, so that for each age group the thresh- 
old that delineates those who  have, and those who  
have  not, experienced onset would  be the " t r u e "  
threshold. However ,  thresholds in the past  are all 
subject to a systematic  bias that displaces events to 
the right or, alternatively, displaces the effective 
thresholds to the left. The amount  of  displacement  
would be likely to increase with how far back  in 
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Table V. Parameter Estimates and Goodness of Fit: Six-Age Group Model 

Genes, 
env/ron- 

Environ- Genes & ment 
ment environ- & tele- 
only ment scoping 

Genes & 
environ- 

ment, 
current- 

status data 

Standardized variances 
Genetic 0.00 0.85 0.91 

Common environment 0.79 0.10 0.00 

Specific environment 0.21 0,05 0.09 

0.89 

0.00 

0.11 

Age Age Age Age Age ,Age 
11 12 13 14 15 16 

Thresholds 

1 --2.47 --2.41 --1.81 
2 --1.79 --1.76 
3 --0.98 --0.99 
4 --0.31 --0.34 
5 0.45 0.45 
6 1.09 1.08 

X 2 156.81 131.49 99.28 

df 258 257 252 

"Estimated on different data and thus chi-square 

--2.35 --2.56 --3.33 --5.63 --5.63 
--1.31 --1.86 --2.07 --2.83 --5o14 

--0.55 --1.10 --1.31 --2.08 
--0.16 --0.71 --0.92 

0.48 - 0 . 0 6  
0.73 

not comparable with those from other models. 

--2.06 
--1.02 
--0.82 
--0,08 

0.57 
0.65 

23.19 ~ 

27 

time the subject is being asked about but might not 
depend on their actual age. In Fig. 3 this is illus- 
trated by displacement d2 being larger in magnitude 
than dl, but the same displacements being used 
with each age group. Thus in our actual example, 
a mother of a 16 year old would be expected to 
displace the 14-year threshold farther than the 15- 
year threshold. However, a mother of a 16 year old 
might displace the 15-year threshold the same 
amount as the mother of a 15 year old would dis- 
place the 14-year threshold. 

The results of fitting a model that included 
telescoping effects to the data in Table II are shown 
in Table V. The addition of the five displacement 
parameters gave a very substantial reduction in the 
model X 2 of 32.21 (p  < .001), suggesting tele- 
scoping effects to be pronounce d in these data. As 
shown in Table V, the displacement parameters re- 
sult in different thresholds by age group. Those that 
fall on the diagonal correspond to the notionally 
true thresholds not subject to telescoping. Thresh- 
olds are then estimated as being displaced from 
these diagonal values by --0.55 units for 1-year 
recall (e.g., --2.35 -- 1.81 or --1.86 -- 1.31), 
--0.76 for 2 years (e.g., --2.56 -- 1.81 or -2 .07  
- 1.31), --1.52 for 3 years, --3.82 for 4 years, and 

again, -3 .82  for 5 years (the equality in the last 
two values arises because of an identifiability prob- 
lem due to the sparseness of the data). A simplified 
model was also fitted in which the displacements 
grew logarithmically, such that dTd[l+log(j)]. 
This simplified model fitted almost as well and 
gave, compared to the second model in Table V, a 
1-df X 2 for telescoping effects of 27.56 (p < .001). 

Mothers report on both their twins, and thus 
the ages of onset of both twins are subject to this 
recall bias effect, MZ and DZ alike. Not surpris- 
ingly, therefore, accounting for telescoping sub- 
stantially reduced the apparent effects of common 
environment, leaving almost all the variance as be- 
ing due to genetic and specific environment effects. 

Telescoping involves the shifting of events in 
one direction only, forward in time and thus closer 
to the present. An alternative recall bias that could 
give a similar effect is the shifting of dates toward 
a commonly held "normative age." For boys still 
to experience onset, no shifting of reported age of 
onset to a younger age is possible without the re- 
port conflicting with "current-status" evidence. 
Thus a systematic forward shift can occur either 
because the believed normative age was higher 
than the true normative age or because, though 
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Proportion voice unbroken 

10 11 12 13 14 15 16 

Age in years 

Fig. 2. Survivor function for onset of puberty. 

17 

'True' 
thresholds 

: : : transforfned 
t l -d2  ! t2-dl  : t3 age of onset 

Thresholds 
for oldest ,~--, : 
age group 

t l -d l :  t2 " d~splacements 
Thresholds : ~ ~ ~ - 
for middle *:~ ~" 
age group ' - ' ~ l ~  

| 

Thresholds 
for youngest t l  ~ ~  
age group 

J 
Fig. 3. Thresholds and their displacement by "telescoping" 

memory effects. 

there was no bias in the believed normative age, 
the data were (as here) heavily censored. The issue 
is made still more complicated by the fact that each 
mother is reporting on both twins and the errors in 
the dating of the pubertal event for one twin may 
not be independent of the errors in the second. The 
problem is analogous to that in obtaining birth his- 
tories by retrospective methods (see Hobcraft & 
Murphy, 1987) for which interevent times may be 
better recalled than absolute times. Thus where 
both twins are postpubertal, the dating of onset of 
one twin may be subject to various forms of error, 
but that date is then used as a "marker , "  with the 
onset of  the second being placed an accurately re- 
membered amount of time before or after it. 

Complications of  this sort have persuaded 
some demographers that it is only the data on cur- 
rent status that provide a valid basis for inference 
(Diamond and McDonald, 1992). Fortunately, a ge- 
netic analysis based on current-status data alone is 
easily implemented. The n • n data table for each 
group is replaced by the 2 • 2 table formed by 
collapsing rows and columns 1 to n - 1 .  The tables 
thus divide each group simply into those who have 

experienced onset at the start of the last interval (of 
that age group) and those who have not. In each 
age group only a single threshold is estimated and 
there are no constraints on the values of these 
thresholds from age group to age group. The age- 
of-onset distribution is thus estimated entirely from 
the cross-sectional information in the sample. The 
results from the " robus t "  approach are shown in 
the last column in Table V. These are very similar 
to those from the model involving telescoping ef- 
fects. 

Increased robustness is usually gained at the 
expense of efficiency. In this case, however, for the 
genetic effects of primary interest the cost does not  
seem too high, since the X z for removing genetic 
effects obtained from the model based on current- 
status data alone was 7.76, only slightly lower than 
the • of 8.58 obtained from the more restrictive 
telescoping model. 

DISCUSSION 

This paper shows how two of the major stum- 
bling blocks to the twin analysis of age-at-onset 
data can be overcome. First, the paper shows how 
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genetic models can be fitted to such data with soft- 
ware now in common use with twin researchers. 
Second, some of the major concerns about meas- 
urement error in retrospective recall, perhaps the 
most common source of age-of-onset data, have 
been addressed. It has been shown how inference 
is possible by extending the model to cover hy- 
pothesized forms of measurement error, using as 
an example an extended model that included tele- 
scoping effects. Alternatively, inference can be 

based solely on the part of the data thought to be 
most valid, namely, the current status data. 

A further extension of the model is possible 
for circumstances where systematic recall bias ef- 
fects vary with measured characteristics of the sub- 
jects, reporting source, or interviewer. For such 
data the magnitude of the displacement parameters 
can be allowed to vary with these measures, for 
example, by grouping or by means of a regression 
type function. 

APPENDIX 

Mx Setup for Two-Age Group Model in Table IV 

MZ twins aged 16 and 16+, 5 categories 
Data Ninput=2 Ngroup=5 
Ctable 5 5 
1 0 0 0 0  
0 2 0 0 0  
0 0 2 1 0  
0 0 0 3 2  
9 0 0 0 3  
Matrices 
A full 1 3  free 
T full 2 4  
Bsymm 6 6 
I iden 2 2 
Thresholds T / 
Covariancel__model \ stnd((I@A)*B*(I@A)') / 
Specifications A 
1 2 3  
Labels Col A 
At1 Ctl  Etl  
Matrix A 
.0.5 .5 
Boundary 0.00001 1 1 2 3  
Specify T 
4 5 6 7  
4 5 6 7  
Matrix B 
1 
0 1  
0 0 1  
1 0 0 1  
0 1 0 0 1  
0 0 0 0 0 1  
Labels Row B 

! For common model--paths from A 
! Common Thresholds 
! MZ covariance of genetic and environmental variables 
! to assist creating model 

! To start estimation at 50% each Specific & Shared Envt 
! To keep the parameters positive 
.~ Constrain row (twin1) and column (twin2) threshold equal 
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At1 Ctl Etl  At2 Ct2 Et2 
Labels Col B 
At l  Ctl  Etl  At2 Ct2 Et2 
Option rs 
End 

DZ twins, 5 categories 
Data Ninput=2 
Ctable 5 5  
0 0 0 0 0  
0 1 1 0 0  
0 1 2 1 1  
0 0 1 1 2  
0 0 0 1 1  
Matrices 
T f u l l 2 4  = T1 
A f u l l l 3  = A 1  
B symm 6 6  
I iden 2 2  
Thresholds T / 

! Common thresholds 
! For common model--paths from A to P 
! DZ covariance of genetic and environmental variables 
! to assist creating model 

Data Input=2 
Ctable 3 3  
2 0 1  
1 7 0  
0 1 1 8  
Matrices 
T full 2 4  =T1 
A full 1 3  --A1 
B s y m m 6 6  =B1 
I iden 2 2  
Threshold T / 
Covariance___model kstnd((I@A)*B*(I@A)') / 
Option rs 
End 

DZ twins, 3 categories 
Data Ninput --2 
Ctable 3 3  
0 0 2  
1 5 2  

! Common thresholds 
I For common model--paths from A to P 
! MZ Covariance of genetic and environmental variables 

covariance__model kstnd((I@A)*B*(I@A)') / 
Matrix B 
1 
0 1  
0 0 1  
. 5 0 0 1  
0 1 0 0 1  
0 0 0 0 0 1  
Option rs 
End 

MZ twins aged 14/15, 3 categories (equivalent to pooling categories 3, 4, & 5) 
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3 2 1 2  
Matrices 
T f u l l 2 4  = T1 
A f u l l  1 3  = A1 
B s y m m 6  6 = B2 
I iden 2 2 
Thresholds T / 
Covariance___model kstnd((I@A)* B* (I@A)')/  
Option rs 
End 

Calculate Standardized Estimates 
Data calc 
Matrices 
X Full 1 3 
Compute X.X@(X*X' ) - - /  
Specify X 1 2 3 
Option rs 
End 

! Common Thresholds 
! For common mode lwpa ths  f rom A 
! DZ covariance of  genetic and environrnental variables 
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