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ORBITAL EQUIVALENCE OF SINGULAR POINTS OF VECTOR FIELDS
ON THE PLANE

R. I. Bogdanov.

This note is a continuation of [l1]. The theorems formulated herein yield the moduli of
the singular points of vector fields on the plane relative to smooth orbital equivalence
(see Sec. 5 in [1]).

Notation. Let V denote the Lie algebra of germs at (0)= R? of vector fields of class
C® on the plane, Q, (Q,) the R-algebra of germs at (0) & R? ((0) € R) of functions of class C” on the
plane (on the line), opr, r an integer, r>»2 (Vp, r =1, . . ., «) the r-th power of the
maximal ideal M in Q. generated by the germs that vanish at (0)= R (the r-flat germs of
vector fields on the plane, i.e., the ve ¥, such that s C M vp=sZ p>1).

Let Ji denote the space of k-jets of germs in V (Jy=1/1,_), #>0 an integer; mk will
denote the natural projection m: V - Jk.

Let vy be the germ at (0)= R? of a fibering Y of class C°, " RE—=R,7(0) = 0. Let v*(Q)
C Q, denote the image of @, under the induced mapping v*: £; — Q.

Let &u - ime V. Let v*(&, .. im) denote the Y*(Q;)-module generated by the germs in
- .
V of the form v= Jfi-li fi € v* (Q-
=1
THEOREM 1. For every germ v=1 (with the exception of a set of germs in V of codimen-
sion @ in the space V), there existsan integer k>0, germs & :---imeV and a germ y at
(0) of a fibering of class ¢®§ R*—R,7(0) =0, such that the germ v is C”-orbitally equivalent
to a germ of the form

w= Pyx-+hp + % ey
where Pk is the germ of a polynomial field of degree at most k,uka==nkV.thEVm4rﬁv*(gi..q
gm)q e Pvm-
Remark 1. Formula (1) may be regarded as a "normal form" with moduli in the form of
functions of a single variable, though some germs w of type (1) belong to a single C”-orbi-

tal orbit. In some cases, one can construct a C®-orbital polynomial normal form with fi-
nitely many parameters (moduli) (see Theorem 2).

Definition 1. A germ ve}, is called a germ with nontrivial linear part if the eigen-
values of the matrix =, veJ; do not vanish simultaneously.
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THEOREM 2. 1) If the C®-orbital orbit of a germ ve1; has finite codimension in the
space V, then it is the orbit of a germ with nontrivial linear part.

2) 1f ve1; is a germ with nontrivial linear part, then either the C*-orbital orbit of
v has finite codimension in the space V, or v belongs to a set of codimension = in V.

Theorem 3 below, together with Definitions 2-5, is a refinement of Theorem 1.

Notation. Let d; Ad, denote the outer product of basis vector fields 9, = 0/0z, 0, = 8/dz,
and for every tcV define a germ «,(3)&Q, by the condition EAv=1a, () 3, A9, (here A
denotes the outer product of vectors).

Definition 2. The derived ideal I(v) of a germ veV is the following ideal in the
algebra Q2

I)=oa, (V) ={fe Q=0 §E Vi}

Definition 3. A germ reV 1is said to be of finite multiplicity if the factor alge-
bra M/ (v) is finite-dimensioral (over R).

The multiplicity of the singular p01nt R of a germ veV; is defined as k(¥ =
= —1 - dimR /T (v) (u (v) = 1,2, ., 09).

Definition 4. The r-jet ¢==n,v&J, of a germ vE VY, of finite multiplicity is said
to be stable if

vieEM! g ie Vi ay (8) = f (mod M. (2)
Lemma 1 and Remark 2 below show that Definition 4 is well-founded.

LEMMA 1 (see [2]). A germ ve Vi is of finite multiplicity if and only if there exists
an integer r > 0 such that condition 2 is satisfied.

Remark 2. Let ve&V; be a germ and r > 0 an integer such that (2) holds. Then (2) is
also true for any germ ©te& V, such that n, 7= n,v

LEMMA 2. For almost all germs in V (with the exception of a set of germs of codimension
» in the space V), there exists a stable jet and the multiplicity of these germs is finite.

Definition 5. Let ord (¥) denote the integer or = defined by o, ord (v) =max {rvEYV, 7}
Following Frommer (see [3]), we say that the k-jet of a germ v is singular if @y (119, + 2,0,
= 0 (mod 9N ™+%  and nonsingular otherwise.

THEOREM 3. Let ¢=a-v&EJ, be a stable r-jet. Then there exist an integer k>r and
a free v* (@) -module +* (% ... {m) such that every germ z& V,n,u=4¢, has eV, Nv* &, - o
tm)y  in normal form (1), where m = ord (v) if the ord (v)~jet of v is nonsingular and m =
ord (v) + 1 otherwise.

The author is deeply indebted to V. I. Arnol’'d and also to A. Mikhailov and A. N.
Shoshitaishvili for their uséful comments.
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