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FRACTIONAL POWERS OF OPERATORS AND HAMILTONIAN SYSTEMS 

I. M. Gel'fand and L. A. Dikii 

In [i] it was discovered that the nonlinear Korteweg--de Vries (KdV) equation admits in 
some sense of an exact integration procedure. The principal bases of this procedure were 
clarified in [2]: It was connected with the problem of seeking differential operators of 
any order for the Sturm--Liouville operator L = --d2/dx 2 + u(x), which would commute in the 
maximally possible way with L. Usually this is called the construction of Lax's L,A-pairs.* 
In [3, 4] it was shown that the KdV equatio n is a Hamiltonian system having a complete col- 
lection of first integrals in involutions. Already in [2] it was noticed that instead of a 
second-order operator L we can choose higher-order operators and look for those which pair 
with them. An algorithm for this was proposed in [5]. This was done in the modern way in 
[6] on the basis of a development of the technique in [7]. As a result, asystem of equa- 
tions was constructed generalizing the KdV equation and the complete integrability was 
proved of the corresponding stationary time-independent equations (also see survey [8]). 
As far as we know, the Hamiltonian mechanics of these systems, analogous to that for the 
case of second-order operators L, has not been constructed anywhere. 

In the present article we shall show that by a sequential application of the technique 
suggested in the authors' previous articles [9, i0] we can construct a theory of general- 
ized systems of the KdV type, including the Hamiltonian structure. 

i. Ring of Polynomials of uk(x), u~(x)~ .... By A we denote the ring of polynomials 
of several functions uk(x) and their derivatives of any order. The algebra and the varia- 
tional calculus in such a ring of one function were presented in detail in [ 9]. Here we 
list briefly the information needed for the case of any finite number of functions. Differ- 

y, o 
entiations or "vector fields" b~.i~ b~,~A act in the ring. The collection of differ- 

, Y  

entiations is named TA. There is one preferred differentiation d ~ ~-: u~ +*) 0~,~ ) . Let dA/dx 

be the set of elements of A, representable in the form df/dx, /~ A. We set ~ = A/(dA/dx). 
The elements of ~ are called functionals [if we examine some boundary conditions on Uk(X), 

making it possible to talk about the integrals I/dz, e.g., the condition of dying out at 

±~ or of periodicity, etc., then a one-to-one correspondence exists between the equivalence 

*In what follows we shall call them P,L-pairs since, firstly, the letter A will be firmly 
occupied, and, secondly, it honors P. Lax. 
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classes with respect to dA/dx and the integrals]. The mapping which associates with each 

/E A its class ~ in A is denoted ! dx: ~ -- I~ dx. Here the integral is defined purely alge- 

braically without any convergence conditions. Let us determine the operators of the varia- 

tional derivatives y( ±V___0 6u---~ = - - d z ]  Ou~:)" It can be proved that for /~ dA,'dx, it is necessary 

and sufficient that all 6f/6uk = 0. For this reason 6/6uk can be transferred from A to 

~! 6 f/dx" (but they take va lues  as be fo re  in  A). Obviously ,  ~ =~u~. D i f f e r e n t i a l  ope ra to r s  

commuting with d/dx have the form 7 ~ ~ , where b(~ 0 These operators can be 

taken as acting in ~. If we apply the obvious formula for integration by parts to ~/'g dx : 

-- I/g'dx, then we obtain 

Later on we examine the module of the differential forms TA* = {~a;7:::6u;r)~ 6u/)/~ ...} 

over A. In it acts the operator 6, i.e., the exterior differential, and d/dx (acts both on 

the coefficients as well as on 6u~r)). We set TA* =: TA* ~ TA*. The operators 6 and d/dx 

commute; therefore, 6 can be examined in T-~A* as well; here 6%~o dx ---- ~. ~o~ dx. 

There holds 

d THEOREM i, If /~ A, then 6f can be uniquely represented in the form R~6u~:-~-yZo~, 

where zaeR h ~ A, and ~ is some 1-form. Here the coefficients Rk equal 6f/6uk. Another formu- 

lation: 6~/dx can be uniquely written as I~Rk6uhdx, and here Rk :6~kl/dx. 

2. Differential Operator L and Its Resolvent. We examine the operator 

L ( - - i  d u~(x) - -  • u , ~ l ,  = 0 .  dx / ' un_x 
~=o (1) 

The c o e f f i c i e n t s  uk(x) are  a r b i t r a r y  f u n c t i o n s . *  The symbol o f  t h i s  o p e r a t o r  i s  L (~ )=  ~uk~ ~. 

By o we denote  the  o p e r a t i o n  of  m u l t i p l i c a t i o n  of  symbols: 

0"1 °02 = ~ ~ 0 " 1 " -  i " ~  0" 2. 

Let b be the symbol inverse to L(~) --z: 

bo ( L ( g ) - - z )  = ( L ( g ) - - z ) o  b = t 

( i . e . ,  the symbol o f  the  r e s o l v e n t ) .  We seek b in the formt 

I-kin l-~m 
- 1 -  

b(~, x; z) = B h ~ ( - - I  ) ~ ~'~ ( ~ - -  z) n 
I, tn. 

Only those nonn'egative 7 and m for which (Z + m)/n is an integer are present in the sum. 
Equation (2) yields the recurrence relations 

(2) 

*Almost all the results --the construction of P,L-pairs, the Hamiltonian formalism- are 
preserved when the Uk are matrices. Here for simplicity we restrict ourselves to the scalar 
case, but we hope to return to the more general case in another article wherein we shall 
apply another technique which is more natural for the matrix case. 
fSuch expansions were analyzed in [ii] for a second-order operator and in [12] for any ellip- 
tic pseudodifferential operator. For our purposes the technique of symbols is especially 
convenient since it enables us to carry out purely local analyses without using boundary 
conditions or spectra. 
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Bo, o = 1, Bz,m = 0, if l < 0  or m < 0 ,  

n /¢ 

Bl+n,  m = E U~ - -  a x  i Bt+(~-,,), m - ( k - ~ )  

k = O  '~=0 
(4 )  

(the prime on the summation sign denotes that the values k = n and ~ : 0 are omitted). 
From the recurrence formula it is easy to get that the Bl,m are polynomials of uk and their 
derivatives. 

3. Fractional Power. For I ~ I> I/2 we examine 

( ~ , x ; s ) =  t I z) a z~b(~, x; dz.  (5 )  
P 

The contour P is shown in Fig. i. The integral converges for Re s < --i. By z s we mean 
Izls e ssrgz, where --~/2~argz~3~/2. Let X(~) be a smooth function, X(~) = i when I~I--~i and 
X('$) = 0 when I ~I -~ 1/2. We introduce the symbol 

a (~, x; s) = % (~) h (~, x; s) (6 )  

[generally speaking, the class of functions of ~ and x, distinguished in the finite range of 
~, is named the symbol; when speaking of a symbol a($, x; s) we shall have in mind a written 
concrete representative of an equivalence class. As a matter of fact, those important char- 
acteristics which we shall need do not depend upon the choice of the representative of the 
class, for instance, upon the smoothing function ×(~)]. It is not difficult to prove the 
formulas 

b(L z; z 0 - - b ( L  ~; z~) = b(~, x; z 0 o b ( ~ ,  x; z~) (7)  
g I -- 7, 2 

(the functional equation of the resolvent) and 

a (~, x; Sl)Oa (~, x; s:) = a (~, x; s~ + so). 

From Eq. (7) it follows that 

( 8 )  

Ob (~, X~ z) 
= b(~, x: z) ob (~, x; z). 

Oz 
( 9 )  

Substituting expansion (3)  into Eq. (5), we have 

l-~,-m 

, ~ z (U B,,,~ ( -  t)  " ~ (~'~ - z) 
r '  l ,  n l  

Introducing the notation 

14rm 1.4-m 

Bt, m (~ " 1 + m 
t ,m  \ ~ .  

Al (s) = By, ,. (lO) 

we obtain 

a (L z; s) = z (U ~ ,  A~ (s) (~'T " - '  
/ = O  

(11) 

where, according to the choice of branch, ~n = 0 for sn > 0 and arg sn = ~ for ~n < 0. 

4. Diagonal of the Kernel. If ~(~, x) is some symbol or, more precisely, a repre- 
sentative of the class of the symbol, we set 

~ (x) = ~ ~ (L x) dg, 

if this integral converges. ~(x) depends upon the choice of the representative of the class. 
[~(x) is the diagonal of the kernel of the operator which can be constructed from the symbol; 
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f 

Fig. i 

such an operator is defined ambiguously by the symbol, i.e., to within a smoothing opera- 
tor.] We consider 

~ (x; s) = "~" Ua (~, z; s) d~, 

where k is any integer. Later on we shall be interested in the analytic continuation of 
this function onto the whole plane of the complex variable s, or, more precisely, in the 
residues of this function. It is easy to see that they are determined by the symbol and do 
not depend upon the choice of the smoothing function ×(~). They coincide with the residues 
of the integral 

,T(s) = ~ ~1~ ~ A~ (s)(~.)s~-~+~ d~. 
I 1 

We have 

I Z 1 t)t+~ J (S) ~,-~- ~ Al(S  ) 2(n$__l.~'k.jl_ l ) [ ( - -  --~-i] 

for even n and 

1 1 [e~'it ~+~+~] q- 1] J (s )  = - -  . ' ~ - ~ t A l  (s) 2 ( n s - - ! + k  + t) 
I 

for odd n. The residue a t  s = (l --k-- l)/n equals 

i (Z--k--l) 
2~n Al ~- ~t, ~, 

where el, h = (--i) l+k q- i for even n and et,~ = e ''~(<l-k-1'n)+l+k) q- i for odd n. 

5. Asymptotics of the Diagonal of the Resolvent's Kernel. We rewrite Eq. (5) 

3 .'n . co ~-is 

. - - . ~ i ,  -- "~- zS I I i 2 e - ) zSb (~, x; - -  iz) dz  == - -  i e - s i n  .~s zSb , a (~, x; s) = -- ~-~ (e -- ff (~, z; -- iz) dz .  
0 0 

The integral converges for --! < Re s < --x/a. Having set bk = ~kb, we have 

a s  

= .n e°" sin as®I zST"(~)bk(~" x; -- i z ) d z .  ak (x; s) i i, 

0 

By the Mellin inversion formula (see [13]) we obtain 

7+i~ -f is ~ (x; s) 
sin .~s - - d s .  

Hence follows the asymptotic behavior 
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::  . I - - k - - 1  

~ ( x ;  - -  iz) = ~ A~ / - -  '~ - ~ + ~ + '  

' sin n ( l  - - k  - -  1) ( 1 2 )  

6. Theorem on Variational Derivatives. 

THEOREM 2. 

*.-~-) ~_,.(x; z). 
6% ~:o (13) 

To prove Theorem 2 we compute the differential ~b and we write it as Rk6u k + d/dx( ) ;  
then ~b/~uk = R k (see Paragraph i). We apply operator ~ to b o [L(~) " z] = i: 

~b o [L (~) - -  z] + 2 b o 8uk o ~;' = O. 
k 

We m u l t i p l y  f r o m  t h e  r i g h t  b y  b a n d  we a p p l y  t h e  o p e r a t o r  - "  

k 

d 
F o r  a n y  o ,  a n d  o ,  t h e r e  h o l d s  o 1 o ao = o,  o o I ~- ~ ( ), w h i c h  f o l l o w s  e a s i l y  f rom t h e  d e f i n i -  

t i o n  o f  t h e  m u l t i p l i c a t i o n  o ,  o c a .  We h a v e  

Now Eq. (9) yields 6b e~ Ob = - ~  ,~-~. 

~ ( ) .  
g 

It remains to compute the product of symbols : 

QED. 

6~ 

v 

COROLLARY i. 

> 
=-- ~-~(_~ yFz = -- ~-~i 

@ 

v=0 

= 7, . ) .  (14) 

The proof of Corollary i can be obtained without difficulty from the connection of b-k 
and Al [see (12)]. 

7. L a x ' s  P , L - P a i r s .  L e t  us  c o n s i d e r  Eq.  ( 10 )  w i t h  s = N / n ,  w h e r e  N i s  an i n t e g e r  n o t  
divisible by n. We" indicate by 

N 

l------O 

the part of the symbol of a nonnegative power of 5. Let 

N 

l=O 

Then, when n is odd PI - P, and when n is even P, - (sign 5)NP. P(5, x) is the symbol of 
the d i f f e r e n t i a l  o p e r a t o r  

N 
d N d ,~N-~ 

/ = 0  
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We compute the commutator [P(5, x), L(5)], using the fact that a(5, x; s) commutes with L(5) 
[since L(~) = a(~, x; i) and in accord with gq. (8)]. We have 

oo 

\ n /  j 
I = N + I  

[C) ( ) --222 ( - , .  ~ u~-.,,,, ~.',-,- ~-,,  .~,~,N,.,,_,_~ ,.,.~1,,,~ J~' 
where c = i for odd n and ~ = (sign ~)N for even n. Further, 

..(~.x).~(~)~ = Z L ) ( - ' ) L t , , )  A, (~)"~- )~,(~)"'~" e'-'*~-'- ~ )  
/ = N + I  v=O k~=O 

There are no negative powers of ~ in the left-hand side of Eq. (16); therefore, they are 
mutually annulled in the right-hand side; the maximal power of ~ is n -- 2. 

Thus, for every integer N not divisible by n, we have found a differential operator 
P(-Id/dx, x) such that the commutator [P, L] is a differential operator of order n -- 2. 
This is a direct generalization of Lax's theorem for n = 2. 

8. Systems of KdV Type. Let the functions ur depend upon one more variable t. We 
write the operator equation 

d___ L (~) = [P, L]. 
dt (17) 

This is equivalent to a system for the functions ur 

'", s [C) ( dt ( -  i)" , . . , ~ / N ~  N - z " =  "~' \ n / U~- -  At  u~ ~ 
N--l +k--'J=r ¥ 

(l>N) 

( r = O ,  i , . . . ,  n - -  2). 

(18) 

We call this system a system of KdV type. 

THEOREM 3. System (18) can be written as 

du ~-~ A / N + n ~  n 
-fiT = I x+,,+l \ ~  ] • N -% ,. ' (19) 

( 6 6 ) I is a matrix consisting of the differential where u ---- (u0, ul,...,u,_2), = ~ .... , ~%_ , 

operators 

C 
Proof. We can invert Eq. (14): 

v=O 

We substitute these expressions into the right-hand side of Eq. (18). The first one of the 
two summands yields 

N'TF n (__ i)~it~ r + s + ~  + v + t  s I~ u~+,+;,+~+, \ ~ - /  6-~-% AN+n+, • 
~, v,a "V 

We set p + ~ = y and we make use of the identity 

( )( ) ( t )  2 ( _ 1 ) ~  r + s + ~ + l  s + ? - - ~  s ( - -1)"  ~' r , = , ( 2 2 )  

v~O 

2 6 4  



easily provable by induction over s. We have 

s-------'O Y:O 

As+,,+, \'--;7--,/" 

The second summand in the right-hand side of Eq. (18) yields 

~r+s+,~+.~+x \ d x  ] 5u s AN+n+t N -T~- n .~ . 

Setting ~ + 9 = y, we have 

E A.x'+.+l = N ~ n ~,+~+~+~ ~ 7 /  
s=O "~=0 ~ ~ s 

s~O Y~O 

The sum of the two terms yields what we require. 

9. First Integrals. 

THEOREM 4. For any p, IAp(-~-J-)dx is a first integral of Eq. (19). 

(We recall, see Paragraph I, that the integral is defined purely algebraically as an 
equivalence class with respect to dA/dx; i.e., we need not speak about any convergence for 

the integral. If we restrict ourselves to the class of functions for which .~fdx exists in 

the analytic sense and ~- dx= 0, then the integral in Theorem I can be understood in 

such a sense.) 

Proof of Theorem 4. Let u satisfy system (19). We differentiate the equations b o 
[L({) --z] = I with respect to t: 

bt o [ L  (~) - -  zl + b o Lt (~) = O. 

But L t = P o L- L o p [since this is equivalent to (19)]. We substitute this into the 
equation and we apply the operation -: 

~t + b o  t J o  L o  b - - b o  L o  P o  b = O .  

T a k i n g  i n t o  a c c o u n t  t h a t  b= L = L o b  = i + z b ,  we o b t a i n  bt + b= P - - P o  b = O .  We r e m e m b e r  
t h a t  (~1 ° (~. = (~ = ~ + d/dx( ). H e n c e ,  K t = d / d x ( ) .  A l l  t h e  c o e f f i c i e n t s  i n  t h e  e x p a n s i o n  
~t in powers of z turn out to be expressions of derivative type, (b-p)t = d/dx(). It re- 
mains to note that Kp is proportional to Ap [(p -- l)/n]. 

THEOREM 5. For any p and q (p -- i and q -- i are not divisible by n) there exists Jq,p, 
a polynomial of ur and their derivatives, such that 

6 

, s=o  " ~ q.p- ( 2 3 )  

This is an immediate corollary of the preceding theorem: 

o = ~  ~ p~ T /  .,(u(?)),dx = 

• IN + n \  8 A~+~+~--~)a~. 

S e t t i n g  q =  N + n + 1 a n d  a l l o w i n g  f o r  t h e  a r b i t r a r i n e s s  o f  N, we o b t a i n  t h e  t h e o r e m ' s  a s -  
s e r t i o n .  

I0. Space A n- ~. Lattices of a Lie Algebra. The space A n-x consists of the collections f = 
(fo, ., fn_ffi), where /h~A. In this space we now introduce a lattice of a Lie 
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algebra. Namely, with each f we associate a differential operator 0t--/~i¢ ~ commuting 

with d/dx. The space A n-~ turns out to be in a one-to-one correspondence with the space of 
such differential operators. The Lie algebra lattice, existing in the latter and intro- 
ducible by the usual commutation [at, 0g] = 0~0¢-agaf, is carried over to A n-~. Namely, 

[f, g]0 = 0tg -- 0gf (24) 

(~ f  and 8g a c t  c o m p o n e n t w i s e  on g and f ) .  We h a v e  marked  t h e  c o m m u t a t o r  w i t h  a s u b s c r i p t  
0 s i n c e  we s h a l l  be  i n t r o d u c i n g  a n o t h e r  c o m m u t a t o r  r i g h t  away.  

THEOREM 6. The m a t r i x - v a l u e d  d i f f e r e n t i a l  o p e r a t o r  l maps A n-1  o n t o  a L i e  s u b a l g e b r a  
r e l a t i v e  t o  t h e  c o m m u t a t o r  [ ] o ,  i . e . ,  f o r  any  f and g t h e r e  e x i s t s  an e l e m e n t  h such  t h a t  

[zf, ~ ] o  = Zh. (25) 

Here  h i s  g i v e n  by t h e  f o r m u l a  

where 

h = Oigg.-- O~gf + hi,  (26) 

n--2 

O"Lg,. [], 
r s 

r + s < ~  

?=k- - r - -s - - t .  (27) 

Theorem 6 can be proved by direct computation, using formulas of type (22). We cannot 
present these calculations here in view of their awkwardness. 

If we exclude constants from ring A and, correspondingly, from A n-l, then, as is easy 
to verify, the mapping I is a monomorphism. Then h, constructed from f and g, is a commu- 
tator induced from [ ]o by mapping Z. We shall denote it by [ ]i, i.e., [/f, /g]0 =/[f, g]1. 

ii. Poisson Brackets. Let P, G ~  be two functionals. The following function: 

~-~dx. (28)  
r ,  $ 

is called the Poisson bracket of these functionals. From Eq. (20) for Irs it is obvious 
that %~s = --Isr (the asterisk denotes the formally adjoint differential operator). Hence 
follows the skew-symmetry of the Poisson bracket. The Jacobl identity is not obvious; it 
will follow from the next theorem below. We note that when n = 2 the vectors are turned 
into scalars and I = -- 2id/dx; we arrive at the Gardner--Zakharov--Faddeev brackets. 

THEOREM 7. The variational gradient operation 6/6u, mapping ~ into A n-1 , leads the 
Poisson bracket { } into the commutator [ ]I: 

(29) 

We prove this theorem at once by the method applied in [14] to prove this same fact 
but in a somewhat different situation. 

LEMMA i. Let ~ be an arbitrary functional, 

~-~ 0 d k 

Then t h e  ~ t r i x - v a l u e d  d i f f e r e n t i a l  o p e r a t o r  m i s  f o r m a l l y  s e l f - a d j o i n t ,  m* : m, o r  

(3o) 

To prove the equality of the two operators it is sufficient to prove that they act 
alike on the vector-valued form 6u = (6uo ..... 8un_~) (since the forms ~u~ ) are linearly in- 
dependent over A). Let us verify this actlon for the left- and right-hand sides of the 
equality to be proved. We have 
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,E r,R 

Lemma i has been proved. 

We go on to prove Theorem 7. 

i~6u~dz, then (see Paragraph i) 

% % 

We compute 8{F, G} and we represent it in the form 
6 

~ = ~-~,~. {~, ~ / .  We h a v e  

/ \ l  

r ,  8 

--- f ~ ['~' e °~)] ~ "  - f ~  [',.. ~ ~] ~ ~; 
[~e first two terms equal 

, _ 

By Lemma I this expression equals 

(the dots denote terms differing by a commutation of ~ and ~). We obtain 

dx.. 

The third term equals 

E o~t 

n--l--r--s ] 
~ , .  ~=o r s ) \ ~ /  6uT,~,~+1 \6~, d 6~ 

"-~[(v ) 8~'(~'67 ( s~6G/~±~ ~'] 

Collecting all the terms and keeping Eqs. (26) and (27) in mind, we obtain the required 
equality 

/¢ 

COROLLARY 2. If the Poisson bracket of two functionals equals zero, then the differen- 
tial operators O~p, 0~ commute. 

,o6~ , w h e r e  ~ = A , ( ~ , ~ ,  ~, = COROLLARY $. For any p and q the operators ~ ~ 

.4q (~), commute. 

Remark i. We can examine an equation, somewhat more general than (19), 

~/u 13.~_u ~, 
d t  , 

(31) 

267 



P? 

where the Hamiltonian f{ is an arbitrary linear combination ~c A (,--lh 
" P P~--'T[--~ ] "  Then, as before, 

p=l  

for every q we can find an element Jq such that for Yfq ~ Aq(q-~- ~) 

r ,  S = 0  ' S / J  

and the  d i f f e r e n t i a l  o p e r a t o r s  0 ~ 6 ; ~ z ,  Oz61s~,~q commute.  

12. S t a t i o n a r y  E q u a t i o n s .  Now l e t  u be i n d e p e n d e n t  o f  t and s a t i s f y  t h e  s t a t i o n a r y  
e q u a t i o n  c o r r e s p o n d i n g  t o  Eq. (31) 

6 2). 5u-~ ~ ---- 0 (r = 0 . . . . .  n - -  (33) 

E q u a t i o n  (32) shows t h a t  t h e  q u a n t i t i e s  Jq a r e  f i r s t  i n t e g r a l s  o f  a s t a t i o n a r y  s y s t e m .  Our 
n e x t  p r o b l e m  i s  t o  show t h a t  a s t a t i o n a r y  s y s t e m  can be r e p r e s e n t e d  in  H a m i l t o n i a n  fo rm and 
to  compute  t h e  P o i s s o n  b r a c k e t s  o f  t h e  f i r s t  i n t e g r a l s  i n d i c a t e d .  The P o i s s o n  b r a c k e t s  t u r n  
o u t  to  be  e q u a l  t o  z e r o ;  i . e . ,  t he  f i r s t  i n t e g r a l s  t u r n  ou t  t o  be in  i n v o l u t i o n s .  

By [ e  we d e n o t e  an i d e a l  i n  r i n g  A, g e n e r a t e d  by  t h e  l e f t - h a n d  s i d e s  o f  Eqs.  (32) and 
a l l  t h e i r  d e r i v a t i v e s  w i t h  r e s p e c t  to  x .  In  o t h e r  w o r d s ,  to  t h i s  i d e a l  b e l o n g  the  p o l y n o -  
m i a l s  of ui, u~, ., which vanish by virtue of system (33). We set A_~ = A/I~. 

We now restrict somewhat the generality of the analysis by introducing additional re- 
quirements whose meaning reduces to the possibility of solving Eqs. (32) relative to the 
highest derivatives. In ring A there is the following graduation: The number n -- i + k is 
called the weight of factor u(k), while the sum of the weights of the factors is called the 

1 
sum of the monomial. [This graduation arises naturally from the very origin of the u i as 
the coefficients of operator (i); besides, this is not important just now.] The collection 
of terms of the highest weight is called the leading part of Z . It is easy to see that 
all terms of the polynomials Ap(s) have one and the same weight p; therefore, the leading 
part of ~ is Apo [(po -- l)/n]. In each variational derivative 8/SurZ we pick out the linear 
part of highest weight 

6u ° = ~.oiUj -1"- • • • 
j=0 

~,~ = # ,~uuJ + . . .  
5=0 

The terms not written out either are of lesser weight or are nonlinear. In this and other 
cases they contain derivatives of the functions uj, of orders lower than in the terms 
written out. It is easy to see that kii ='(--1)p0-~n*i+Jks~. From now on we shall examine only 
those Lagrangians for which 

koo " " • k o  n - ~  

A1 k°l [ . . . . . . . . . . .  --= ~ :  kH J =]=0 . . . . .  A,~_~ . . . . . . . . . . .  ~ 0. (34) A o -~--k00 0, 

k n - 2  0 " " " k n - 2  n - 2  

Hence, it follows already thatpomust be even and that po>2n. We set po -- 2n = 2~. We 
shall analyze only this case (for systems of KdV type this signifies that n + N + i is even). 

LEMMA 2. As independent generators in ring A we can take the system 

( i = O  . . . . .  n - - 2 ;  s ~ 2 9 + 2 i - - i ) ,  (a) 

(i = 0 . . . . .  n - -  2;  r = 0 .  t ,  2 . . . .  ). (b )  
(35,) 
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The functions (35a) are called the principal derivatives. We prove Lemma 2 by induc- 
tion over the weight of the derivatives u! s), which we must express in terms of the quanti- 

ties (35). Suppose that this has been done for the weight 2~ + n + m. We write the sys- 
tem 

m n-2 

dx / (SUo = ,~oy,*~ q- koyU~" Jr • • • 

m ~ - - 2  

&'m =/' , , m y " y  + . - m y ~  + . . . .  
j=o i=m+t 

whence we express the derivatives ~+m),..., u~+~,~), since the system's determinant is non- 
zero. 

LEMMA 3. If 

a, ~ 'z )  ~ = O, (36) 
r ,  i 

where a[~A, then a~Ix. 
r in terms of the generators (35) If in these expressions there Proof. We express a i 

were terms containing only the generators (35a) and not (35b), then the left-hand side of 
(36) would contain terms linear with respect to (35b), which would not mutually annihilate 
anything, and that contradicts the independence of the generators. 

Definition i. A vector field (differentiation) ~ is called tangent if it contains the 
ideal Ix: ~Ix~ Ix. Two tangent fields are equivalent if (~- ~)A ~ Ix. The set of equiva- 
lence classes is called TAx. 

LEMMA 3. A tangent field ~ ~ TAx is uniquely defined by the principal coordinates 
~ (s ~ 29 + 2i ~ i), which can be taken arbitrarily. 

The proof is carried out similarly to the proof of Lemma 2. The nonprincipal coor- 
dinates are determined successively from the systems 

n l  n - - 2  

!~uo/ =~, .oj ; j  + koj~ ~+j+m+... 
j=0 j=m~-t 

8x  ,.s;s + + 
j~-o j=,~+l 

The left-hand sides b e l o n g  t o  t h e  i d e a l .  The c o o r d i n a t e s  a r e  u n i q u e l y  d e t e r m i n e d  i n  TAx 

4 13. Characteristics of the Ideal's Elements. We construct the mapping I -d-Z. I~-+A~-I, 

which we shall call a characteristic of the element Ix/~lx. Let /~ I~ be any .repre ~ 

sentative of the class. As an element of the ideal it can be written (not uniquely) as 

With it we associate at ~. ---~ ai 

tion A--+A~). It is necessary to show that this is indeed a single-valued mapping of the 

class I~ -~I~ onto the class A ~-z /6~) _ ~ . Let /-- b~\6uj be another way of writing the same 

f in terms of the generators of the ideal. By Lemma 3, 2, a~--b~ l~.and, therefore, ai = 

269 



/~5~<~) Then / - -  g b i .  Now l e t  g be another  r e p r e s e n t a t i v e  of  t h i s  same c l a s s ,  g_--  b ~ \ 6 , j  . 
d i , s  

~ 7~- I~, i.e., 

whence 

dF Definition 2. F ~ A  is called a first integral if ~ - ~ I z .  Its class (F)z also 

will be called a first integral. 

Obviously, the class of dF/dx in I~ ~-~-xT~ is uniquely determined by class (F)z. 

Definition 3. The characteristic of dF/dx in ]~ ~-I~ is called the characteristic 

of the first integral. 

14. Hamiltonian Lattice. As we know (Paragraph i), a certain form ~(~) exists such 
that 

Let Q(2) = 8QO),. i.e., 

5S d~ ~(~)" 8~ = ~ ,  ~ 8u~ + 

k 

g 

We shall treat ~(2) as a form over TA~. with values in A~. 
this form is closed. 

THEOREM 8. ~(2) is a nondegenerate form in TA~. 

Proof. In d~(2)/dx we pick out the terms highest with respect to the total.weight of 
the differentials 

(37) 

As the differential of ~(*) 

d, n ~  = - ~ ,  k~i6uJ ~"÷~) A ~ + . - .  

Hence we find that 

where 

= . - i j ~ - ~ j  / \ ~ i  6u~ A ~u~ + . . .  

• - "  + (-- t /"J-~Sui  A 8u~ ~'~+~+j-~) + . . . .  • 

k~s ----- { kij, i ~ j ,  
kit~2, i = j ,  

(s) 5u~ r> with + < 2~ + i + j -- I. Later while the dots denote terms Which contain 0uj A s r 
on it is necessary to express ~(2) in terms of the differentials of the principal deriva- 
tives [and of the differentials of variables (35b), but the latter yield a form zero in 
T A ~  ]. 

We do not present the simple but lengthy calculations, but write out at once the result- 
ing formula. If we introduce the bordered determinant 

2 7 0  



Am;i, I 

kO° " " " kom kol 

kmo • . . k m m  k m l  

] kio • . . kim k~ l 

-~-1; i. I = ]¢i/, 
' -~-t 

then 

where 

0 {2) ' f~{~-) 0 a) -- ~.  g 

f/r~)= a.6\6,t J ASq~, while the qj are any variables. 

i--I l--I 

= r, £ * Ai_I_ r -~ 
i>~l r ~ i - - I  i>1 s=O 

2b~+i--i 

-4 -£  £ (--l)r-~;,,Su~'~'ASu~L-F... (r+s=2~t+i+l--t). 
i>~l r= i  

(38) 

The nondegeneracy of the form signifies that whatever be the 1-form ~ ,  we can find a vector 
such that c o = - - i  (~)~o} in TAz. Obviously, we can take it right away that co contains 

only the differentials of the principal variables, ~= ~w~ , and as we can take 

.<.<~+~--1 a ( * )  

We obtain the sequence of systems 

2!1+2~t-3 ~1-2, ~-2  "0  {0~'_2 - -  An-3; 
1n_8 ~n-2, 

0)2~+2n-7 ~,l-J,; n-3, ?~-3 ~0 
n-S = A,_.  z ~n-S -4- 

o~1+%z-6 ~ n - 4 ;  0}~,_2. ----- n-3, n-2 ~:0 
A,~_ 4 ~n-3 

I 

An- 4 

An- 4 

A-i:  o, o o t),~_, 1-1; ~,-=, o ~ - 2  {0(211-1) ~ 
a 1 ~o+ + ( - -  a_~ ~ " - ~ +  

.,~_~ ~-I: n-2, n-2 ~n-~ {~-:~+,~-,) -~-~; o.~,-~ ~o + . . .  + ( _  ~ ~,_~ + . 
(0n-2 = A- I -~-I " " 

Besides the ones written down there are more terms containing the coordinates of ~, deter- 
mined from the preceding systems. The determinants of all these systems are nonzero by 

Sylvester's theorem, det (An_s_m; i,k) = A'n ,L-s-m'An-v These are still not all the systems needed. 
We need to finish writing several more systems for the determination of the missing coor- 
dinates. They all have one and the same matrix, just as in the last of the systems written 
out. Thus, all the coordinates ~ (s~ 2~ + 2i- i) are determined in succession. 

Remark 2. As we saw from the proof, if as ~ and fl(2) we take forms containing only 
the differentials of the fundamental variables, then the equation m ---- --i (~)Q{2) can be 
solved exactly, i.e., in A and not just in A~. 

15. Construction of the Vector Field CQrre~nonding go a First Integral. After the 
symplectic form ~(2) has been constructed from a given ~ , we can develop the usual concepts 
of Hamiltonian mechanics (we refer to [9] for details), fe is a Langrangian, d/dx is a vec- 
tor field corresponding to the equation, ~F are the Hamiltonian vector fields corresponding 
to F~A~, i.e., 6F =--i(~F) f}(2). If F,G~A~, then their Poisson brackets are ~FG = ~G F. 
The vector field corresponding to the Poisson brackets of F and G is the commutato} of the 
vector fields gF and ~G; therefore, the Poisson brackets equal zero if and only if the cor- 
responding vector fields commute. If F~ A e is a first integral, i.e., dF/dx = 0 in A e, 
then field ~F commutes with vector field d/dx. 
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When speaking about forms we shall distinguish three kinds of equalities: 

i) the identity equality mt = ~, i.e., the coincidence of all the coefficients in A; 
2) equality over A~, ~i= m~(A~), when the values of the forms, treated as elements of Az, 
coincide on the tangent vector fields; 3) equivalence, ~__~, when the values of the 
forms, treated as elements of A~, coincide on all the vector fields (i.e., the coefficients 
for the forms differ by the elements of ideal l~). 

LEMMA 5. If 6F__~0, then f~fz and its characteristic equals zero. 

Proof. We shall use variables (35). The relation 6F~__0 signifies that ~F~fz for 
every vector field E. Let F = F~ + F~, where F, depends only on variables (35a) and F~I~. 
If as ~ we take the partial derivatives with respect to the variables (35a), then we obtain 

OF 1/Ou?) = 0, F i = 0. Hence F= ),ai(~) • But 0F/0 =[~. Then all aiS I~, and the - 

characteristic equals zero. 

THEOREM 9. If F is a first integral and {fi} is its characteristic, then the vector 
field corresponding to this first integral is 

= - - 

Let ~(i) be defined by the exact equality 

dO'(~) = -- 2 8 ~ / A  8u~" dz 

Proof. 

(39) 

As before we represent fl(1) as ~)q-fl(~2, where fi(1) depends only on the fundamental vari- 

ables (35a) and ~(~) is a form of type 6~-j~) /~oqj, where the qj are any coordinates. 

F can be reckoned as depending only on the fundamental variables. By Remark 2 to Theorem 8 
in Paragraph 15 there exists a vector field ~ such that the exact equality ~F = --i (~)~(~') 
holds. Then 

~F = -~(D ~ ( ~ ) + ~ ( ~ ) ~ .  

We apply  d / d x  tO bo th  s i d e s .  We n o t e  t h a t  -~i(~)d ~(~,=,(~)d.~_O(z)..~l([..~_E,~])O,~,. . d But d /dx  

and ~ comute in A~, i.e., in the vector field [d/dx, ~] all coordinates belong to I~. 
Its convolution with any form yields a form all of whose coefficients belong to ]~, i.e., 
is equivalent to Zero. We have 

d )  (~)  d.O.(') d . o (~ )  

or 

8 2 ¢/sxy,) 

Taking into account that ~(~'~u~l ~le, since ~ TA~,. and discarding the forms equivalent 
% t# 

to zero, we obtain 

i.e., 

d 

By Lemma 5 the expression within the brackets has a zero characteristic. 
is an arbitraryelement of the ideal and so its characteristic is zero. 

5Z, i.e characteristic of ~ff)[5~h<r> equals the characterlstlcof--~x~-, • ~ 

But the last term 
Therefore, the 

2"/2 



dx / s~ • 
T 

Now Eq. (39) follows from the fact that ~F commutes in A~ with d/dx; hence St=/Jd_hr=0 
' \d~J ~" 

The preceding analysis was of a more or less general nature. We now turn to the case 
Po 

~=~cpAp(~). Equation (32)shows that the quantities Jq are the first integrals of 
p=l n- - -2  

system (33), with characteristics fr---- Ir~\6-~ s . ~7 or i----I .lfq. 
S=0 

THEOREM i0. The first i n t e g r a l s  Jq o f  s y s t e m  (33)  a r e  i n  i n v o l u t i o n s  among t h e m s e l v e s  
f o r  any  q .  

and  0 6 Proof. By what was said at the end of Paragraph i0 the operators Ot~,~ql z~-J~'~a, 

co11Lmute. 
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