ON THE QUESTION OF THE SOLVABILITY
OF BISINGULAR AND POLYSINGULAR EQUATIONS

I. B. Simonenko

Let C be the unit circle in the complex variable plane, T =C X C, the operator S (€ Hom[L,(T),
Ly(T)]) * has the form
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Concerning the kernels a4, a,, 24, we assume that they are expanded into absolutely-convergent
Fourier series, i.e.,
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@i, @i, Bi, B are integers and, moreover, 2 7, | +|T, ! T|n| )< +oo ; the coefficient a,(t) is assumed con-
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By A, Ai, Bi, Bi, B{ we denote the operators of multiplication by the functions a,(t), ¢, tBi, 781,

B‘ , respectwely, and by Sy, S, we denote the operators defined by the equalities (Si¢)() = 1: S(F (s ;2) dry,
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The operator S given by formula (1) is defined as the sum
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It is not difficult to be convinced that such a definition of a bisingular operator coincides with gen~
eraily accepted onest when the latter have meaning, for example, when the kernels additionally satisfy a
Holder condition.

THEOREM. Let /llf, ,Zf (%|=1) be one-dimensional singular operators from Hom [L, (C), L, (C)], de-
fined by the equalities

*Hom(By, By) is the space of linear operators acting from the Banach space B, intothe Banach space B,.
TA single integral is to be understood in the pr1nc1pa1 value (p.v.) sense, and a double integral as repeated
p.v. integrals. ‘
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Then for operator S to be a Noetherian operator it is necessary and sufficient that the operators AA, A,w
be 1nvert1ble for all values of the parameter A.

Proof. Let Z, be a discrete plane, i.e., the set of points on a plane with integral coordinates. By F
we denote an operator from Hom[Ly(T), Ly(Z,)]* which associates with a function on a torus the double se-
quence of coefficients of its Fourier series; by 22 we denote the compactification of the discrete plane by
an infinitely-distant sphere (see [1-3]) and we consider the operator FSF™Y( € Hom[Ly(Z,), Ly(Z) ).

This operator is an operator of local type (see [1-5]}.

Just as was done in [1-3] we carry out a local analysis of this operator at infinitely distant points.
At finite points, by virtue of the discreteness of space Z,, any operator from Hom[Ly(Z,), Ly{Z,)] is locally
Noetherian.

We subdivide the set of infinitely distant points into eight parts: the four sets I+ ¥, T += % T--,
consisting of infinitely distant points corresponding to the rays issuing from the origin and being located
in the open squares E™(x >0,y >0), E¥(x >0,y <0), EEYx <0,y >0), ET"(x <0,y < 0), respective-
ly, and the four sets consisting of one point Mjw 4 Mg +0, M- g, My, corresponding to the
rays x>0,y =0; x=0,y>0; x<9J,y =0; x=0,y<0, respectively.

For each type of point the operator FSF™! is locally equivalent to the simpler operator:
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We now note that the invertibility of the right hand sides of the equivalences (2)~(5) ensues from the
theorem's hypotheses. Hence, on the basis of the results in [4, 5], it follows that the operator FSF~! and,
consequently, also the operator S, are Noetherian. The sufficiency of the conditions of the theorem is
proved.

Necessity. If the operator S is a Noetherian operator, then the right hand sides of equivalences (2)~
(5) are locally Noetherian at the corresponding points (see [4, 5]). Hence ensues the invertibility of these
operators (see [1-3]).

Remark. From the proof it is clear that necessary and sufficient conditions for being Noetherian
can be formulated also for polysingular equations, which would consist of the invertibility of the polysingu-
lar equations on a unity of lesser order.

The author thanks V. A. Kakichev for useful discussions on the work.
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*The measure of each point of Z, equals unity.
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