AN EXTREMAL PROBLEM OF THE THEORY
OF POSITIVE HERMITIAN FUNCTIONS

A, E. Fryntov

1. Let F be the union of all real, continuous, positive Hermitian functions ¢(t) such that ¢(0) = 1,
¢ty =0for It| 2 1. We let Qt) = sup {l¢(t) @ € F}. It is obvious that Q(0) =1, Mt) =0 for |t| = 1. It
follows from one of Cramer's results (see f1]) that Q(t) =1 — (t?/8) for |t| <1. The fundamental result of
this paper is the following:

THEOREM 1. Q{t) = cos[r/(n+ 1)} for 1t| €[1/n, 1/ 0~ 1)), n-2,3,....
We note that the equality Q(t) = 1/2 for It] € [1/2, 1) is proved by A. I I'inskii* using other means.
. We need the following lemma, which we state without proof,

LEMMA. The union F coincides with the union of all functions ¢(t), admitting the representation
20 = [ g FEFH s, ' ' (1)

where g € L}—w, «), |igll = 1, and g(x) = 0 for x ¢ [0, 1],

It follows from the lemma that upon evaluation of Q(t)} one can obtain the value sup {¢(t) ! only with
respect to those functions ¢(f) € F for which the function g(x) in (1) is nonnegative.

We denote by L2(0, 1) the union of all real functions of L3~ %, ») which equal zero outside of the in-
terval (0, 1). In L%0, 1) we define the operators At, t € (—1, 1), by setting (Atf) (x) = Xy (x) £(x + t), where
Xo(x) is the indicator function of the interval (0, 1), i.e., x,(x) = 1 for x € (0, 1) and x (x)=0forx ¢ (0,1). The
operators Tt = (At + A-t)/2 are self-adjoint., It is easy to see that the expression on the right side of (1)
can for real functions g(x) € L%(0, 1) be written as (Ttg, g). Therefore, the equality | T¢ll = Q(t) is valid.
We will show that {|T¢l = cos[n/(n + 1) for It{€{1/n, 1/(n~1)),n=2,3,....

We first consider the case where t=1/n, n=2, 3,.... Letf€ L%0, 1). We define the function f,(x)
by setting

’"(’)':kifk"("‘k:{)' i @)
where x(x) is the indicator function of the interval (0, 1/n), and 51:( n kf e dz)l/'. i follows from the
definition of f,(x) that lfxll = If}l. We will write f(x) in the form (k=0/n

f(r)=h§n‘_,€k'b,..(x-—k:1), @)

v=1
where Jk(x) = 0 for x ¢ (0, 1/n). From (2) and (3) we find
T = 2 l_lf' (Be1Phg () F By By (2P o, (@)
=10

#A, 1. I'inskii's work has not been published.
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TP = 5 | Gt @)+ @R, 5)
k=L 0
where %, = .., = 0. Since | &; | = | g% {, from (4), (5), and the Cauchy —Bunyakovski inequality we conclude

that ITefn lt = ITEN.

From the argument used above it easily follows that the norm of the operator Tt coincides with the
norm of the operator Tt, where Tt is the restriction of Tt to the subspace of functions of the form (2).
The operator Tt can be regarded as an operator acting on the space R of vectors {gk} Its matrix has the
form

i ik l‘] h=1 " = | (‘5]+1 PR -1, h)/z "] k=1"
where 65 is the Kronecker delta. The norm of the operator Tt coincides with the maximum root of the
characteristic polynomial Pp(x) = detllajk + x6jk HJ k=1- It is easily seen that Ppn = xPp_y — (Pn-/4), P; =

X, Py = x° = (1/4). Therefore, Pp = 27 Ny, where Up is a Chebyshev polynomial of the second kind (see [2]),
and consequently !lTl/h I = cos[r/n + 1)].

We now consider the case [t| € [1/n,1/(n—1)), n=2, 3, .... We note that Q(dt) = Q(t) for 6 € [-1,
1], since @ ) = sup {j¢ O)|: ¢ () € FY=sup{l@ (1) |: ¢ 9 = ¥} = @ (1), Therefore

IT < Ty, flTlnII*COS[m(n-}-H (6)

To obtain the bound on the norm of Tt we apply the operator Tt to the function

B3

10 = B a5,

k=1

where )Lgx) is the indicator function of the interval (0, 1 —t(n — 1)) and {gk}ﬁzl is the eigenvector of the op-
erator Ty corresponding to the maximum eigenvalue. It is obvious that

ETAZ N Tl fod = 1 Typp | == cos La(n ++ D). (7
The statement of Theorem 1 follows from the bounds (6) and (7).

2. Let A be an open subset of RP such that for all x€ A and all A, |A| =1, we have Ax € A, We de-
note by Fa the set of all continuous, positive Hermitian functions ¢(t) in R2 such that ¢(0) =1 and ¢(t) = 0
for t ¢A. Let Qft, A) = sup{l¢(t) | : ¢ € FA}, and let p(t) be the Minkovski functional of the set A(p (t) =
inf{iAl: Xlte A}, It is easy to see that Q(t, A) = 0 for p(t) =1 and Q, A) =1 for p(t) = 0.

THEOREM 2. Qft, A) = cos[r/n+ 1)]for 1/n =p(t) <1/(n—1),n=2, 3, .. ..
Proof, Let e be a unit vector in RR such that p(e) # 0 and let ¢ € FA. The bound
suplle e [ g & F O Ssup (v (hp () |1y € FY == Q (hp (), (8)
is obvious, where Q(t) and F are defined as in Sec. 1.
Now let A € {A:1/n = p(Ae) < 1/(n—1)}; let the function a(t) € Fa be such that aft) = 0 for t| =
and let B(t) €F. Since the sequence {8(kp(Ae))}, k = 0, £1, +2, ., . ., is positive Hermitian, the function
38 <t>=23<kp (he)) 2 (t — khe)
for sufficiently small € > 0 belongs to the set FA and the equality ¥»(xe) = B(p(re}) is valid, From this we
find that
Sup {l@ M) |9 E F i} Zsup | BAr (N ]:BE F) =QAp (o)) 9
Theorem 2 follows from inequalities (8) and (9).

The author expresses his gratitude to 1. V. Ostrovski for the statement of the problem and his at-
tention to the paper.

Remark. After the paper was submitted for publication, the author became aware of the article of O.
Szasz'a ["Uber harmonische Functionenand L-Form," Math. Z., 1, 149-162 (1918)] in which a result simi-
lar to Theorem 1 is obtained,
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