THE THEORY OF LINEAR RELATIONS AND SPACES
WITH AN INDEFINITE METRIC

Yu. L. Shmul'yan

Let H be a Hilbert space with scalar product (%, y); let H = H, © H_ be an orthogonal decomposition
of the space; let P, be the orthoprojectors onto H (P, + P_=1). We set J= P, — P_ and introduce in H a
new scalar product [x, y] = (J%, y), which is in general indefinite, A Hilbert space H in which along with
the scalar product (x, y) we consider such an indefinite scalar product [, yl will be called a J-space,

There are many works which deal with the geometry of and operator theory in J-spaces (see [1-7]).
We will preserve the notation and terminology in these works.

Many assertions in the theory of operators take on a more complete character if we introduce the
concept of a linear relation, which generalizes the concept of the graph of an operator, We mention here,
for example, the theory of extensions of operators (see [8-11]) and the theory of extensions of differential
operators in a space of vector functions (see [12]). The theory of linear relations in linear spaces was de-
veloped by MacLane in {13] and Arens in {14], and in Hilbert spaces and J-spaces it was developed by
Arens in (14], Coddington in [9-11}], Bennevitz in [15], and Glukhov in [16] and [17].

The present work is devoted to an investigation of some important classes of linear relations in
J-spaces.

§1. Linear Relations in Linear Spaces

1. let E and E' be linear spaces, and let E= E + E' be their direct sum, defined as the collection
of pairs (x, x') (x € E, x' € E') with the natural linear operations. By a linear relation (hereafter denoted
by L.r.) E — E' we mean an arbitrary lineal in E, For an arbitrary l.r. A: E— E' we call D (4) = {x = E:
d2' € E', (z,2'Y=A) thedomainof A; ker 4 = {z = E: (z, 0> = A} is called the kernel of A; & (4) =
{ e E: dx=E, {z, ©'>=A} is called the range of A;ind A=<a’ = E': {0. 2') = A}is called the inde-
terminacy of A.

An Lr. A: E — E' can be regarded as a many-valued mapping from E into E' if to each z D (4)
(T E) we associate all x' € E' such that (x, x') € A, In particular, A0 = ind A, If L is a lineal in E, then
by definition AL is the union of allAz (Vz = D (4) [} L). The set AL is a lineal in E' which contains ind A,

LetE*= = E' - E. ¥ Ais an Lr. E — E', then the inverse L.r, A™l; E' — E is defined as the set of
all pairs ¢z, ) = E# such that (x, x') € A. We note that D (4) = R (4™), ker 4 = ind 471,

2. Hereafter we assume that all linear spaces which we encounter are Hilbert spaces. A direct
sum H = H * H' of two such spaces H and H' is assumed to be orthogonal and will be written as H=H D H'.
An L.r. A: H— H' is said to be closed if the corresponding lineal is closed. For such an l.r. the sets
ker A and ind A are also closed.

§2. Linear Relations in J-Spaces

1. An orthogonal decomposition H = H, & H_ of a J-space H as described in the introduction is said
to be canonical,

Iet H and H' be J—spaées and let H = Hy ©H_ and H' = H} D H' be canonical decompositions of them,
In the Hilbert space H = H @ H', which consists of all pairs (x, x') (x € H, x' € H'), we introduce an
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indefinite scalar product as follows: if x = ¢z, >,y =<y, y> e H, then

Ix, yl = [z, yl — [/, ¥']. (1)
It is easy to show that H is a J-space and the components of its canonical decomposition H = H, @ H_ are
of the form H =H, @oH_ H — H. @ H.

The J-space H in which the indefinite metric is given by formula (1) will be denoted by H QNB H (and
then the canonical decomposition of an arbitrary J-space H should be written in the form H = H, & H_).

The J-space H’ @ H will be denoted by HY. The operatlon #, which maps H onto H¥ by the formula
(%, x")¥ = (x', ), is anti-isometric:

[<l‘, 'I)»l,>y <y, y,>]H§H' = [<I/v x>, <y’7 y>]H”§H

2. In geometry and the theory of operators we will use the terminology and notation in [5-7]. In
particular, J-orthogonality of vectors and lineals will be denoted by the symbol 1; the J-orthogonal com-
plement of a lineal L will be denoted by L

Let H and H' be J-spaces, with H=H D H'. The graphs of operators from H into H' in some class
or other can be interpreted conveniently in terms of the geometry of J-spaces. Thus, an operator T is
J-expanding (J-contracting, J-isometric) if and only if its graph is a nonpositive (nonnegative, neutral)
lineal in H. In this regard we introduce the following definition,

Definition, An Lr. T: H — H' is said to be J-expanding (J-contracting, J-isometric) if the lineal
T (C H) is nonpositive (nonnegative, neutral).

Such an L.r, is characterized by the fact that for an arbitrary (x, x') € T we have [x', x'] = (=, =)
[%, x]. Therefore, the lineal ker T is nonpositive (nonnegative, neutral), and the lineal ind T is nonnega-
tive (nonpositive, neutral),

If T is a J-contracting (J-expanding, J-isometric) l.r. H — H', then the Lr. T™!; H' — H is J-expand-
ing (J-contracting, J-isometric),

Iet T be an L.r. H — H'. The subspace (TH) ™! in the J-space H7 is called the linear relation which
is conjugate to T and is denoted by Tec.

Definition, A closed L.r, T: H — H' is said to be J-biexpanding (J-bicontracting) if T and TC are J-
expanding (J-contracting) l.r.'s,

THEQREM 1, An l.r. T is J-biexpanding (J-bicontracting) if and only if the subspace T is maximal
nonpositive (maximal nonnegative) in H.

We will carry out the proof for the J-biexpanding case. A subspace T is maximal nonpositive if and
only if T is nonpositive and T is nonnegative; nonnegativity of Tt is equivalent to nonpositivity of TC =

(TH™.

Definition. An l.r. T: H - H' is said to be J-semi-unitary (J-unitary) if T is a maximal neutral
(hypermaximal neutral) subspace of H® H',

A J-unitary L.r. T is characterized by each of the following conditions: 1) T+ =T; 2) TC¢ = T"! (see
{14, 17). K T is J-unitary, then so is T,

THEOREM 2, If T is a J-unitary lL.r,, then a)ker T = D (T)+; b)ind T = R (1)L,
Proof, It was shown in [14] and [16] that ® (T)L = indT*. Since TC = T, agsertion a) is proved,
Assertion b) is obtained by considering the J-unitary Lr. T™!

§3. Fractional-Linear Transformations of Linear Relations in J-Spaces

In [18] Potapov considered a fractional-linear transformation (f.1.t.) which takes J-contracting ma-
trices to contracting matrices, This transformation was generalized by Ginzburg in [1] and [19] to the
case of bounded J-bicontracting operators in an infinite-dimensional J-space, But even in the finite-dimen-
sional case not every contraction is the image of some J-bicontracting operator. In the present section we
will show that the aforementioned f.1.t, can be extended to all J-bicontracting l.r.'s. Here the images of
these l,r.'s exhaust the set of all contractions. And the transformation has a natural interpretation in
terms of the geometry of J-spaces.
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Let T be a J-bicontracting l.r. H — H', that is, a maximal nonnegative subspace inH = H @ . Let
K = K7 be the angular operator of T with respect to H,. This operator is a contraction from H, = H, ®
H' into H_=H\, ® H_. If (ﬁ: Rue
decompositions of H, and H_, then the Lr. T consists of precisely those pairs (x, x') which admit a repre-~
sentation

)is the matrix representation of the operator K with respect to the above

z=1z+ Kyz + Knz, 2 =2+ K2 + Kpss, (2)

where z; and z, run independently through H, and H', respectively. If we sct z; + z, = z (€ Hy), we obtain
the equivalent formulas

{1 0 +_ (Kn K .
= (sz K'z-:) % r= ( 0 I z. (3)

Conversely, cach contraction K, D (K) = 1I,, R (K) C I, generates by means of (3) a sct of pairs
(X, x') which constitutes a J-bicontracting l.r.

From (3) it is easy to deduce equations for the lincals associated with the l.r, T:

P0=%((x, £)) rO=%((y" T))s

ker T = {z, + Ko 2,0 7, & ker K1), ind T = {2, 4 Kzt 2. kerKp);
dim ker ' = dim ker K, dim ind T’ = dim ker K,,.

From these equations we can determine the connection between the properties of a J-bicontracting l.r. T
and the corresponding contraction K.

THEOREM 3. a) T is an operator (i.e., ind T — 0) <> K,, is 2 monomorphism;
L)D(T) = H & R (Kap) = I

C)D(D) =H& R (Ky) == H_ ¢ Kpis a monomorphism;

d) D (T) is closed <& R (A.) is closed;

e)ker ' =0& K is a moﬁomorphism;

HR(T) = I & R(K,,) = I

R (T) = ' & R (K,) -= H, & K} is 2 monomorphism;

h) R (T) is closed & R (K,,) is closed,

COROLLARY. An Lr. T is a bounded operator which is defined everywhere if and only if Ky, is an
isomorphism of iI* onto H_.

In this case it follows from (3) that
Ky Key o, I 0
(0 1)“ ~'lv—-TJ:ﬂ-T(’\':zl K:—.')z’
i.c.,
T Ku RKey g T 0yt K — KK g Ko Ky
= ( 01 (l\'-:. /\':z) - — K K Kt )

This last formula is a fractional-linear transformation of the contraction K with a continuously invert-

ible Ky, into a J-bicontracting operator T. The inverse transformation is of the form

( VTR AT Ty — le'l':;l'l’-n Tu'l';zl ’
A R
Tuw T ) . T;l ' 'I'__l )

The correspondence T <= K is the aforementioned fractional-linear transformation of Potapov and Ginz-
burg which connects bounded J-bicontracting operators with contractions,

Remark, It is preciscly J-unitary l.r.'s T which correspond to unitary operators K from H, onto
H_. From an assertion of Spitkovskii in [20]* and parts d) and h) of Theorem 3 it follows that for a J-

*In [20] the author considered matrices of unitary operators acting in a single Hilbert space. But the re-
sult which we mention here carries over casily to the case of unitary operators acting from one Hilbert
space into another,
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unitary Lr. T the lineals D (7) and R (T) can only be closed simultaneously. By virtue of parts b) and f) of
Theorem 3 we know that a J-unitary L.r. T is the graph of a J-unitary operator from H onto H' if and only
if R (K =H,, R (Ko) = H_.

§4. A Generalized Fractional-Linear Transformation Generated

by a Linear Relation

letH=H, D H_ be a canonical decomposition of the J-space H, and let & be the set of contractions
from H_ into H,. In [21] it was shown that each bounded, everywhere-defined J-bicontracting operator T
in H generates an f.1.t. Z —~ Z' = ¢T(Z) of the set & into itself, Here, if Lz is a maximal nonpositive sub-
space with angular operator Z with respect to H_, then ¢(Z) is the angular operator of the subspace TLyg
with respect to H_. In the present section we will generalize this assertion to J-bicontracting l.r.'s.

Let H=H, & H_ and H' = H, & H' be canonical decompositions of two J-spaces H and H'; let & and
& respectively be the sets of contractions from H_ into H, and from H! into H;; let T be a J-bicontracting
Lr., H — H', and let K be its angular operator, as in §3. We let £r denote the set of all Z & & for which the
operator I — ZK,, is continuously invertible, In particular, this set contains all Z & & for which |1Z ]| <1.
{If Kyl <1, thenfr = &)

LetZ & &r. The linealTL; = T (Lz [} © (T))is clearly nonpositive, We will show that this lineal is a
maximal nonpositive subspace in H', and we will find its angular operator with respect to H.. By virtue of
(2) the set Lz () D (T) consists of those x = u + Zu € Ly, for which u = Ky 2z; + Kyyzy, Zu = z;. Therefore,
2y = ZKyzy + ZKyyzy, (1~ ZKy;)2zy = ZKpyZy, and thus z; = (I~ ZKy) ™! x ZK,yz,, Where z, runs through H'.
According to (2) the lineal T (Lz [} © (7)) consists of all x' of the form

2 = zp-- Ky (I — ZK o)) " ZK 332y - K102y = 59 -+ 2"z,
where V
Z' =Ky, + Ky (I — ZK,)ZK,, (= 8). (4)

Since z, runs through all of H', we know that TLy is a maximal nonpositive subspace in H' with angular
operator Z' with respect to H'.

Remark 1, Formula (4) can be written in the form

Z = K;s + K, Z (I — Ky Z) 'K o,

where the operator I — K, Z is continuously invertible together with I — ZK,,.

Remark 2. Formula (4) is a generalization of the f.L.t. formula

Z = ¢r(2) = (TuZ + T} (TnZ + Ty

in [21] and can be transformed into it if Ky, is a continuously invertible operator (that is, if T is an every-
where-defined, bounded J-bicontracting operator). Here we use the formulas in §3 which connect the ma-
trix entries of the operators T and K.
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