THE THEORY OF LINEAR RELATIONS AND SPACES WITH AN INDEFINITE METRIC

Yu. L. Shmul'yan

Let H be a Hilbert space with scalar product (x, y); let $H = H_+ \oplus H_-$ be an orthogonal decomposition of the space; let P_{\pm} be the orthoprojectors onto $H_{\pm}(P_+ + P_- = I)$. We set $J = P_+ - P_-$ and introduce in H a new scalar product [x, y] = (Jx, y), which is in general indefinite. A Hilbert space H in which along with the scalar product (x, y) we consider such an indefinite scalar product [x, y] will be called a J-space.

There are many works which deal with the geometry of and operator theory in J-spaces (see [1-7]). We will preserve the notation and terminology in these works.

Many assertions in the theory of operators take on a more complete character if we introduce the concept of a linear relation, which generalizes the concept of the graph of an operator. We mention here, for example, the theory of extensions of operators (see [8-11]) and the theory of extensions of differential operators in a space of vector functions (see [12]). The theory of linear relations in linear spaces was developed by MacLane in [13] and Arens in [14], and in Hilbert spaces and J-spaces it was developed by Arens in [14], Coddington in [9-11], Bennevitz in [15], and Glukhov in [16] and [17].

The present work is devoted to an investigation of some important classes of linear relations in J-spaces.

§1. Linear Relations in Linear Spaces

1. Let E and E' be linear spaces, and let E = E + E' be their direct sum, defined as the collection of pairs $\langle \mathbf{x}, \mathbf{x}' \rangle$ ($\mathbf{x} \in E, \mathbf{x}' \in E'$) with the natural linear operations. By a linear relation (hereafter denoted by l.r.) $E \to E'$ we mean an arbitrary lineal in E. For an arbitrary l.r. A: $E \to E'$ we call $\mathfrak{D}(A) = \{x \in E:$ $\exists x' \in E', \langle x, x' \rangle \in A\}$ the domain of A; ker $A = \{x \in E: \langle x, 0 \rangle \in A\}$ is called the kernel of A; $\mathfrak{A}(A) =$ $\{x' \in E': \exists x \in E, \langle x, x' \rangle \in A\}$ is called the range of A; ind $A = \langle x' \in E': \{0, x' \rangle \in A\}$ is called the indeterminacy of A.

An I.r. A: $E \to E'$ can be regarded as a many-valued mapping from E into E' if to each $x \in \mathfrak{D}(A)$ ($\subset E$) we associate all x' $\in E'$ such that $\langle x, x' \rangle \in A$. In particular, A0 = ind A. If L is a lineal in E, then by definition AL is the union of all Ax ($\forall x \in \mathfrak{D}(A) \cap L$). The set AL is a lineal in E' which contains ind A.

Let $\mathbf{E}^{\pm} = E' \stackrel{\cdot}{+} E$. If A is an l.r. $\mathbf{E} \to \mathbf{E}'$, then the inverse l.r. \mathbf{A}^{-1} : $\mathbf{E}' \to \mathbf{E}$ is defined as the set of all pairs $\langle \mathbf{x}', \mathbf{x} \rangle \in \mathbf{E}^{\pm}$ such that $\langle \mathbf{x}, \mathbf{x}' \rangle \in \mathbf{A}$. We note that $\mathfrak{D}(A) = \mathfrak{R}(A^{-1})$, ker $A = \text{ind } A^{-1}$.

2. Hereafter we assume that all linear spaces which we encounter are Hilbert spaces. A direct sum H = H + H' of two such spaces H and H' is assumed to be orthogonal and will be written as $H = H \oplus H'$. An l.r. A: $H \rightarrow H'$ is said to be closed if the corresponding lineal is closed. For such an l.r. the sets ker A and ind A are also closed.

§2. Linear Relations in J-Spaces

1. An orthogonal decomposition $H = H_+ \oplus H_-$ of a J-space H as described in the introduction is said to be canonical.

Let H and H' be J-spaces and let $H = H_+ \oplus H_-$ and $H' = H_+^{\dagger} \oplus H_-^{\dagger}$ be canonical decompositions of them. In the Hilbert space $H = H \oplus H'$, which consists of all pairs $\langle x, x' \rangle$ (x \in H, x' \in H'), we introduce an

Odessa Institute of Marine Engineers. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 10, No. 1, pp. 67-72, January-March, 1976. Original article submitted August 20, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

indefinite scalar product as follows: if $\mathbf{x} = \langle x, x' \rangle$, $\mathbf{y} = \langle y, y' \rangle \in \mathbf{H}$, then

$$[\mathbf{x}, \mathbf{y}] = [x, y] - [x', y']. \tag{1}$$

It is easy to show that H is a J-space and the components of its canonical decomposition $H = H_+ \oplus H_-$ are of the form $H_+ = H_+ \oplus H'_-$, $H_- = H'_+ \oplus H'_-$.

The J-space H in which the indefinite metric is given by formula (1) will be denoted by $H \oplus H$ (and then the canonical decomposition of an arbitrary J-space H should be written in the form $H = H_+ \oplus H_-$).

The J-space $H' \oplus H$ will be denoted by $H^{\#}$. The operation #, which maps H onto $H^{\#}$ by the formula $\langle \mathbf{x}, \mathbf{x}' \rangle^{\#} = \langle \mathbf{x}', \mathbf{x} \rangle$, is anti-isometric:

$$[\langle x, x' \rangle, \langle y, y' \rangle]_{H \widehat{\oplus} H'} = - [\langle x', x \rangle, \langle y', y \rangle]_{H' \widehat{\oplus} H}.$$

2. In geometry and the theory of operators we will use the terminology and notation in [5-7]. In particular, J-orthogonality of vectors and lineals will be denoted by the symbol \perp ; the J-orthogonal complement of a lineal L will be denoted by L^{\perp}.

Let H and H' be J-spaces, with $H = H \oplus H'$. The graphs of operators from H into H' in some class or other can be interpreted conveniently in terms of the geometry of J-spaces. Thus, an operator T is J-expanding (J-contracting, J-isometric) if and only if its graph is a nonpositive (nonnegative, neutral) lineal in H. In this regard we introduce the following definition.

<u>Definition</u>. An l.r. T: $H \rightarrow H'$ is said to be J-expanding (J-contracting, J-isometric) if the lineal T ($\subset H$) is nonpositive (nonnegative, neutral).

Such an l.r. is characterized by the fact that for an arbitrary $\langle x, x' \rangle \in T$ we have $[x', x'] \ge (\le, =)$ [x, x]. Therefore, the lineal ker T is nonpositive (nonnegative, neutral), and the lineal ind T is nonnegative (nonpositive, neutral).

If T is a J-contracting (J-expanding, J-isometric) l.r. $H \rightarrow H'$, then the l.r. T^{-1} : $H' \rightarrow H$ is J-expanding (J-contracting, J-isometric).

Let T be an l.r. $H \rightarrow H'$. The subspace $(T^{\perp})^{-1}$ in the J-space $H^{\#}$ is called the linear relation which is conjugate to T and is denoted by T^c.

<u>Definition</u>. A closed l.r. T: $H \rightarrow H'$ is said to be J-biexpanding (J-bicontracting) if T and T^C are J-expanding (J-contracting) l.r.'s.

<u>THEOREM 1.</u> An l.r. T is J-biexpanding (J-bicontracting) if and only if the subspace T is maximal nonpositive (maximal nonnegative) in H.

We will carry out the proof for the J-biexpanding case. A subspace T is maximal nonpositive if and only if T is nonpositive and T^{\perp} is nonnegative; nonnegativity of T^{\perp} is equivalent to nonpositivity of $T^{c} = (T^{\perp})^{-1}$.

<u>Definition</u>. An l.r. T: $H \rightarrow H'$ is said to be J-semi-unitary (J-unitary) if T is a maximal neutral (hypermaximal neutral) subspace of $H \oplus H'$.

A J-unitary l.r. T is characterized by each of the following conditions: 1) $T^{\perp} = T$; 2) $T^{c} = T^{-1}$ (see [14, 17]). If T is J-unitary, then so is T^{-1} .

THEOREM 2. If T is a J-unitary l.r., then a)ker $T = \mathfrak{D}(T)^{\perp}$; b) ind $T = \mathfrak{R}(T)^{\perp}$.

<u>Proof.</u> It was shown in [14] and [16] that $\mathfrak{D}(T)^{\perp} = \operatorname{ind} T^c$. Since $T^c = T^{-1}$, assertion a) is proved. Assertion b) is obtained by considering the J-unitary l.r. T^{-1} .

\$3. Fractional-Linear Transformations of Linear Relations in J-Spaces

In [18] Potapov considered a fractional-linear transformation (f.l.t.) which takes J-contracting matrices to contracting matrices. This transformation was generalized by Ginzburg in [1] and [19] to the case of bounded J-bicontracting operators in an infinite-dimensional J-space. But even in the finite-dimensional case not every contraction is the image of some J-bicontracting operator. In the present section we will show that the aforementioned f.l.t. can be extended to all J-bicontracting l.r.'s. Here the images of these l.r.'s exhaust the set of all contractions. And the transformation has a natural interpretation in terms of the geometry of J-spaces. Let T be a J-bicontracting l.r. $H \to H'$, that is, a maximal nonnegative subspace in $H = H \bigoplus H'$. Let $K = K_T$ be the angular operator of T with respect to H_+ . This operator is a contraction from $H_+ = H_+ \oplus$ H'_- into $H_- = H'_+ \oplus H_-$. If $\binom{K_{11}}{K_{22}}$ is the matrix representation of the operator K with respect to the above decompositions of H_+ and H_- , then the l.r. T consists of precisely those pairs $\langle x, x' \rangle$ which admit a representation

$$x = z_1 + K_{21}z_1 + K_{22}z_2, \quad x' = z_2 + K_{11}z_1 + K_{12}z_2, \tag{2}$$

where z_1 and z_2 run independently through H_+ and H'_- , respectively. If we set $z_1 + z_2 = z$ (CH_+), we obtain the equivalent formulas

$$x = \begin{pmatrix} I & 0 \\ K_{21} & K_{22} \end{pmatrix} z, \quad x' = \begin{pmatrix} K_{11} & K_{12} \\ 0 & I \end{pmatrix} z.$$
(3)

Conversely, each contraction K, $\mathfrak{D}(K) = II_+$, $\mathfrak{K}(K) \subset II_-$, generates by means of (3) a set of pairs $\langle \mathbf{x}, \mathbf{x}' \rangle$ which constitutes a J-bicontracting l.r.

From (3) it is easy to deduce equations for the lineals associated with the l.r. T:

$$\mathfrak{D}(T) = \Re\left(\begin{pmatrix} I & 0\\ K_{21} & K_{22} \end{pmatrix}\right), \quad \Re(T) = \Re\left(\begin{pmatrix} K_{11} & K_{12}\\ 0 & I \end{pmatrix}\right);$$

ker $T = \{z_1 + K_{21}z_1; z_1 \in \ker K_{11}\}, \quad \text{ind } T = \{z_2 + K_{12}z_2; z_2 \in \ker K_{22}\};$
dim ker $T = \dim \ker K_{11}, \quad \dim \inf T = \dim \ker K_{22}.$

From these equations we can determine the connection between the properties of a J-bicontracting l.r. T and the corresponding contraction K.

THEOREM 3. a) T is an operator (i.e., ind T = 0) $\Leftrightarrow K_{22}$ is a monomorphism;

b) $\mathfrak{D}(T) = H \Leftrightarrow \mathfrak{R}(K_{22}) = H_{-};$

c) $\overline{\mathfrak{D}(T)} = H \Leftrightarrow \overline{\mathfrak{K}(K_{22})} = H_{-} \Leftrightarrow K_{22}^{\bullet}$ is a monomorphism;

d) $\mathfrak{D}(T)$ is closed $\Leftrightarrow \mathfrak{R}(K_{22})$ is closed;

e) ker $T = 0 \Leftrightarrow K_{11}$ is a monomorphism;

f)
$$\Re(T) = H' \Leftrightarrow \Re(K_{11}) = H_+;$$

g) $\overline{\mathfrak{R}(T)} = H' \Leftrightarrow \overline{\mathfrak{R}(K_{11})} = H'_{+} \Leftrightarrow K'_{11}$ is a monomorphism;

h) $\mathfrak{R}(T)$ is closed $\Leftrightarrow \mathfrak{R}(K_{11})$ is closed.

<u>COROLLARY.</u> An l.r. T is a bounded operator which is defined everywhere if and only if K_{22} is an isomorphism of H_{-} onto H_{-} .

In this case it follows from (3) that

$$\begin{pmatrix} K_{11} & K_{12} \\ 0 & I \end{pmatrix} z = x' = T x = T \begin{pmatrix} I & 0 \\ K_{21} & K_{22} \end{pmatrix} z,$$

i.e.,

$$T = \begin{pmatrix} K_{11} & K_{12} \\ 0 & I \end{pmatrix} \begin{pmatrix} I & 0 \\ K_{21} & K_{22} \end{pmatrix}^{-1} = \begin{pmatrix} K_{11} - K_{12}K_{22}^{-1}K_{21} & K_{12}K_{21}^{-1} \\ -K_{22}^{-1}K_{21} & K_{22}^{-1} \end{pmatrix}.$$

This last formula is a fractional-linear transformation of the contraction K with a continuously invertible K_{22} into a J-bicontracting operator T. The inverse transformation is of the form

$$\begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} \rightarrow \begin{pmatrix} T_{11} - T_{12}T_{21}^{-1}T_{21} & T_{12}T_{22}^{-1} \\ -T_{22}^{-1}T_{21} & T_{22}^{-1} \end{pmatrix}.$$

The correspondence $T \leftrightarrow K_T$ is the aforementioned fractional-linear transformation of Potapov and Ginzburg which connects bounded J-bicontracting operators with contractions.

<u>Remark.</u> It is precisely J-unitary l.r.'s T which correspond to unitary operators K from H_+ onto H_- . From an assertion of Spitkovskii in [20]* and parts d) and h) of Theorem 3 it follows that for a J-

^{*}In [20] the author considered matrices of unitary operators acting in a single Hilbert space. But the result which we mention here carries over easily to the case of unitary operators acting from one Hilbert space into another.

unitary l.r. T the lineals $\mathfrak{D}(T)$ and $\mathfrak{R}(T)$ can only be closed simultaneously. By virtue of parts b) and f) of Theorem 3 we know that a J-unitary l.r. T is the graph of a J-unitary operator from H onto H' if and only if $\mathfrak{R}(K_{11}) = H'_+$, $\mathfrak{R}(K_{22}) = H_-$.

§4. A Generalized Fractional-Linear Transformation Generated

by a Linear Relation

Let $H = H_+ \stackrel{\sim}{\oplus} H_-$ be a canonical decomposition of the J-space H, and let \mathfrak{X} be the set of contractions from H_- into H_+ . In [21] it was shown that each bounded, everywhere-defined J-bicontracting operator T in H generates an f.l.t. $Z \rightarrow Z' = \varphi_T(Z)$ of the set \mathfrak{X} into itself. Here, if L_Z is a maximal nonpositive subspace with angular operator Z with respect to H_- , then $\varphi_T(Z)$ is the angular operator of the subspace TL_Z with respect to H_- . In the present section we will generalize this assertion to J-bicontracting l.r.'s.

Let $H = H_+ \oplus H_-$ and $H' = H'_+ \oplus H'_-$ be canonical decompositions of two J-spaces H and H'; let \Re and \Re' respectively be the sets of contractions from H_- into H_+ and from H'_- into H'_+ ; let T be a J-bicontracting l.r. $H \to H'$, and let K be its angular operator, as in §3. We let \Re_T denote the set of all $Z \oplus \Re$ for which the operator $I - ZK_{21}$ is continuously invertible. In particular, this set contains all $Z \oplus \Re$ for which ||Z|| < 1. (If $||K_{21}|| < 1$, then $\Re_T = \Re$.)

Let $Z \in \Re_T$. The lineal $TL_Z = T$ ($L_Z \cap \mathfrak{D}(T)$) is clearly nonpositive. We will show that this lineal is a maximal nonpositive subspace in H', and we will find its angular operator with respect to H'. By virtue of (2) the set $L_Z \cap \mathfrak{D}(T)$ consists of those $x = u + Zu \in L_Z$, for which $u = K_{21}z_1 + K_{22}z_2$, $Zu = z_1$. Therefore, $z_1 = ZK_{21}z_1 + ZK_{22}z_2$, $(I - ZK_{21})z_1 = ZK_{22}z_2$, and thus $z_1 = (I - ZK_{21})^{-1} \times ZK_{22}z_2$, where z_2 runs through H'. According to (2) the lineal $T(L_Z \cap \mathfrak{D}(T))$ consists of all x' of the form

$$x' = z_2 + K_{11} (I - ZK_{21})^{-1} ZK_{22} z_2 + K_{12} z_2 = z_2 + Z' z_2$$

where

$$Z' = K_{12} + K_{11} \left(I - ZK_{21} \right)^{-1} ZK_{22} (\Subset \mathfrak{K}').$$
(4)

Since z_2 runs through all of H^L, we know that TLZ is a maximal nonpositive subspace in H' with angular operator Z' with respect to H^L.

Remark 1. Formula (4) can be written in the form

$$Z' = K_{12} + K_{11} Z \left(I - K_{21} Z \right)^{-1} K_{22},$$

where the operator $I - K_{21}Z$ is continuously invertible together with $I - ZK_{21}$.

Remark 2. Formula (4) is a generalization of the f.l.t. formula

$$Z' = \varphi_T (Z) = (T_{11}Z + T_{12})(T_{21}Z + T_{22})^{-1}$$

in [21] and can be transformed into it if K_{22} is a continuously invertible operator (that is, if T is an everywhere-defined, bounded J-bicontracting operator). Here we use the formulas in §3 which connect the matrix entries of the operators T and K_T .

LITERATURE CITED

- 1. Yu. P. Ginzburg, "J-nonexpanding operators in Hilbert space," Nauchn. Zapiski Odessk. Ped. In-ta, 22, No. 1, 13-19 (1958).
- Yu. P. Ginzburg, "Subspaces of a Hilbert space with an indefinite metric," Nauchn. Zapiski Odessk. Ped. In-ta, <u>25</u>, No. 2, 3-9 (1961).
- 3. R. S. Phillips, "Dissipative operators and hyperbolic systems of partial differential equations," Trans. Amer. Math. Soc., 90, No. 2, 193-254 (1959).
- 4. R. S. Phillips, "The extension of dual subspaces, invariant under an algebra," Proc. Internat. Sympos. on Linear Spaces, Jerusalem Acad. Press, Jerusalem (1960); Pergamon Press, Oxford-London-New York-Paris (1961), pp. 366-498.
- 5. Yu. P. Ginzburg and I. S. Iokhvidov, "Investigations in the geometry of infinite-dimensional spaces with a bilinear metric," Usp. Matem. Nauk, <u>17</u>, No. 4, 3-56 (1962).
- 6. M. G. Krein, "Introduction to the geometry of indefinite J-spaces and the theory of operators in these spaces," Vtoraya Letn. Matem. Shkola, I, Naukova Dumka, Kiev (1965), pp. 15-92.

- 7. M. G. Krein and Yu. L. Shmul'yan, "Plus-operators in a space with an indefinite metric," Matem. Issledovaniya (Kishinev), 1, No. 1, 131-161 (1966).
- 8. Yu. L. Shmul'yan, "The theory of extensions of operators and spaces with an indefinite metric," Izv. Akad. Nauk SSSR, Ser. Matem., <u>38</u>, 896-908 (1974).
- 9. E. Coddington, Extension Theory of Formally Normal and Symmetric Subspaces, Mem. Amer. Math. Soc., Vol. 134 (1973).
- E. Coddington, "Self-adjoint subspace extensions of nondensely defined symmetric operators," Bull. Amer. Math. Soc., 79, No. 4, 712-715 (1973).
- E. Coddington, "Self-adjoint subspace extensions of nondensely defined symmetric operators," Adv. Math., <u>14</u>, No. 3, 309-332 (1974).
- 12. F. S. Rofe-Beketov, "Self-adjoint extensions of differential operators in a space of vector functions," Teoriya Funktsii, Funkts. Analiz i ikh Prilozheniya (Kharkov), 8, 3-24 (1969).
- S. MacLane, "An algebra of additive relations," Proc. Nat. Acad. Sci. USA, <u>47</u>, No. 7, 1043-1051 (1961).
- 14. R. Arens, "Operational calculus of linear relations," Pacific J. Math., 11, 9-23 (1961).
- 15. C. Bennevitz, "Symmetric relations on Hilbert spaces," Lect. Notes Math., 280, 212-218 (1972).
- 16. V. P. Glukhov, "Linear correspondences in spaces with an indefinite metric," Funktsional'. Analiz i Ego Prilozhen., <u>1</u>, 37-46 (1973).
- 17. V. P. Glukhov, "Kelly transformations of linear correspondences," Funktsional'. Analiz i Ego Prilozhen., <u>1</u>, 47-50 (1973).
- V. P. Potapov, "The multiplicative structure of J-nonexpanding matrix functions," Trudy Mosk. Matem. O-va, <u>4</u>, 125-236 (1955).
- 19. Yu. P. Ginzburg, J-Nonexpanding Analytic Operator Functions [in Russian], Candidate's Dissertation, Odessa (1958).
- 20. I. M. Spitkovskii, "Recovery of a unitary operator from two of its diagonal blocks," Matem. Issledovaniya (Kishinev), 8, No. 4, 187-193 (1973).
- 21. M. G. Krein and Yu. L. Shmul'yan, "Fractional-linear transformations with operator coefficients," Matem. Issledovaniya (Kishinev), 2, No. 3, 64-96 (1967).