LAGRANGIAN AND LEGENDRIAN SINGULARITIES

V. M. Zakalyukin

INTRODUCTION

By a Lagrangian submanifold of a cotangent foliation, we mean a submanifold of the largest possible
dimension on which the standard symplectic form of the cotangent foliation vanishes. Lagrangian map-
pings are projection mappings of Lagrangian submanifolds onto the base. Singularities of Lagrangian
mappings are encountered in the study of the structure of caustics, in the study of the asymptotic behavior
of integrals depending on parameters, and so on,

By a Legendrian submanifold of a projectivized cotangent foliation, we mean an integral manifold of
the standard contact structure of the foliation having the largest possible dimension. Legendrian mappings
are projection mappings of Legendrian manifolds onto the base, Singularities of Legendrian mappings are
encountered in the study of the structure and bifurcations of wave fronts, in the study of singularities of
solutions of partial differential equations, etc,

The purpose of this note is to construct local normal forms for Lagrangian and Legendrian singu-
larities in general position when the dimension of the manifold being mapped does not exceed 10.

In §1 for a germ of a Lagrangian submanifold we construct a germ of a family of functions, depend-
ing on parameters and called generating, such that the action of the group of Lagrangian diffeomorphisms
is equivalent to the action on the generating functions of the group consisting of right changes of coordi-
nates and addition with functions of parameters.

In §2 generating families are constructed for Legendrian manifolds. Here, close germs of Legen-
drian manifolds are Legendre equivalent if and only if the germs of the generating families are contact
equivalent.

Hence, one obtains theorems, stated by Arnol'd [2] and Guckenheimer [1], to the effect that Lagran-
gian (Legendrian) stabilityof Lagrangian (Legendrian) manifolds follows from infinitesimal Lagrangian
(Legendrian) stability (§3).

In §4 we list the normal forms of generating families of Lagrangian and Legendrian mappings
R — RO, n <11 (RR — R™! for the Legendrian case) in general position.

Starting with n = 6, we inherently encounter unstable germs. Here, since Lagrangian (Legendrian)
diffeomorphisms preserve the affine (projective) structure of a fiber of a Lagrangian (Legendrian) foliation,
the normal forms have moduli that are functions of parameters.

All objects are assumed to be C® smooth.

The author expresses his sincere thanks to V. I. Arnol'd for his constant attention to this work.

§1. Lagrangian Generating Families

Recall that by a Lagrangian equivalence of a foliation T*M™N, where M™ is a smooth manifold, we
mean a diffeomorphism of T*MR that preserves the symplectic structure and structure of the foliation,
Lagrangian mappings are said to be Lagrange equivalent if there exists a Lagrangian equivalence that
carries the corresponding Lagrangian manifolds into each other, Henceforth, we shall talk about Lagran-
gian equivalence of Lagrangian manifolds.
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According to Darboux's theorem, all Lagrangian foliations are locally Lagrange equivalent, and so
we shall consider the standard foliation n: T*R™ — R" with coordinates q € RN, p € Tq R and form w =dp A
dg.

1. The following assertions follow from the definition of Lagrangian equivalence:
Assertion 1, Let £ be a Lagrangian equivalence of T*R™, and let the form o = pdg. Then:
1) There exists a function ¢: RP — R, unique up to addition of a constant, such that £*¥oa —a = d@;

2) Z is uniquely defined by the pair (@, &), where ®: RR — RN and Qon = % is the induced diffeo-
morph1sm of the base,

Proof, We shall find an explicit form for the Lagrangian equlvalence in the coordinates p and q, If
£ (p, 9 (P, Q), then Q = 6 (g), P = (6")‘1(p -+ -57). We shall write £ = (8, ®).

2. A germ of a Lagrangian manifold (L, m), L G T*R", is well projected onto the base and defined in
some neighborhood of a point m of the generating function F1,(q) by p = 6F/¢&q.

It can be verified immediately that a germ of the Lagrangian manifold(£ (L), £ (m)), where £ is a
Lagrangian equivalence, has generating function

Fowy = (FL + ©)o071 1.1)
and, in particular, is well projected onto the base,

3. Hormander's Construction [3]. Let p: Rh+k — Rn be the foliation p: R™*-» R*, We denote by
AR the subfoliation in T*RN+K, induced by p. The fiber over x = (g, u) is the set of forms B & T' « R™¥ that
annihilate the tangent space to p~1(q). Let py: AD — T*RIN be the induced mapping of the foliations and
iy: A* - T*R“* the imbedding. '

Assertion 2. Let (L, w) be a germ of a Lagrangian manifold I ) G T*R™* which is well projected
onto RP+K and which intersects AT transversely at w. Then: a) (Pj(L N AD), py(w)) is a germ of a La-
grangian manifold L G T*R"; b) the generating function F(q, u) of (I, w) at 7(w) satisfies the conditions

aF 92F 3 F
-5;1— (W) - 0' ra'nk ( dudu’® ou 3q ) = k.

Proof, Let p and v be the coordinates dual to q and u in T*R0+K, Then Al is defined in T"‘Rerk by
v= 0, By virtue of the transversality, T.N ADis a submanifold m ADn, Tet us prove that p, is reg'ular in
T.N AR, For ‘otherwise there would exist a vector & tangent to 0 Al with coordinates p; = gz = 0, v: =
0. The hyperplane Ann ¢ of vectors skew-orthogonal to .5 is not transversal to AB, and so Tw(l) C Ann ¢
would not be transversal to AR, The obvious relation p1 s w = 0 completes the proof of a. Condition b is
the coordinate form of the hypotheses of the assertion.

Definition. A germ (F(q, u), x) of the family of functions of u € RK with parameters q € R™ satisfying
Assertion 2b at x is called a generating family of the germ of the Lagrangian manifold (L, m) = (o,(T N
An), p,(w)), where (L, w) has the generating function F(g, w.

4. Consider the subgroup A of Lagrangian equivalences of T*R™* that leave AD invariant, Now A =
{(e, ®)}, where @ and & satisfy the following condition:

(B) ©: R™*— - B™* is a diffeomorphism, and ®: R™k — R preserves p; i.e., there exist a diffeo~
morphism ®: RD — RM and a function 3: RN — R such that @ = Dop, po® = Bop.

Definition. Germs of the families (Fi(q, u), xj), i = 1, 2, are said to be RV equivalent if there exist
mappings ® and ¢ such that (B) holds and F,o® = F, + &,

A acts on the generating funetion of the manifold according to (1.1), and so the germs of (L;, wy), i =
1, 2, L; G T*R™*, with generating functions (Fj(q, u), wi) are A equivalent if and only if the Fi(q, u) are
R+ equivalent,

5. A Lagrangian equivalence £ & A that preserves Al induces a Lagrangian equivalence of T*RND,
In the notation of Paragraph 4 we have £ = (6, @). In the notation of Para. 3 we obtain the following as-
sertion:
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Assertion 3. The manifold £ (L) intersects Al transversely at £ () and p, (£ (L) N A" = £ (L).

6. Any germ (L, m) of a Lagrangian manifold L G T*R” is well projected onto at least one of the 21
n-dimensional coordinate subspaces p}, gy (IL J = {1, .o es n}, IN J = ¢). In this case there exists a
unique, up to addition of a constant, function F(pI, qJ) such that (L, m) is defined by the equations

__ oF _OF
— b5 = 'é-q?y qr = -"FI_ .

It is easy to verify that the germ at x = (g, pIo)’ where m = (qg, PI, pJ,), of the family Gy, = pjq1 —
F(pI, aJ) is generating for (L, m). If the number of elements of I is minimal for (L, m) and k(I) = dim ker
74| TL, then (3°F/8prapp) = 0 (see [2]).

7. Definition, The families F{(q, u}, € RD, u € RK, and Fy(q, v), v € Rl, are said to be R*-stably
equivalent if there exists a family Fs(q, w), w € RS, s s/, k, such that the Fj, i = 1, 2, are R* equivalent
to the families F; + Qj, where Qj is a nondegenerate quadratic form in the appropriate number of variables
uorv,

Assertion 4. All generating families of (L, m) are mutually R*-stably equivalent,

Proof. Let (F (q, v), (qy, v¢)) be a generating family of (L, m), m = (qy, Dg). Then, by the generalized
Morse lemma for functions depending on parameters, there exists a diffeomorphism ©,: (q, v} — (g, V(q,
v)}, that induces the identity change of parameters q such that F-®, = F(q, u) + Q, where v= (u, w), u €
RK, and Q is a nondegenerate quadratic form in w and (BZF/auEu)(qﬂ, ug) = 0-

According to Assertion 3, F; + Q, and therefore, F, are generating germs for (L, m).

n2F
doudg;
(q, w) — (g, 8F/0qy) defines a diffeomorphism of a neighborhood of (g,, u,) into a neighborhood of (g, pIo)'
The germ of G = F;> 03! at (q,, p]o) generates (L, m), where p; (see Para. 3) has the form

If L is well projected onto (p1, qJ), where k(I) = kpyin, then det ( ) == 0, and the mapping @,:
{qe, tto)

. aG aG
Pt <Q1Ph “5;) g (Q, pIy&TJ) .

Thus, d(G1, — G)|mL = 0, where m is the projection m: (g, p) — (g, py. The manifold m L is defined
in a neighborhood of m,(m) by 8GL/6p] = 0, and so the germ of GL, — G + ¢, at m(m), where ¢, is a constant,
belongs to U?, where U is an ideal in Cr (m) (n +k, 1) —the ring of germs at 7(m) of functions Ro+k — R,

4G
U= Com(n+k1) {55;} )

Consider the homotopy Gy, G; =G+ t(G —Gr), t<[0,1]. It follows from the relation (8*G/8p1opD) ™, (m) =
0 that there exist smooth functions ho, glq, pL, 8, @, 8=1,. .., k, defined in U x [0, 1], where U is a
neighborhood of m(m), such that .

Gy, 3G,
e = %‘,Tp;ha, . (1.2)
1t follows from (1.2) that there exist smooth functions Hy{q, pi, t), defined in U x [0, 1], such that

4, ac,
Halr:,L=01 —a_t—:—aa—[’;Ha'

The field (q, pp = (0, Hy) defines 2 one-parameter family of diffeomorphisms 6t of some neighbor-
hood of 7,(m), that are identical on m L and carry Gi. into Gt.

The composition 67 o 63 o ©, sets up an R*-stable equivalence of the generating family F with the
fixed family Gy,. This proves the assertion.

THEOREM 1. Germs of Lagrangian manifolds (Lj, mi), i = 1, 2, are Lagrange equivalent if and only
if the germs of the corresponding generating families Fi(q, uj), uj € Rkl, are Rt-stably equivalent (and R+
equivalent if ki = dim ker mx | y;).

The proof of the theorem follows from Assertions 3 and 4.
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§2, Legendrian Generating Families

Definitions. By a Legendrian foliation, we mean a foliation =n: M**+'— E"+1 whose space is a contact
manifold and whose fibers are Legendrian submanifolds. The definitions of Legendrian equivalence,
Legendrian mapping, and equivalent Legendrian mappings are similar to the Lagrangian definitions (see

3D.

Locally, all Legendrian foliations are Legendre equivalent, We shall consider two local models of
Legendrian foliations connected with the contactization and symplectization functors of the standard La-
grangian foliation, respectively:

1) JYRY, R), T, @), where J*(RD, R) is the space of 1 jets of functions R — R with coordinates q €
RY, p€ Taan, z € Rf; the projection 7: (p,q, z) — (q, z) and hyperplane of zeros of « = dz — pdq define a
Legendrian foliation structure;

2)(PT*R™, R, B), where PT*R2*! is the projectivization of T*RM! with coordinates x € R and
y € T,"EORn'H — the homogeneous coordinates in the fiber; the projection m (%, y) — (x) and form g = ydx on

T*RPM! define a Legendrian foliation structure in PT*RM,
We denote by T*R™+ \ R"+! - PT*R"*! the projectivization and by A (A = R \ {0}) the mapping =\
T*R™ — T*R™1, #A: (x, ¥) = (z, Ay). Then the mapping
I: Jo(f (@) ~ pr (d(z— f(9), L: JMR", R)— PT*R",
realizes a Legendrian equivalence of 1) and 2).

Assertion 1, A Legendrian equivalence is uniquely defined by the induced diffeomorphism of the
base,

Proof. A Legendrian equivalence € of PT*R™! has the form & = prsZ-pr-1, where L is a fiber-
homogeneous Lagrangian equivalence of T*RD, i.e., *AoL = Lo(#A). Now L is uniquely defined by the in-
duced diffeomorphism of the base (see §1).

1. If a germ of a Legendrian manifold (L, m) G PT*R"*' ig well projected onto the base, then there
exists a germ of the generating function (#1,(x), 7 (m)) such that L is defined by

o0 :
L and L]

Dy (@) =0, y=-7" 0.

Bz (m)
The function ®(x) is defined up to multiplication by ¥(x), ¥{w(m)) = 0.

The Legendrian equivalence £ defined by a diffeomorphism of the base ©@ acts on &1, by the formula

Qe = ¥ (2) (Dr0). (2.1)

2. Hoérmander's Construction. Consider the foliation p: R"+*+1 — R"*1 and the subfoliation A®"! (see
§1). In the diagram

T‘Rn+k+1 _i:_’ A‘IH-I _ﬁ'_. T;Rn+1 (2 2)
N |= | =
n{'c-k-u 5 ln+1
R P R

——

the mappings i; and p defined in §1 commute with the mappings +A in T*R™+*+1 gpnd T*R™+!, and so, project-
ivizing T*R™+! and T*R"**+) we obtain the commutative diagram

PI'R™k1 i pgret & ppiRtH
N }; { : (2.3)

N\ '
Rn+k+1 ? B
where £°prop,.

Assertion 2, Let (i, m) be a Legendrian manifold in PT*R™+*+! which is well projected onto the base
and which intersects PAP™! transversely at m. Then & (L [) PA™)is a Legendrian manifold in PT*R™,

The proof follows from the fact that pr-! (L [} PA"+Y)is a conic Lagrangian manifold in T*R"+¥*! that
satisfies the hypotheses of Assertion 2 in §1 at m= pr~'(m), and also from the fact that p, in (2.2) commutes
with ¢ * A,

(RN, R) is naturally isomorphic to T*R x R,
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Definition. A germ of the family (F(x, u), (x,, uy)) of functions of u € RK with parameters x € RAFL

oD 3 ad
Tt e vy = 05 V10K N0 = K + 1, wheren: (@, u) —~ (®,52),
i.e., which is a generating function of some Legendrian manifold (L., m), satisfying the hypotheses of As-
sertion 2, is called a germ of the generating family of a germ of the Legendrian manifold (L, m,) = (& (£ [
PA™Y), E(m)).

3. Let A be the subgroup of Legendrian equivalences of PT*R"+"-! that preserve p. Let $=A. Then
there corresponds to £ a diffeomorphism of the base &: R***+1  R"+¥+1 that preserves p (see §.4).

satisfying the conditions: a) @ (u,, z4)= 0,b)

Definition, Germs of the families Fj(x, u), i = 1, 2, are said to be K equivalent if there exist a dif-
feomorphism ®, that preserves p, and a function ®(x, u), & (x5, uy) = 0, such that Fy = ¢(F,~8).

The definition of K-stably equivalent families is introduced in the corresponding way.

A acts on the generating function of T according to (2.1), and so the germs of Legendrian manifolds
well projected onto R"*"*'are Legendre equivalent if and only if their generating functions, regarded as
families, are A equivalent,

4. Any germ of 2 Legendrian manifold has a generating family. For, a germ (L, m) of a Legendrian
manifold in J'(RN, R) is defined by the generating function F(py, qJ) by

ar ar
=P ar=p =z pyr—Fpn ).

In this case F1, = z + pra; — F(pp, qJ) is a generating family for (L, m).

5. Assertion 3. The germs of the generating families of (L, m) are mutually K-stably equivalent.

Proof. Let x = (q, z) be coordinates in R™*! and UR*! the affine chart of PT*R™+1, U™ = {(z, y),

Yua+0}. Then i U JY (R, R, bt (2, ¥) — (.,-,ﬁ)is a Legendrian equivalence.
In some neighborhood of m(m) in RP*! the coordinates q and z can be chosen so that ynL is well pro-
jected onto T*RP (see preceding footnote).

Let the generating family F(x, u) of (L, m) be a generating function of a germ of the Legendrian man-
ifold (7, w) CC PT*R™***+! that satisfies the hypothesis of Assertion 2, and let w &= {7n+k+1 Then there exist
an imbedding i; and a projection £ such that the following diagram commutes:

PR 1 ZLJNRYR)
I Ynek “"Mk |""n (2.4)
Un-, K+1 ‘i;_ [)‘4n+1 _E_.Ul-“l

~

asy and A - Im(Pp+k). It is easy to sce that by means of the natural projection

Here Yourp = q1n+/\'l(,’?"k?lﬂl’_4

n

ny: I'(R", R) - T*R" ni: (p, ¢, %) — (p, 9), the upper row of (2.4) can be completed to the commutative dia-
gram
T"Rn+k ‘_i_,._ A" .il._. T‘Ru

T_n+k i_ru»k T n

"y

. . . : (2.5)
JYR™ R).B. I _E.JYR"R),

where iy and p; are defined in §1,

m*R(LY) — the projection of I’ = ., Z under n?’Lk — is a Lagrangian manifold that satisfies the hypo-
thesis of Assertion 2 in §1, and, since (2.5) is commutative, p, (ns "L’ ] A" = =i, (L).

A generating function of a germ of L' has the form ¢(u, q, 2z) (z + IN?(q, u)), where & (Pn+ki{w)) = 0 and

f«‘(q, u) is a generating function of Ayt L. Assertion 3 now follows from the fact that T(q, u) is a generating

family of )L, i.c., belongs to some fixed orbit of the group of R*-stable equivalences.
The next theorem follows from Assertions 2 and 3.

THEOREM 2. The germs of Legendrian manifolds are Legendrc equivalent if and only if the corre-
sponding generating families are K-stably equivalent,
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§3. The Stability of Lagrangian (Legendrian) Mappings

We provide the space of functions F: RD*K — R and the space of mappings i: RD — T*RR, where i is
a Lagrangian-manifold imbedding, with the Whitney C* topology. We say that Lagrangian manifolds are
close if there exist close imbeddings of them.

The following assertion follows from the definition of a generating family:

Assertion 1. If generating families are close, then so are the corresponding Lagrangian manifolds,
and if a Lagrangian manifold (1, m,) is close to a Lagrangian manifold (L,, m,) with generating function
F,, then there exists a generating function FJ,, close to F,. If, in addition, the germs (I, m,) and (Ly,
m,) at the close points m; and m, are Lagrange equivalent, then (F1,, m,) and (Fj, m,) are R* equivalent.

A topology is also introduced in the space of Legendrian mappings.

Definition. A germ of a Lagrangian (Legendrian) manifold (L, m) is said to be Lagrange (Legendre)
stable if for any Lagrangian (Legendrian) manifold close to L there exists a point m, close to m such that
(M, m;) is Lagrange (Legendre) equivalent to (L, m).

THEOREM 3 (Arnol'd [2], Guckenheimer [1]). A germ of a Lagrangian manifold (L, m) is Lagrange
stable if and only if the generating family F(q, u) + z with the additional parameter z € R is a versal de-
formation of the germ at (0, uy) of f(q) = F(q + g, Ug), m = pylgg, uy).

LEMMA 1. Iet G(x, £) be the family of functions of x € RR with parameters ¢ € RY. Then the follow-
ing conditions are equivalent:

1) G(x, €) is a versal deformation of the germ of f(x) = G(x, £);

2) the mapping "G: R*+"— Jy(n, 1),* 'G: (z,, &)= Jy (G (z + x,, £)), is transversal at (0, ;) to the orbit
TOf of r jets of f under the action of the group of right substitutions (RR, 0) — (RR, 0),

3) there exists a neighborhood of (x;, €)), in which for any family F close to G there exists a point
(x4, €;) such that the germs of (G, (xj, &) and (F, (x, €)) are R equivalent.

The proof of the lemma follows from the versality theorem [5] and from Assertion 1.6 of 6] (see
also [7]).

The theorem follows from Assertion 1, Lemma 1, and the following remark:

Assertion 2. If the versal deformations Giu, q) +z,z€R, i =1, 2, of the functions f; are R equivalent,
then the families Gi(u, q) are Rt equivalent. '

THEQREM 4. A germ of a Legendrian manifold (L, m) is Legendre stable if and only if the generat-
ing family F(x, u) is a versal deformation for the levels of f(u) = F(x,, u + uy); i.e., for any germ « € C(u)
there exists a decomposition

a ar
a=gf+L p+i|

where P Y C (u’)’ %; = Rv i= 1""1 kv j= 11"'1 n -+ 1.

The theorem follows from the versality theorem for levels and §2,

§4. Normal Forms of Lagrangian (Legendrian) Mappings

A generating family F(qg, u) of a germ (L, m) of 2 Lagrangian manifold is induced by a versal deforma-
tion of f(u) = F(qy, u), m = (g, py) (see §1); i.e., there exists a mapping E: (g, u) ~(y (9), T (u, 9)), ¥y = R*,
such that
F(gu)=/@+ 2o @ yi(a) 4.1)
where ¢i, 1 =i =y, are generators of the R-module C(u)/{6f/ou}.

If (I, m) is a stable germ, then the inducing mapping = is a diffeomorphism, and (4.1) is a normal
form of a stable generating family.

*J¥(n, 1) is the space of r jets at 0 of functions f: R™ — R.
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THEOREM 5 (on Semiuniversality).* Let G(x, y), x € RK, y € R, be a miniversal deformation of f(x).
Let @ be a family diffeomorphism, G- ® = G and © the corresponding parameter d1ffeomorph1sm, Bomw=
7° @, Let K be the stationary group of diffeomorphisms, foeh = £, h: (RK, 0) — (RK, 0) and K the discrete
group of connection components of K, Then {@} is isomorphic to K.

LEMMA 1. Let G(x, y) = (%) + yi@i(%), and let ©¢ be a one-parameter family of diffeomorphisms,
t€[0, 1], Go® = G. Then 8 = idpn.

[ ]
Proof, The field (z, y) generated by Gt satisfies the relation
O_Z/af z a(pi‘o‘ .2 o
=2 (&;“P : yi&;)%"f‘ : il

. 0
In the space of functions x andgr consider the following grading with respect to powers of y:

[} o

o [ [ 1}
T=Zio+ Tt V=Yoo YT
Let us prove that all the ny1 s=0.

Since ¢j is a minimal systern of generators of the R-module C(x)/{éf/éx}, we have y1 o = 0. By in-

duction, from the assumption y1 m = 0 we obtain
D .
61~j .’L'] m = 0 2./1 m Z(Piyi‘ mel = 0. (4.2)

Since the Koszul complex of the gradient of { is acyclic, it follows that xz m= Zaa aaaf, where ag, ;5 € C(x, y)
and a3 + ag, , = 0. It follows from (4.2) that y1 m+1 = 0. This proves the lemma

LEMMA 2. Let ® be a diffeomorphism, G°® = G, and let &, =0|,~, be a mapping such that there
exists a homotopy ht, t € [0, 1], foht = f, hy = idgk. Then ® = idgp.

Proof, ® can be joined by a homotopy ©¢, t € [0, 1], with idgn.x SO that 8,|,— = k. Set G = Go O,
Then Gt ly_o = f(x). According to Lemma 1 of [5], there exists a family of dlffeomorpmsms 6., 110, 1],
smoothly depending on t and T, such that 6} o=1dpgn.k, and

Hom ol =idy, 6= G0l =+ 35| «.3)
N

and if G, = f +2‘?a_% Ui then
O, - = idpner, 110,11 (4.4)
By Lemma 2 in [5], there exists a family ®%’ satisfying (4.3) and (4.4) and such that Gt t1 = G,
Thus,© o é},l >0}, = idgn, and it follows from (4.2) that G = idgn. This proves the lemma.

Proof of Theorem 5. Suppose that @i, i = 1, 2, preserves G and that G,%; = 6;[,_,. Suppose that h,
and h, lie in the same connection component of K, Since k; == 0, o 0;'],—¢ lies in idgk in K, by Lemma 2 we
obtain ©, o ©;' = idgs. This proves the theorem.

The proof of the following theorem is similar:

THEOREM 6. In the hypotheses of the theorem on semiuniversality, suppose that &: RS — RR, y =
£(q) is a regular mapping and that dyr/dq # 0, 1C {1, ..., n}, I={i;, . . ., ikf. Then the family F(¢(q), x)
is R* equivalent to the family

@)y + 2 qu—E 0(9) ¢50

el

where the 7 (g) are smooth functions defined by £ up to the action of {5}

THEOREM 7. The mappings which, in a neighborhood of each of its points of Lagrangian equivalence,
reduce to Lagrangian mappings having the following generating families form an everywhere dense open

*All objects under consideration in this theorem are assumed to be real (complex) analytic.
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set in the fine C™ topology in the space of Lagrangian mappings wei: R0 — RR, n < 11:

for n <5 see [2];

for p = 6 also 4., %D., 0];7, 1P

for n = 7 also “flﬁ 0D51 E87 Psv PB! Xm

for n = 8 also YAy, °Dy, °Py, °Xy, P1o, *Q1a, *Ruyys Xln. 7101

for p = 9 also oAlm Dlm °P1o, °Q10y "Rty “X10y 101 Py, 1011y *Rays
lSnv T4,4,41 X117 Y5 31 uv Juv KlOa

f‘“ n =10 also %4y, "Dy, OPyy, an R4m Su» T 4,804 Xn, )5,51
ole! 11’ 1P12? Ql"’ 1 4469 1Ra,5v 12 T;,q,m 6127 Xl" IY-)’Gv yhn 129
1”’12» 12+ 12 5 16
Here /&, denotes the generating families

—1

O, = f (1) + Z ¥ () @ () + 2 5195 (1),

i=1 Je=l+1

where: a) the yi(q) are smooth functions;
b) f(u) belongs to the class &, of singularities of functions (see [8, 9]);

c¢) the stratum p = p(®) in the space M C C (u) containing f has the following form in a neighborhood
of f:

,
fw)+ 2 a;9; ()  {a;are moduli);
1

d) the functions 1, ¢i(u) i=1,..., 1), cpj(u) G=r+1,..., p~1)are generators of C(u)/{5f/du};
el =r,
For example, !Pg has the form

1Py = = U} & uf & U3 + yy (@) wylaus + quul + galig + gau3 -+ quity + Gsits + Gelts

Proof. The smooth strata u = const, eodim < 11 and union of the strata codim = 11 form a stratifica-
tion satisfying Whitney's first condition. The mappings transversal to a stratification form an everywhere
dense open set in the space of mappings (u, g) — C(u), transversal to M* (i,e., Lagrangian mappings; see
§1).

The form of the normal forms follows from Theorem 6.

A similar list of normal forms of Legendrian mappings corresponds to the contact stratification of
Clw.

THEOREM 8. The mappings which, in a neighborhood of each of its points of Legendrian equivalence,
reduce to Legendrian mappings having the following generating families form an everywhere dense open set
in the fine C* topology in the space of Legendrian mappings R? — R®*, n =11:

for n=1 %43 for n = 2als0 °4A};

for n = 3also °A}, °D;; for n = 4also %4}, °D}; for n = 5 also °4;,
°Ds, “Eg;

for n =6 also %45, °D}, °E;, 'P;;

for n = 7also OA:" OD:' OE opsv X;v up;;

for n = 8 also °A:, °D;1 oX;v l-]ro, Dﬁrm o ;oy o@;m °ﬁ:,|;

for n=9also %Ay, °Djy, *Jip °Kie °Ph, °Qh, °Ris *Sin Thaw
° ;1, W;.sy 02;11 of;ﬁ

for n = 10 also OA;Iv OD:.-I! oPIz: DGIZZ_OR::M oﬁ;:’n 05";2, OT:.I,Sa OUIE’
uf;?; OY;;M QY:'_“ oztzv OW;-Zv Oj;’m ok_;zv ‘D;s-

Here '@} = Oy (4, g5y . . -, ¢s) + gnu (see Theorem 3); for unimodal singularities (r = 1)
#—1

DY = £ (W) + a1 (W) + B 4,0 @) + doype
i=2

where g, is a fixed value of the modulus, and “(j{. is a four-modal family of generating families:

‘(71'. =ul + uj + u§ + uf + (a1uy + @ty + agu; + agn)® +
+ ugtgustty + qut + gaul + qsus + qaul + gsugke + Qelalls +
T qatty + Gelts + Got3 T Grlts + Gy-
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The proof of the theorem is similar to that of Theorem 7.

In conclusion, note that it would be interesting to classify Lagrangian or Legendrian mappings with

respect to wider groups of equivalences, especially when the Lagrangian mapping depends on parameters.
The definitions can be found in {10, 11-14].

Ll

10.
11.
12.
13.
14,
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