WAVE-EQUATION SCATTERING IN EVEN-DIMENSIONAL SPACES

V. M. Adamyan

1. Formulation of the Problem

Let G be a domain in m-dimensional Euclidean space Rm, the complement of which is contained in
the sphere Qg = {X: x| < a} and has a smooth boundary 8G. Let o(x) be a smooth, nonnegative function on
8G. By H(g, o) we denote the Hilbert space of ordered pairs of functions on G with norm defined by the
expression
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It is well-known that the resolvent group generated by the exterior Cauchy problem for the wave
equation

3
8% = Av, —a%—{—c~v'aa=0, (1)

(Ui atv)t=0 = (fl! f2)1 ilv fz == Cm (6)1 (fls fz) e H (G: 0)
can be extended by continuity to a group of unitary operators {U(t)} in H(G, o).

In H(G, 0), single out an outgoing subspace 2% and an incoming subspace P2 that consist of all ini-
tial values for which the (generalized) solutions of the Cauchy problem (1) vanish on the truncated cones
[xI <a+t,t> 0, and |x] <a —t, t <0, respectively. The subspaces 2% possess the following properties
i1, 2]

1 U(E) D2 C DL, >0, NUNDE={0} 2 LtJ U)Z5 =H(G, ). (2)

By L,(N) we denote the space of measurable vector functions on (—e, «) with values in some fixed
Hilbert space N.f By virtue of properties (2), there exist isometric mappings ¥+ (G, o) of H(G, o) onto
L,(N) such that

1) (Fz (G 0)U ) (A) = e™(F£ (G, o)) (W),
2) 7+ (G, )DL = HE (N), (3)
where

HE(N) = {f: foy=1lim.§ eFMg@yat, g = L, (N)}.

The mapping %- (G, 0)F+ (G, o) in Ly(N) acts like "multiplication" by a measurable operator-function Sq(G,
o/, the values of which are unitary operators in N, The function S,(G, o |A) is called the scattering matrix
or the scattering suboperator. In scattering theory, singularities in wave propagation near scattering ob-
stacles (within the sphere Qg in our case) as well as the structure of these obstacles can be successfully
studied using the scattering matrix. Many important results concerning external problems for wave
equations were obtained in this manner by Lax and Phillips and are presented in their monograph {1] and

TIn the theory of wave-equation scattering, the natural realization of N is the space of functions Ly(Sy-q)
on the unit sphere Sy -; in Rm.
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in their subsequent articles. In addition, in [1] Lax and Phillips describe in detail general systematic
ways of investigating wave systems that are based on the analysis.of special spectral representations of
the group {U(t)} generated by the outgoing and incoming subspaces.

In the case when the space Rm is of odd dimension, the subspaces ﬂj‘:'t turn out to be orthogonal in
H(G, o). This additional property of the outgoing and incoming subspaces leads to the situation where, for
wave equations in odd-dimensional spaces, the scattering matrix is a (nontangential) boundary value of an
interior operator-function [1], Reecall that a function Q(z) that is holomorphic in the lower half-plane and
the values of which are operators from N into N is called interior, if 1) IQ(z) |l <1 for Im z < 0, and 2)
s«lillgl Q*(A—it)Q (A — it) = s—liﬁ)l Q (A — it) Q* (A — it) = I |y (almost everywhere).

If R is of even dimension, the subspaces 2% are not orthogonal in H(G, o). Nevertheless, for a
fixed positive value of the parameter a>0 independent of the domain 6 (B,\G C ©,)and of the function o on
8G, in all spaces H(G, 0), the subspaces &% obviously consist of one and the same classes of functions, and
the metrics of the spaces H(G, o) coincide on the lineal &% + 22, In view of this fact, a natural question
arises: Doesthere exist a universal formula univalently connecting the family of scattering matrices S,(G,
o|-) for the wave equations (1) in even-dimensional spaces for a fixed radius of the sphere Q4 that contains
the scattering obstacles with some subset of the family of interior operator-functions ? The following
theorem gives a complete answer {o this question,

THEOREM 1. Set

V= i(za-{-%) _ H(lz) (za) Hflz) (za)
@)= 2C, ° 4 [H(f) (~ ia) HY (— ia) ]’
_ V& et f) = HY () HE (z0)
9@ =1 2, ¢ Va [ H® (— ia) h H® (— ia) ]’ “)
—n<arg <0,
where HSZ) and ng) are Hankel functions of the second kind, Cg¢ is a nonnegative constant, and
€3} = — iaHY (—io)Hy (—ia).

The scattering matrix S/G, ¢|A) generated by the scattering problem for the wave equation (1) in an
even-dimensional space can be represented to within multiplication on the left and right by arbitrary uni-
tary operators that do not depend on A in the form

SaGolM)=[@MWI+PMNEG o IMp M +gMEG oM, (5)
where & (G, o | A) is the boundary value of an interior operator-function. .

In odd-dimensional spaces, the scattering matrix Sq(G, o |\) for equation (1) in essence coincides
with the boundary value of the characteristic operator-function @g(z), Im z > 0,1 of the infinitesimal op-
erator of the semigroup of contractions {Z(t)}, t > 0. This operator-function operates in the subspace K =
H (G, 0) © |97 ® 9°] and is connected with the group {U(t)} by the formula

where PK is the orthoprojector onto the subspace K. In this case, the operators Z(t) defined according to
(6) form a semigroup of contractions due to the orthogonality of Z; and 772 (see [L]). At the same time, the
function

Sa(G,cs{’;):Sa(G,sli %t”’ 1t)=1,

is actually the boundary value of the characteristic operator-function ®T{(w), [w] < 1, of the cogenerator T
of the semigroup {Z(t)},

v

T=B+il)(B—ily'=1— ZS et Z@)dt =1 [x— 28 e~ 'PxU (£) |xdt.
0. °

ﬁn fact, the functions Sg(G, o) and 65 () = s-liﬁ 8 (A — i1) are connected by the equality

eB (l) = olsa @G, of A') O,

where O; and O, are arbitrary unitary mappings of N onto the spaee in which the operator-function @g(z)
operates,



For Eq. (1) in even-dimensional spaces, the boundary value of the characteristic contraction opera-
tor-function

T =1Ilx —2§ e-'PxU (¢) |udt,
0

which operates in the subspace K= H (G, o) & (D} + D2), coincides with the function & (G, ¢ |-) in expres-
sion (4) for the scattering matrix to within multiplication by constant, unitary operators and a change of
argument A = i ({ + 1) (£ — 1)™%, But then the semigroup of contractions generated by the scattering opera-
tor B=1i(T + I) (T — D! does not coincide with the operator-function PKU(t)l t > 0, that characterizes

the dissipation of the energy from Q4. In fact, the values of this function no Il(onger even form a semigroup.
Nevertheless, the function PKU(t) |k can be reconstructed from & (G, o | A) to within an isomorphism, That
is, the following theorem holds.

THEOREM 2. There exists a unitary mapping W of the subspace K onto the subspace H; (N) © 8 (G,
¢ | -)Hy (N) such that, for any f € K and any t > 0,

(WP (1) /) () = e (WNH (A) +

< ittt ~i

=86, o 10 P B — T 118G, ol w) P — TG (W) @) d
Also,

(Wexp (— iBt) fy (M) = e-M (WH (M) + —2,’;; S —’:W,';_;_‘—M— &(G, o[A) & (G, s|p)(W)) (p) dp-

—-oQ

Theorem 2 is a corollary of general propositions of coupling theory of semiunitary operators [3].
A description of the operator-theoretic constructions leading directly to the proof of this theorem will be
presented elsewhere. In this article, only Theorem 1 is proved.

2. Preliminary Remarks

Let R\ G, and R\ G, be domains that have smooth boundaries &G, and 8G, and are located in the
sphere Q4. Let 0y(x) and 0,(x) be arbitrary smooth, nonnegative functions on 8G; and 8G,. Let §: (G, o,)
and ¥+ (Gy. 05) be isometric mappings of the spaces H(G;, 0;) and H(G,, 0y) onto Ly(N) that satisfy condi-
tions (3). Since each of the spaces H(Gy, 6¢) and H(G,, 0;) is a completion of the lineal Z: 4 D2, the oper-
ators F+ (G, 09) F % (61, 0y) are uniquely defined on the subspaces Hy(N), respectively. The operators §: (Gs,
) F £ (Gy, 0) obviously map the subspaces HFf(N) isometrically onto themselves and commute in Hf(N) with
the semigroups of operators of multiplication by the functions e*At, t > 0, By means of arguments usually
adduced in the proof of the Beurling — Lax theorem concerning invariant spaces of semigroups of translations,
it is easy to verify that operators with the same properties as F+ (G, 6,)F = (Gy, 0,) operate on vector-func-
tions in Hi (N) like operators of "multiplication" by unitary operators in N that do not depend on the vari-
able A.

Since §4 Gi, 61,)F+ (Gis 01) = I |G, 0, i = 1, 2, this last assertion means that there exist unitary
operators Q. in N such that, for arbitrary vectors f+ = 23, the equalities
(F £ G 62)f2) ) = Qx (Fx (Gr, 01)fx) ) 1)
are valid,

In particular, these equalities hold also in the case when one of the domains in (7) contains no points
at all, i.e., in the case when one pair of the mappings ¥ F% in (7) satisfying conditions (3) is constructed for
the group {U0 ®} generated by the wave equation in free space,

Analogous considerations show that, in addition, any mappings § + (G, 0)and F % (G, o)constructed for a
general domain G and a general function ¢ that satisfy conditions (3) coincide for like "+" indices to within
multiplication on the left by an arbitrary unitary operator in N,

Having fixed the mappings ¥ constructed for the wave equation in a space with no obstructions in
accordance with requirements (3), we will assume in what follows that the mappings § + (G, o)are subject to
the conditions

Fx (G, 0) | (8)



and, therefore, that all of the mappings 4 (G, 6) coincide on the domains T%..
Denote by H, the Hilbert space of pairs of functions f = (f;, f;) on Ry with the norm

=7 @@ +1h@ R

By

From the definition of the subspaces 25, it follows that the supports of the functions in these subspaces
are concentrated in R\ €,. Therefore, as we have already mentioned, the equalities

1 ¢

(o Fre, oy =5 \ {@sfs,)) @N0uf-2) @)+ fr2 (@2 (@)} dz = {f,, fm, (9)
1x|>a
are valid for any vectors f+ € D3 independently of the domain R, \ G in the sphere ©4 and of the function
o on 0G.

Let S"a()») be the scattering matrix for the wave equation in free space. Recalling the definition of
the scattering matrix Sq(G, o|A), we have

U G0 = § (F (G )F,1M), [F:(G,0) fI(N) dh =

o

= § (5.(6 s[MIF, 6, ) LIM), [F-(G0) f1 (W) dh =

= § (5@ sIMIFLIM) (F2] (W) dh
on the basis of the properties of the mappings 74 (G, o) [including equalities (8)] for arbitrary vectors
f+ € D%. Since, on the other hand,

(o Fme= § (SSVIFULIM), 1551 dh

and since the vector-functions § £/+. I+ & T%.span the subspaces Hff(N), we conclude on the basis of (9)
that the difference $4(G, o|A) — S"a(k) is the boundary value of a bounded operator-function that is holomor-
phic in the lower half-plane,

By Lwf[N, NJ]), denote the space of essentially bounded operator-functions on the real axis that map
Ninto N. In L, ([N, N]), single out the subspace H% ([N, NI) of boundary values of bounded operator-func-
tions that are holomorphic in the lower half-plane. Define the functions C, and €, of Lo([N, N]) to be
equivalent if (€, — C,) € HY(IN, N]). From the reasoning adduced above, it follows that all scattering ma-
trices Sq(G, ¢iA) belong to the same equivalence class as the function Sgl(k).

Appropriately choosing the mappings ¥ 0:::, we have Sg (A) = e®*e], if Ry is of odd dimension, and
S (A) = e®¢sign M, if Ry is of even dimension [2].

In the odd-dimensional case, the class of functions that are equivalent to the scattering matrix S{(\)
obviously coincides with the subspace HL([N, N]), and, therefore, all scattering matrices S4(G, o|), con-
sidered as unitary-valued functions in this class, turn out to be houndary values of interior operator-func-
tions,

In the even-dimensional case, the scattering matrices S4(G, 0|} are unitary-valued functions equiva-
lent to the function e?™¢sign I. To prove Theorem 1, it now remains only to verify that all such functions
are described by formula (5) when the "parameter" & (G,s[A) runs through the set of boundary values of the
interior operator-funections.

3. Completion of the Proof of Theorem 1

First of all, let us show that any scalar contraction function s(X) that is equivalent to the function
sy (A) = e¥*asign A in the sense indicated above can be represented as a linear-fractional transformation

s(R) =17 Me ) + g M p A) + g (e W (10)

of a contraction funetion e() in the subspaceHY, (= HL(IN, N]), dim N = 1) of Le.



Let Mj be the set of scalar contraction functions equivalent to the function

) PR LT e oy HEG9)
0 = Tmram — T sienh g (11)
In addition to s;(\), the function
- . (1)
oy —EPM TR na H{" (Aa)
s;(A) = 0 —aa = — e~tida sxgnkw 12

also belongs to the family Mj. Indeed, by virtue of well-known properties of cyclindrical functions and, in
particular, in view of the fact that, on the main branches of the functions HOZ) (z) and Hl(z {z), there are no
zeros, the difference

4ig 200 1

5i(A) =85\ = — —— - AD (o) H® (ha)

turns out to be in HL,.

Since the family of equivalent contraction functions Mj contains more than one element, by the basic
result of [4] there exist functions p(z) and q (z) holomorphic in the lower half-plane satisfying the condi-
tions:

DIFT@I<L, (@) I<t, Imz<0;

2) P(=)>0, §(—i) =0

NIPMLE—1dM(*=1, Imi=0;

4) p(z) is an exterior function, i.e.,

| ¢ Inj7 M)
]ll]ﬁ(—— l)l —?‘:—- S Wd?u.

Also, the functions p(z} and q(z) are such that a one~-to-one correspondence between the contraction func-
tions e € HY, and the functions of Mj is established by the formula

o) =B Me ) + 7 MR + 7 We @I (13)

In addition, in order that the function sg € Mj be the image of a unitary constant € under the mapping
(11), i.e., that it be a so-called canonical function [4], it is necessary and sufficient that one can put in
correspondence with the function se € Mj one and only one (to within multiplication by a positive, real num-
ber) function ¢ out of the Hardy subspace Hj that is connected with s¢ by the relation se(\) = (A + i)pe(A)/
(=1 ge@).

In such cases,

1i 1
A) = - —
%M =7 8p (M + 07 ()

92 =g, (14)

to within multiplication by a real constant.

Analyzing the explicit expressions and the asymptotic expansions for the functions HéZ) and Hl(Z), it is
easy to see that the functions si(A) and s-i(\) are canonical. On the basis of Eqgs. (11), (12), and (14), this
assertion implies that :

€ TP+ T =[P () + 64T (1)), Tme, =0, (15)

ETPM e T g0 = ale P () 4G M), Tme,=0.
The functions p(A) and q(A) have the following obvious properties:
Hp(—>0, g(—)=0 2 |pMI*—=Tgd)|*=1 (16)

Taking these properties as well as the properties of the functions p(A) and q(A) and those of equalities (15)
into account, we arrive at the conclusion that §(A) = p{d) and (&) = q(A).



It remains only to verify that s,(A) belongs to Mj. But s¢(A) is a linear-fractional transformation
(10) of the boundary value of the function

1 (za) HE (—~ ia) + Jo (za) HP (— ia)

= 0
(2) "I (z8) H (— ia) — Jo (za) HP (—ia) ' Tmz 9,

where Jy(za) and J,(za) are Bessel functions. Note that |e,(z){ <1 if Im z < 0 and that fe;(\) [ =1if Im A =
0. Therefore, the set of contraction functions on L, that are equivalent to s (A) coincides with the image
of the set of contraction functions in H}, under the linear-fractional transformation (10).

As a by-product we have discovered that p(A) is the boundary value of an exterior function and that
the function x(A) = g(\)p~1A) is a contraction function (Ix(A)| <1 for A = 0, x(0) = —1) and belongs to HY.

We can now complete the proof of Theorem 1, Let S(A\) be a unitary-valued function in the equiva-
lence class S&(A) (= s5(A\)D). On the basis of the equality 2) in (16), one can represent S(A) in the form of a
linear-fractional transformation (5) of some unitary function ¢ € Le([N, NJ). For any vector h € N, the
scalar function (S(A)h, h) belongs to the same equivalence class as s;(A) (h, h). Therefore, the scalar func-
tion

(SMh B —((FM)-0O+FMIPM) +0-gM)h, k)=
=Mk A —@G@MNP MR k) = 71(T) EWML A0 E MR, h)

belongs to HY and can be represented in the form
P2 Men A) [1 + x Men W (R, A),
where ey, is a function in HY, that depends on h € N, This implies that, for h € N, the function
T —x®MEMIHA+5xA)E M hh)
is the boundary value of the function
(1 — % (@en @I 4 x Ghen @1 (B, )
that is holomorphic in the lower half-plane and, obviously, has nonnegative real part there,

Thus, there exists an operator-function that is holomorphic in the lower half-plane and that has a
nonnegative real part and weak boundary values that coincide almost everywhere with the function {I — x (»)-
g (M + x (A& (MIt. This obviously implies that the function y (A) & (A) is a contraction function in HL(IN,
N}

Since p(z) is an exterior funection, for any h and g in N, the function
@& Mk, g) = p* W) (LI + x (A) & WIS A) — p™ (W)F (W] &, g),

which is a contraction function on the real axis, can be represented in the form of the product of a function
in H and the boundary value of an exterior function. That is, for any h and g in N, the function (£ (-)k, g) =
H;. Therefore, the unitary-valued function & (A) is the boundary value of an interior function in HY ([N, NI).
Theorem 1 is proved.

Remark 1. Formula (5) was discovered by the author while studying the one-dimensional wave equa~

tion
9% 9%u 1 du
=TT

on the semiaxis using the theory of coupling of semiunitary operators [3].

Remark 2. Let H be an arbitrary Hilbert space that is a completion of the subspace &7 + D2, Let
{Uoft)} be the group of unitary eperators generated by the wave equation in free, even-dimensional space,
Let {Ut)} be any group of unitary operators in H that satisfy the conditions: 1) U () | po = Uo () o t > 0;

— . + +
2)U @) Lza = ¥, {f) j@a, t < 0; and 3) l;_j U (D% = H. Denote the scattering matrix of {Ut)} by S(\). Just as

is done above, define it by means of the special spectral representations of {U(t)} connected with the sub-
spaces 2%. It is easy to see that the operator-function S(\) is unitary-valued and, to within multiplication
by constant unitary operators, is equivalent to the scattering matrix S‘j,()»). Therefore, the assertion of
Theorem 1 can be extended to S(A).
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