A SCHEME FOR INTEGRATING THE NONLINEAR EQUATIONS
OF MATHEMATICAL PHYSICS BY THE METHOD
OF THE INVERSE SCATTERING PROBLEM. I

V. E. Zakharov and A. B. Shabat

1. General Outline of the Method

In 1967 a group of Princeton theoretical physicists (Gardner, Green, Kruskal, and Miura [1)}) dis-
covered a new method of mathematical physics, the method of the inverse scattering. problem. The new
method enabled its inventors to integrate an equation long known in the theory of nonlinear waves, namely,
the Korteweg—deVries (KV) equation

Uy + Uy F Ugey = 0. 1)

In 1970 the authors of the present paper, using ideas advanced in a paper by P. Lax [2], integrated
(see [3, 4]), with the aid of the inverse problem method, the equation

iy + Ugy £ Jufu=0, (2)

also widely used in the physics of waves in nonlinear media. In the succeeding years new examples were
found of nonlinear equations integrable by the inverse problem method, over twenty of them having physical
meaning (for a survey of integrable equations, see [5]).

In the present paper we give a general scheme for applying the inverse scattering problem method to
integrate nonlinear differential equations,and we also present an algorithm for finding equations which can
be so integrated. The original version of this scheme was presented by one of us in [6].

We consider a linear integral operator F acting on vector-valued functions ¢ = {¢y, ..., yN} of the
variable x(— e < x < + «)

LS

Py=\ Pz, @)ds. 3)

—0

The vector ¥ and the N x N matrix-function F depend additionally on the two parameters t and y. In the se-
quel we assume that

o0

sup { |F(z,2)|dz C oo for all z,>> — . @)

X>Xo x,
We consider the problem of representing the operator F in the following "factorized" form:
1+ F=(1+R)* (1 +R) 5)

Here K+ and f(__ are Volterra operators, where Ki(x, z) = 0 for z < x, and K_(x, z) = 0 for z > x. The op-
erator 1+ K, is invertible. Multiplying Eq. (6) by 1 + K. and assuming z > x, we can verify that the kernel
K+ satisfies the Gel'fand—Levitan equation
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F(J:,z)+K (z,z)+SK (x,5) F (s,z)ds = 0. ®)

Further, assuming z < x, we obtain K_(x, z):

K (5,9 =F@ 2+ K (@ 9F (s, 2)ds

‘If Eq. (6) is solvable (a sufficient condition for which, for example, is the possibility of representing the
‘kernel F in the form F = F;+ F,, where F; is a positive operator and || Fy|l < 1), then the kernels K+ and K_
also satisfy the condition (4). We define on the functions §(x, t, y) the operator:

ul

] a 2~ + 8
M=G—a-t—+37y—+llom Ly, =1

"

Here « and g are constants and / is a constant matrix. We consider the class of differential operators
M, connected with M by the transformation

B=(+k)M{ + R), @

with a Volterra [see Eq. (5)] operator of the transformation 1+ K+. Multiplying Eq. (7) on the left by (1 +
K4), we obtain

MU +R)—(1+K)M=0. (8

The condition of equating to zero the differential parts in the operator relation (8) enables us to calculate
M:

n-—-1 .n k-1

.—_.-a_aat_+B—aaT.+En9 'z = aﬂ+2uk(x) ﬂ-kl ‘ (9)

Y

The coefficients ug(x) of the operator L can be found in the form of a set of recursion relations

Ug (:l:) = [l, go],
u(2) = (n— DY 7= dg" %{j—g’: 1 l} + -;— [ &l -+ uoko,

= LRI [Z’fé’]“;zl,ii‘
+ g bl L 4w — ) B+ b 4 uik (10)

Here & (z)= (ax - %)‘ K@ 2= &) =K (z,2).
Since the relation (7) is linear in M and M, we can take M to be the operator
ar T8+ L, Ly=212_. (11)
Then M = ""53:‘ + B% + L, T =21, Equation (8) then has the form
n

6K+ oK,

"
G+ B+ LK, + D (— 1y _:F K1, =0. (12)

For_a given operator 15/[ of the type (11),Eq. (12) and the condition (10) define the class of Volterra operators
1+ K, transforming M into M,
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The following two theorems play a fundamental role in the sequel.
THEOREM 1. If the operator f?‘; written inthe form (5), satisfies the condition

(M1, F) = #IF — P =0, | 13)
then the operators (1 +K +)» which-accomplish the factorization of ii‘, satisfy the relations

Mt +R)—(+Kyf=0 (14)

and are operators transforming M into ft.
To prove this we write the identity
BA+E) -1+ KM= +R)A+H - + k)t +Hir=
={fr01+ Ky~ +R) @) 4 +F) + (1 +R,) (AF ~ Firy. (15)

By virtue of the relations (10), the differential operator on the right side and, hence, also on the left side of
the identity (15) is absent. For z > x the left side in the relation (15) vanishes, and from the invertibility of
the operator 1+ F it follows that M (1 + K) — (1 + K,) M = 0. Further, it is obvious that i7 +K)—
A+ K)M=o.

THEOREM 2. Suppose that the operator F satisfies simultaneously the two relations

[Ml,ﬁ]=0, Ml_a_+L(1) (16)
[ﬁ‘z»ﬁ]'—"O, ‘M2=Baa_y+ig2)' an

Here ié” and i.(SZ) are operators- of the form

N n
A Zlm 6 ’ E&”’=Zl$?’—;-,—.—v (18)
¢4

n=1
satisfying the condition
(LY, LP1=0. | 19

Then the operators L@ and L(z)‘ satisfy the relation

aim a7®
3

S~ = [f,(x), Lo (20)

Proof. By virtue of Theorem 1 we have the following relations from Eqs. (17):
ﬁlﬂ(i +K+)= (1‘+X+)Ml,2v "‘21"= u%'!'z(l)’ M2=B%+zﬂ)' (21)

Writing out the relations (21) in explicit form, applying to the first of them the operator 3(3/9y) and to the
second the operator a(5/8t), and then subtracting the second from the first, we obtain

(e SR LT & )=o.

From this, using the invertibility of the operator 1+ f(+, we obtain the relation (20).

The relation (20) constitutes a system of nonlinear differential equations in N3 matrix variables (Ng
is the larger of the numbers Ny and N,). Thus, we have shown that an arbitrary solution F(x, z, t, y) of the
system (16), (17) of two linear equations with constant coefficients generates, once the kernel K. (x, z, t, y)
of the Gel'fand—Levitan equation (6) has been found, the exact solution of the system (20). Equations (16)
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and (17) can be solv?d by the Fourier method; Eq. (19) guarantees their compatibility. Thus, to each pair
of operators Lo , there corresponds an integrable system of the type (20). Putting ¢ = 0 or §= 0, we
obtain the equatxons

BaL“ (L0, 1o, (22)

i@
o —— aL [L(!) L(l)l (2 3)

which are also naturally related to the given pair of operators ié ), ig"”.

2. Scalar Operators

As a first example of an application of the proposed scheme we consider the case of scalar operators
L. Using such operators, we can integrate the equations which arise in physics in connection with prob-
lems concerning the propagation of nonlinear waves in media with a weak dispersion. In the scalar case
Egs. (10) have the form

U, () =0, u1(1)=n%§£ﬂ us (&) =-—(n-— 2) dx‘z + = z d,_. & + nk d—io 24)

From Eqgs. (24) it follows that L1 Lm. As the first nontrivial operators we have

Lop= L=2Z =2Lg@ =22k
=g Le=gxtu@), us= Eo(x)—ug; (=, 2),

- 93 K < a3 3 ]
Lo=gmthg bmgetplegrau)+vrid,
W= = G+ 8. (25)

The commutator of the operators f,z, f,s has the form

3 ] 8

gy L] = 5w+ woe — [—2— (Uar -+ Bun,) + kux] . (26)
As 1\7[1, 1\7[2 we consider the following operators:

F] o 5
le = CL'a_t‘ + Loa, Mg = Loz, (27)

Here the kernel F satisfies the equations

RF  oF BF | BF oF
7~ m =0 at + T +"(az+'¢9‘z—)=o' (28)
The kernel K satisfies the equation
2K 3K (29)

o — 5w TL@EK=0,

from which there follows a condition on the characteristic z = x
%@+@=u (30)

indicating that w = 0. Equation (23) now has the form (L(i) = L(z) =1L 2)

a%:“*‘%(uxxx‘*‘euux‘{""'ux):o

(31)

and constitutes an unknown Korteweg—de Vries equation. It should be remarked that in this example both
the function u{x, t) as well as the constants o and A can be complex. This whole discussion can also be
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carried through assuming u(x, t) to be a matrix belonging to an arbitrary associative matrix algebra.
Moreover, Eq. (31) can be written in the form

du

@+ -%—(uxxx + 3uu, + 3uu + M) = 0.

We now consider the operators 1\711 and 1\7[2 in the form

B, =1y, M2=B:—y+iloz- (32)
The kernel F now obeys the equations
o%F | F aF | AF 3F | 9F  *F
Fat g tME ) =0 B+ SRS =0, o3
and Eqg. (22) has the form
3,0 3 a 1
TBar = — g B = o (e B + da, (34)

or

3 02 i 3 )
_4_(32 '5‘;? + Luxx + Tumx + T(uux)x =0.

Putting 3/4 g =+ 1, A = + 1, we obtain four real equations

0%u
+ o

82 1 3
i_'% + Tuxxxx + 5 (uux)x =0 (35)

Two of them,

2 2u i 3
b (G — o) A T e+ - ) = O,

represent versions of the equation for a nonlinear jet (see [7]). Finally, considering the general case and
putting

0 8
M1=a3t‘+Losv M2=Bw+[4021

we obtain from the relation (20) the system of equations

8 3
TEE = BI = o Mt (e B, (36)
equivalent to the equation
3 O° 8 ( 8 1
T B (o S M (e o+ B} = 0. 37)
In addition the kernel F satisfies the two equations
aF | BF | »F aF | AF aF | #F  #F 38
“W+F+T»‘+’“("a7+ﬂ)=°’ By v — o =0 (©8)

Equation (37) was obtained for the first time in [8]; we shall call it the Kadomtsev—Petviashvili equation.
This equation describes a two-dimensional nonstationary problem concerning waves in a dispersive me-
dium, providing that the scale crosswise to the propagation of the wave (along the y axis) is much larger
than the longitudinal scale (along the x axis).

From what has been said it is clear that each pair of scalar operators Lgt), ng) generates in each
matrix algebra an equation of type (20).
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3. N-Soliton Solutions

In this section we describe an important class of particular solutions of the Kadomtsev—Petviashvili
equation (37), the N-soliton solutions. We restrict our consideration to the special case a = =1 <0).
Equation (37) then describes waves on the surface of a shallow liquid; it is written in a frame of reference
moving with a speed exceeding the speed of infinitely long waves. We put

F = e=mM (2, y). (39)
From Egs. (38) it follows that

M=M( y)=Meexp {("*— %)y + (€ +n* + A (x + )t} (40)

Solving the Gel'fand—Levitan equation (6), we find

K (I, z) - A;u;’-)(::--!'.l ’
i+u 0 e—(x+ﬂ)2
. 4 =+
u(@) =2 K9 =5 —merme =
— i — L2 2 L1 M, 41
Zo=(M=ny+ O =+ + Mt + oo Inoo “1)

The expressions (41) describe a soliton, i.e., a solitary wave propagating at an angle to the x axis. The
soliton is characterized by three parameters: w and n characterizing its amplitude, its angle of inclination
to the x axis, and its velocity; the parameter M, characterizes the position of the center of the soliton when
t=0and y = 0. When % = 5, the soliton propagates strictly along the x axis; when "—wn+ v+ A= 0(<0),
the soliton is stationary in the given frame of reference.

Assume now that

F = D\ M ™0™, 42)
As before, we have
M, (t,y) = M, (0) exp {(1 — %2}y + (o + ni + A (Na + %)) £}
Putting, as we did earlier, K (z,z) = ), K, (z)¢ "*, we obtain a system of equations for the Kp(x):

—(%, 4%, )x

K, @)+ M 4 M, D K, (2). 43)

e n
K" + nm
The general solution of this system has the form
d - —1, x de
u(1)=2?1;~21x,,(z)e i =27;2—lnA,

(= )X

A = det| M5, + M, = (44)

%0 T My

Equations (44) give an explicit form of the solution, which for t —+ «, y—+ < breaks up asymptoti-
cally into an aggregate of noninteracting solitons propagating at arbitrary angles to the x axis. Analogous
expressions for the KV equation were found in [9]. A natural generalization of the solution (41) is a solu-
tion for which

F=gqlz y ) e 45)

231



Here the function ¢ satisfies the equations
S+ EnE — P +Ane =0, =0 (46)

and has the form

“}ac
¢ =\ c(kyexp liky — xz - (3 + 0 + h(x + ) t1 dk,

c{—k) = ¢ (k), w¥=n2—ik. _ «“n
Here- |
~1Z —NX
K@n=—=20"  yey-24_ 2@ | (48)
1+S @ (e ds 1+S @ (s)e™™ ds.

The expressions (48) describe an "oscillating™ soliton; we canin an analogous way construct generaliza-
tions of N-soliton solutions.

4. Matrix Equations

Assume now that igi) and ig” are N x N matrix operators of the first order
~ ] - 8-
LY = Liges L = Ly [Lk]l=0

Then

19— 2 k) I = o 4 [ Bl (49)

Choosing the matrices (49) to be diagonal matrices: I, = b,8;m, l» = @,8,n (a; # 0), we obtain for Eq. (21)
(see [10])

%, Ty g, S
(@i — a)) 'd—tJ = (b — b) Tyj’ + 8 — + 2 (8 + Sij + 851) EixBis gu = By (50)

ki, §

The system (50), beginning with N = 3, is nontrivial. When N = 3, of physical interest are the "reductions”
of the system (50) to matrices containing half the number of independent functions, these being derivable
with the help of the relations ¢+ = Iz, I? = 1, where I is a diagonal.matrix. If I =1, then the system (50),
by means of the substitution ¢; = Ajjujj (Ajj are constants), is reduced to the form

Ou1z
s T V1Vuge = lulaumv

« 3 :
= iUy3Usa, —u‘l's' 4 VisVugg = ilyglioa. G2Y)

_ Here the Vj; are constant two- dimensional vectors. The system (51) describes the resonance interaction
of three wa.ves in a nonlinear medium and plays an important role in nonlinear optics. Choosing the matrix

1 00
I=| 0 —10], we come to the system
0 01

6uu »  Quis

+ ViV = lumuzaa 5 + VasVuy = 15Uz, —Sr T V33Vit1s = dtggting, (52)

describing "explosive instability” of a nonlinear medium (see [10]). The remaining ways of choosing the
matrix I lead to systems equivalent to the systems (51) or (52).

In the case N'>3,more involved reductions of the system (50) are possible; their classification would
be of great interest for the applications.
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The case in which some of the ¢; = b; = 0 is a degenerate case and is also of great interest. In this
case the operators L), L) can be represented in the form

] Ly= -+ [l Eul,
= 2212, Lz Elzlﬁv

L,
0
L(l) — [/T “T ] , ll Br T [ll! Ell]y
4, 0 21 =l Ay =Ealy
Here 4; and I are diagonal M x M matrices. not: containing zeros, and the ¢;. are cells of the. matrix ¢. Con-

sidering only the case in which there is no dependence on y, we readily see that now the system (50) re-
duces to the form

Il

&) b‘)

F N PO
a il _ (1, 30 +18 g, & =1I,L,

028 _ (&, A0+ logl—Galy g =bEh (53)

1 0
Inthe case N = 4, M = 2, I, = [0_1], I, = 1 the system (53) leads to the known "sin—gordon" equation
(see [12]) .

% — %— + sinu = 0.

1t should be noted that in the degenerate case (53) the procedure we have presented is only suitable for
finding integrable equations, since the formal application of the Gel'fand—Levitan equation (6) in the degen-
erate case leads to divergent expressions. For the "sin—gordon" equation this difficulty was surmounted in
[12].

Matrix operators of much higher orders have so far not been studied. An exception here is the case

) L, O

in which Lo = [(3/9x), where I is a matrix of the form [ = [ 01 ] ¢y and I, are constants, and L(i) is an
2

arbitrary scalar operator. This case coincides in its essential features with the purely scalar case. Cal-
culating LY and L®), we have

» 50 0 tu]

and we obtain from the relations (21) for g = 0 a system of equations for the antidiagonal cells of the
maftrix ¢

o

a3 L1, 82 l —Ll
(— —67 + L e ) E1p— 27— bbb =0,
L+l a2 ! —o—l
(@ g+ e B — 2 it = O (54)

for o = i and real 4, {, the system (54) admits the natural reduction £,; = tg'{z and reduces to the single
equation

ll+12

41
— iE10¢ + 2 E12xx+2 §12§1z§1z =0. (55)

In the scalar case Eq. (55) coincides with Eq. (2). The matrix case of Eq. (55) was considered by S. V.
Manakov in [13]. ' In the case in -which Lél) = 53/5x3 the Eq. (23) leads to the "modified" Korteweg—de Vries
equation (see [14])

up |ulPuy + vy = 0. (56)

Cases in which the operator i,S‘) is of anorder higher than the third are not of interest from the point of view
of the applications.
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5. Solution Scheme for the Cauchy Problem

We now pose the question as to the possibility of solving the Cauchy problem for the Eqs. (20) and
(23) with initial conditions in t. Let L 2 pe the operator defined in Egs. (18), having order N,. The cor-
responding operator L® contains N,—1 variable coefficients u; :(x, y, t), which we assign at t = 0. We shall
assume here that

u; (£ oo, y, 0) = 0. (57)
From Eq. (12) it follows that the kernel K* obeys the equation

Ny—2 )
p L L IOk D (— 4y —-—K*l = 0. (58)
n=1
On its solution we impose the restriction
K*(z, 2 +8—0 for z— + oo. : {59)

With respect to the functions uj(x, y, 0) we can, usmg the Eqs. (10), find the derivatives of the kernel K*
along the normal to the line x = z—gl(x, ¥y, 0) i=0, ..., N,—2), whose assignment, along with the condition
(59) defines a Cauchy—Goursat problem for Eq. (58). The solution of this problem determines the kernel
K*(x, z) for z > x. In proceeding further we follow the scheme

ui (2, ¥, 0) L~ Kt (z,2,4,0) e F(z, 2,y, O Ea F (2, 2, y, £) Ze K* (2, 2,4, ) T i (2, 1, ). (60)

In the first stage of this scheme we solve the Cauchy—Goursat problem for Eq. (58); in the second
stage, with the help of the Gel'fand—Levitan equation (6}, we determine the kernel F at t = 0. The evolution
of the kernel F in time is described by the linear equation (16) with constant coefflc1ents, constituting the
third stage of the scheme. In the fourth stage we use Eq. (6) to obtain the kernel K", z, v, t), and finally,
at the last stage we apply Egs. (10), enabling us to find u(x, y, t).

A fundamental difficulty in applying the scheme (60) is that the kernel K, (x, z, y, t) obtained from
the solution of the Cauchy—Goursat problem (58), (59) cannot satisfy the condition (4) of decrease with re-
spect to z.

LOoO
We consider this situation by an example in which L®= 12,1 = I:O ,, 0 }, L> 05> 1, >0,and g=0.
In this case Eq. (58) has the form 001

L a;i* +l u +2(l — L) i (2) Ki; = 0. 61)

Using Kjj = (pij(x)eiM, we obtain a set of three spectral problems for @ijo which we number by means of
the subscript j,

99,
li—g;—’ + Mg, + %(li — L) B (@) Py = 0, (62)

with the conditions

@e**—0 for -4 oo, :
@e** —0 for z— 4 oo. 63)

The asymptotic behavior of the kernel Kj; for z— + = is determined by the discrete characteristic numbers
of the spectral problems (62), (63), lying in the complex plane. For j =1, 3 it follows from the conditions
(63) that Im A > 0 for discrete values of A, and the asymptotic behavior is decreasing. However, when j = 2
the conditions (63) do not impose single-valued restrictions on the position of the discrete spectrum of the
corresponding spectral problem and, for z— + =, the asymptotic behavior of the kernel K+ may turn out to
be exponentially increasing.
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i 0

01 }% (¢4, I, are constants).
2

This difficulty does not appear for scalar operators and, also, if Ly =[
Obviously, there is also no difficulty if the characteristic values in the spectral problem for j = 2 are
absent {this can happen if the norm of the initial conditions gij(x, ¥, 0) is sufficiently small]. The methods
for overcoming these difficulties associated with the exponential growth of the kernel K, and correct
results relative to the Cauchy problem for certain classes of integrable systems will be the subjects of the
second part of our paper.
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