THE PROBLEM OF UNIQUENESS OF A GIBBSIAN
RANDOM FIELD AND THE PROBLEM
OF PHASE TRANSITIONS

R. L. Dobrushin

1. In a previous paper by the author [1] the following concepts were introduced. It was assumed
that the potential U(t), t6TV, was specified, where TV is a v~-dimensional integer lattice such that a) for a
certain d < © we have

2 U< : (1.1)

£ >d

and b) U(t) =U(~t), t € TV, the chemical potential u, satisfies the conditions —« <y < =, and the constant 3,
satisfies the condition 0 < 8 < «, (this constant is inversely proportional to the temperature). The random
field £(t), t € TV, which has the values in the space X consisting of two points 0 and 1, is specified by a set
of finitely-dimensioned distributions P ={Py(x,, . . ., x[v|), VC TY}, where V is a finite set of | V| ele-
ments and xi € X. The random field and its distribution are called "Gibbsian" if the conditional probability
satisfies the condition

P{EM) = x1 - Blp)=xpi/E (O)=x(), L€ T\V} = gv (1. ., /X (E)) (1.2)

with probability 1 for all finite V.= {t;, . . ., t|v|} © TV, x{ €X, .. ., x|v| € X and functions x(t), t € TV \V,
with values in X; here . '

exp {— BUy (X1, - -y Xpyix (D)
G (e -y Hu/x () = : PL= ¥y (n X ) (1.3)
Z, exp {— BUy (¥, -+ . /X ()
xxEX,...,xly,GX
and
] W Vi
Uy (xl, N ,\’IVI/X (f)) = 2" X; -+ ?2 ,\"-,\'iU (t‘- —tj) = 2 2 Xi X (t)U(tl -—t). (1.4)
i=1 =1 j=l. j#i =1 eIV

A Gibbsian distribution ina vessel V with the boundary conditions x(t), t € TV\YV, is defined as a random

field £(t) such that P{E(W) =Xp o) E(ﬁv;) = Xy} = qv (X -, Xp/x{E)),

PE@E =x@) =1, teT\V. (1.5)
In [1] concepts were developed demonstrating the fact that Gibbsian distributions specify methods of de-
scribing physical systems in an "infinite" vessel. It was also shown that the case when the Gibbsian dis-
tribution with the specified parameters (¢, 8, U(*)) is unique corresponds to the case when there is no
separation of phases.

The purpose of this paper is to indicate the explicit conditions for which it is possible to establish
the uniqueness or, conversely, the nonuniqueness of a Gibbsian distribution with specified parameters;
we also use examples of nonuniqueness to discuss the consequences that derive from it with respect to
phase transitions in the system.

2. First we indicate the conditions governing uniqueness of the Gibbsian distribution.

THEOREM 1. Assume

Institute of Information-Transmission Problems, Academy of Sciences of the USSR. Translated
from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 2, No. 4, pp. 44-57, October-December, 1968.
Original article submitted February 23, 1968.

302



_;— \! sup S ggo (el (0) — g0y (/E )] <1, (2.1)

e ~ —~
SETV, s x8), x{{n x )= x(h), t=s YEX

where {0} is a set of one point 0 and the upper boundary is taken over all pairs of the functions x(t), x(t),
t € TV\ {0}, such that x(t) =X(t), t = s. Then there exists only one Gibbsian distribution. The properties
of dimensional regularity from within and from without are satisfied for it (see [1]). I the potential U(t)
is finite (i.e., U(t) = 0, {t| > C), then the functions ¥V (") and ‘l*;/( ) in (5.3) and (5.4) taken from [1] must be
assumed equal:

. (d) _ e—-uvd' ‘PV (d) = e F’d’ oAy >0, E{; >0 (2.2)

If the potential U(t) <« for all t € TV, then condition (2.1) is certainly satisfied for the values of (i, f) such
that hti Z 5, or B = By, where Yy < ©, B, >0 are certain constants. For an arbitrary potential U(t) Condi-
tion (2.1) is satisfied for values (g, 8) such that u = uy(8), where the continuous function p(B) has a finite
limit for 8 — % and where py(B) ~ c¢/B for 8 — 0, where the constant ¢ >0.

Proof. The basic postulate of the theorem formulated above is a particular case of a more general
theorem (in which it is not assumed that the conditional distributions are Gibbsian), which was proved in
detail in [2]. Here we briefly indicate only the basic formulation used in its proof; we assume for sim-
plicity that the potential is finite. Each pointt € TV is juxtaposed with an operator Qi that operates in the
distribution space of the random fields and converts the distribution P = {Pv(') , VC TY} into the distribu-
tion P = {ﬁv(-), V < TV, We will define that operator on the basis of the proposition that

5 w) { Py(xy -.., .\‘Ivl), ¢V,
Xy e, A = .
v (X 14| PV\{‘} (X5 -0 xm_,) q{ t} (x|V|/x1, . X[l'l—l):

Vs tty ..., b By ARV, {8))>C, (2.3)
where q{t}(x|v|/xq, . . ., x| V|- is the value of qf} &|v|/x(1), that is general according to the assump-
tion of finiteness for all functions x(t) with x(tj) =xi,i=1, ..., [V|—1. For the remaining V the value of

Py(-) is determined from the matching condition for the finitely dimensioned distributions (see (2.3) in [1]).
It is obvious that the Gibbsian distributions are invariant relative to the operators Qt. Assume

Q=[] e (2.4)

terv

(The sequence in which the noncommutative operators Qt are multiplied is not essential.) We are able to
prove that for condition (2.1) the operator Q is compressive (in a certain generalized sense), whence the
statement of the theorem follows. '

Here we need merely establish the range of values of ,(#’ B) for which condition (2.1) is satisfied.
For this purpose we note that in accordance with (1.3) we have the following result for x(t) =x{t), t =s,
and U(t) < =, t € TV,

1 {

l ~
5 2190 ) =gy ()] = |- - — o ‘
x€) —Bl—p+ 2 U@O 14 —3|—ut QU x(
€x +exP{ Bl B Eo ) x )}} exP{ [ w Eo ® ()J}
exp{p(p+2|umn}u—exp{—{suml
=0 z . - (2.5)
14 expt—B| —pn4 D U@}
(trew{=e[ -+ Z wor]})
Since from (1.1) it follows that
| 1—exp{—BU (s)} | < oo, (2.6)

570

and the sum of that series tends to zero for 8 — 0, it follows from (2.5) that condition (2.1) is satisfied for
B = By,. Since {x +ylS k| lyl, if [x| =2,y = 2 and [1-eX| = glx|, where g < o, if eX = 2, it follows that
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Sll—exp(—pUE|<ed 3 UG

S7#0 cxp{—ﬁ]U(s)[1<2
S exp{—RUEN < g8y [U)]-exp QlU(s)l} (2.7)
cxp{—Bl’J(s)l} S350 s#0

From (2.7) and (2.5) it follows that for 8 — - and sufficiently large lul the sum with respect to s of the right
sides in (2.5) tends to zero (for large positive u due to the fact that the numerator of the fraction tends to
 more slowly than its denominator, and for large negative p due to the fact that the numerator tends to 0
and the denominator tends to 1). Therefore, Condition (2.1) is satisfied for |u|=py,

When U(t) can acquire the values =, Inequality (2. 5) and the subsequent estimates are applicable if
x(t) = x(t) =0 wherever U(t) =». If x(t) =x(f) =1 for U(t) ==, then the left side in (2.5) is simply equal to
zero. There still remains the case when U(s) = «, x(s) =1,?<'(s) =0 and x(t) =X(t) =0 for U{t) =, t = 5.
For that case

expl— 8] —p Z U (t)?(’)”

X { E7=0
— S qror (X @) — Ggor (/X ()] - - V.
2 ,%'(l {0} {0} 1 exp {——B[~— -LL":‘EU(’)XU)J} (2.8)

0

and this expression tends to 0 for u — —« uniformly with respect to x(t), X(t) and all sufficiently large B.
Finally, for 8 — 0, uB = const the expression in (2.8) tends to eBr/(1 +eBl), whence it follows that py(B) ~c/B.

It can be stated conveniently that Condition (2.1) means that the conditional Gibbsian probabilities
depend weakly on the conditions. The satisfaction of Condition (2.1) for small 8 is related to the fact that
for U(t) =, t ¢ TV, the conditional probabilities of both values of x € X prove to be close to their prob-
abilities in the case of an ideal gas. For u close to —« the conditional probability that x =0 is close to 1,
and for u close to += it is close to 0 uniformly with respect to all conditions. If U(t) can acquire infinite
values and U(t)x(t) =« for a certain t, then for all pand 3 the conditional probability that x =0 is equal to
1, and the reasoning is performed only in the case of sufficiently large negative u. Typical ranges of the
values (8, p) for which conditions (2.1) are satisfied have been shaded in Figs. 1 and 2. In Fig. 1 we took
into account the fact that when x(t) is replaced with xt) =1 - x(t) and n is replaced with p’' = -—p - Z v

teTv

the conditional probability q{o}(O/x(t)) becomes q{}(1/4'(t)); therefore, the region in which Condition (2.1
is satisfied can be assumed symmetrical relative to the line

po==p, TIE R — ZU(t) (2.9)

ieTV

Note that a result analogous to Theorem 1 can be proved by the Ruelle-Minlos method (see B]). Note also
that from the results of [2] it is possible to extract explicit estimates for ¢vy(d) and $y(d) even in the case
of nonfinite potentials. '

3. Whereas in the multidimensional case uniqueness is proved only for a certain subrange of the
values of the parameters (8, 4), in the one-dimensional case ¥ =1, uniqueness usually applies for all (8, u)
if the potential decreases sufficiently rapidly; this corresponds to the physical concept that phase transi-
‘tions are absent in one-dimensional systems.

THEOREM 2. Assume ¥ =1, Assume there exists a sequence of numbers px<1,k=0,1, ..., such

that px — 0 for k — o and

sup sup L > 1Gro.ny (%15 - -+ Xnpr/x (£))

A=0un 20, FERO=F (), —kI<0, n<t 2 26X eonrty 1 €X

- q[o,n] (’\'11 ey Xﬂ+1/‘;’:(t)) ‘ <|Ok’ k :::01 l! ey (3.1)

where the upper bound is chosen over alln =0, 1, ... and over all pairs of functions x(1), x(t), t € TI\/[0,n],
such that x(t) =X{t), if k =t < 0 and n < t. Then there exists only one Gibbsian distribution. For this dis-
tribution the condition of uniform strong mixing is satlsfled this condition indicates the existence of a
function x(d) — 0 for d— =, such that for all finite V C ™ Vo
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A@j}g‘;%vl Pr{A/B} —Pr (B}| < x (d(V, V). (3.2)

(see [1], section 5); furthermore, if the potential is finite, it is possible to place x(d) = e'ad, a>0. If
the sum

S UG < e, (3.3)

tlH>d

then Condition (3.1) is satisfied for all (8, p).

Note that the property of uniform strong mixing (3.2) brings with it the properties of uniform regu-
larity from within and from without.

Proof. The basic postulate of the formulated theorem is a particular case of a more general theorem
that was proved in detail in [2]. In the case of a finite potertial it is derived simply from the ergodic
theorem for Markov chains. Here we will merely verify the fact that from Condition (3.3) we obtain satis-
faction of Condition (3.1). For this purpose we note that from (1.3) it follows that if x(t) =x(t), ~k St <0,
n < t, then the ratio

Yoy (X1 -2 K% ) >exP{ —28 3 |U(s—-S)‘}

q[o,n! (xl.v ce ey n-rl 'x (1)) 0<S <f.
325
> exp {—-23 3 1t[|U(t)|}. (3.4)
Y] L
Therefore,
T 3 gl e g O) =G (s e )]
$EXe Xy €X
=] S minGen (s -5 Xepx O Gom (- Xnpr/% (£)
26X, Xn_{_le.\'
Ll—exp {—-23 v } Grom)(Xpr -+ Knza 1% (D))
>k x,€X,...h xn+1ex
=l—exp({—23 3 |t||U(t)|};- (3.5)
l >k

the right side in this inequality tends to zero for k — . It is less than 1 for all k if | U(t)| < = for all
t € TV, this proves satisfaction of Condition (3.1) in this case. In the general case, when only (3.3) is
valid, it is still necessary to check whether the right side in (3.5) is less than 1. Proceeding in a manner

analogous to that used in obtaining the estimate (3.5), it is demonstrated that for x(t) =X(t), t >n, we have
1

- S Gem @ ey Xap/E @) —Gom (s - Tnpa/X (@)]
x,e.\‘,...,x,H_lEX
>exp(—28 B U@\ Gom (0, -+, 0, Koty <oy Xaga/X (B))-
| S (3.6)

xd+1EX ..... Xp, +IEX

Furthermore (see (1.3), (1.4)):

E 9o n) ©. ... 9‘0, Xapis ooy Xngy [ X(E)
XL g1 €Xo o¥p. L €X

L ~
T Z q[o n](o 2 0o Xapas -0 Xt [ x(F))

Upong ©, -+ 0,4 1vs 1y /X (B)

>— min KyyeerX f
~ 2tnex.. It € Utoua) Kts + + v 2 Xppy/ X(0)  HEXuwtny. chq[" mt w0
1 dd— .
> gexp| —B(uld i |inf U] <= @1 43 min @), 0))} . 3.7)
- tervy

Since the right side of Inequality (3.7) is positive and independent of n and X(t), it follows from (3.7) and
(3.6) that the coefficients pk in the formulation of the theorem can be made less than 1; this proves satis-
faction of Condition (3.1) when (3.3) is valid.
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In the case of finite U(t) the results given in Theorem 2 can be obtained from known explicit formulas
for the correlation functions; it is new for nonfinite U(t).* The question as to whether Condition (3.3) can
be replaced with the weaker condition (1.1) remains open. (On this subject see the discussion in [2], sec-
tion 2.)

4. We will now proceed to examples of nonuniqueness of the Gibbsian distribution ¥ > 1. First we
will study the Ising model with attraction in which

U - {afo, if UI:-I, (4.1)

We find that for such a potential there exist at least two different Gibbsian distributions for (see (2.9))
p=—p =va, B>—als, (4.2)

where the constant sy, which depends only on the dimensionality ¥, will be defined below during the calcu-
lations. This fact was first derived by R. A. Minlos and Ya. G. Sinai (oral communication) on the basis of
the method developed in [4] based on equations for contours and probability estimates of a contour (see
Lemma 1—Peierls [10], Griffiths [5], and R. L. Dobrushin [6]). The concepts developed in this paper make
it possible to obtain this result in a considerably simpler manner as a direct corollary of Lemma 1.

All formulations in this and subsequent sections are analogous for any dimensionality ¥ Z2. For
purposes of geometric convenience we will assume, however, that ¥ = 2 (the multidimensional generaliza-
tion has been studied in detail in [6]). Below we shall study just two cases of the boundary conditions:

x,6)=0, teT\V, ' (4.3)

x(t):{xl(t)s 1, teT™\V,

and shall assume that V = {t;, . . ., t|v|} is a certain square. We shall associate each point t € T? of the
two-dimensional lattice with a square having sides of length 1 parallel to the coordinate axes with its cen-
ter at that point. We will also designate it with the symbol t. Each function X(t), t € T, %(t) =0, 1, is
juxtaposed with a geometric pattern (see Fig. 3) that is obtained if we shade the 'squares for which x(t) =1,
We will define a boundary side as the side of a square that separates shaded and unshaded squares. Geo-
metrically it is obvious that an even (0, 2, or 4) number of boundary sides emanate from each vertex of
the squares, and that each ensemble of sides of squares within V having that property corresponds to a
certain function X(t); furthermore, for a specified boundary function x(t) this amounts to a one-to-one
relationship if X(t) =x(t), t € T*\\V. We will define the length of the situation boundary (x4, . .., x|V ]),

xi €X,i=1, ..., |Vl for a specified function x(t) as the number I (x4, . . ., x| V|/x(t)), equal to the sum
of the number of pairs of points ti, tj, i # j, such that lti—'tjl=1, Xi #X3, and the number of pairs of points
tj, t.€ T2\ V, such that lti—tl =1, xi # x(t). It canbe seen that I'(xy, . . ., x]vl/k(t)) is the over-all number

*After this paper had been submitted for publication, the author received a preprint of a paper by Ruelle [9]
in which a result close to that contained in Theorem 2 was proved.
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of boundary sides for the function x(t) = x(t), t € T2 \V, i(ti) = xi, ty € V. The situation boundary (x4, . . .,
x|v|) is defined as the ensemble of boundary sides for x(t). Note that from (1.3) we obtain the following
result for u = ¢ = 2a:

exp (Ba I~ XX (t))}
} l'.’, X v o vy n.vl'.
qy (Xl, cees XY (t)) = 8a . (4-4)
E exp {—E-I‘ [C TN xM;"x (l));
x,e.\'....,xW‘QX

Geometrically it is evident that the ensemble of all boundary sides can be subdivided into non-self-inter-
secting closed broken lines that we will call contours (Fig. 3 shows eight contours); furthermore, it is
convenient to assume that all contours perform turns at vertices where four boundary sides converge.
Under these conditions two contours either do not intersect, or one of them is inserted within the other.
(The ambiguity of the subdivision of a boundary into contours is insignificant for our purposes.)

LEMMA 1. For a Gibbsian distribution in the square V with boundary conditions of the type (4.3) the
probability Pr%G} that the situation (x4, . . ., x| v|) contains a certain contour G (i.e., more precisely, that
each of the sides of the contour G is included in the situation boundary (x, . . ., x| v|}) is such that

Pr (G} < exp {%‘im}, (4.5)

where |G|is the length of the contour G.

This lemma was proved in [5] and [6]. We will give a simple proof of it, since it will be generalized
in the subsequent sections. Assume %(G) is an ensemble of situations (xy, . . ., X|y|) containing the contour
G. Then from (4.4) it follows that

E exp { -Bﬁ Txy ..oy ,\'Wl/x ()] }

2
wm e SV PERG)
Pr (G} e - (4.8
ya exp {—; [ ooy xpyy/x (z))}
X1€X) 00 xIVlGX “

We introduce the transformation TG that juxtaposes each situation (x4, . . ., xfy|) €®(g) according to the
following rule: ’

Xi == Xp if  f: does not lie outside the contour G,

~ (4.7)

Ny b —xg if t; lies inside the contour G

(Fig. 4). In other words, the transformation T annihilates the contour G and does not change other con-
tours. It is evident that '

Ty () =Ty, o, swyx () — | G| (4.8)
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and that different situations (x4, . . ., x|y])) yield different situations (;1, c e ;fvj). Therefore,

\ Ba
Z exp{‘—)l‘(xl, s :X|V|,/'\‘ )
xh..,,x”,|)(-'_g§(0) -

Pr{G) <

- exp r; °|G |} (4.9)
! Ba ~

Z exp: r (xl. ,xm,'x(t))I
(... TR0 2

which proves the lemma.

Note that if the point t,= (t}, t}) € T? lies inside the contour G and this contour contains a side of a
square with its center at t = (t1 t?), inside G then the length of the contour G must be no less than 2(|t0—t1[ +
[t?~t%|+ 2). PFurthermore, no more than 39! broken lines d pass through the given side. Assume 7(t)) is
the probability that the point t, lies inside at least one of the contours specified by the situation (g « -+ -5
x|v|). Summing over all contours G that contain t; inside them and pass along a side of the square t, and
taking into account the fact that under these conditions a contour of length d will be counted d times and that
the length d of a contour is always a multiple of 2 and each square has four sides, we obtain the following
result from (4.5): :

1
() <4 Y > < 5CxP ((Ba +2In3) k)

1 - lt(ll—t‘ |+[ tg_te|+2
P

9 X 9
2 Ny Lk — 1Y 2 \ 4 exp {Ba-+421n3}
= Rz:lk (k- 1Plexp {(Ba -+ 2In3) k) <4 S e (e 2

if exp {Ba + 21n 3} < 1. Assume s, >0 is the solution of the equation

4 exp {— sy - 21n3}
3 (1 —exp{—ss-2In3p2

- 1) (4.10)

Then, if Condition (4.2} is valid, it follows that m(t)) =y< 1/2 for all t, € T¥. But if x(t) =x,(t) and the point
t; lies outside any contour, then the field value is £(t)) =0. From this it follows that the following rela-
tionship is valid for a Gibbsian distribution with the boundary conditions x,(t):

PriEt) =1 <r<—, LEV. (4.11)

It is obvious that Condition (4.11) isolates a closed set of distributions in the metric introduced in [1] (see
[1], section 2). Therefore, in view of compactness (see [1]) and Theorem 1 from [1] there exists a Gibb-
sian field Z(t) such that

Pr{g(f)=1}<1’<%,_ LeT" . (4.12)

Analogous reasoning based on the boundary conditions x(t) = x,(t) leads to the conclusion that a Gibbsian
field %(t) exists such that

PriE() =D >1—1>—, (€T, (4.13)

and that the Gibbsian fields Z(t) and £(t) cannot coincide. Taking into account the fact that Condition (4.11)
is invariant relative to shifts and applying reasoning that is analogous to that used in deriving Theorem 1
from [1], we also find that noncoinciding translation-invariant distributions exist for which (4.12) and
(4.13) are valid, respectively. These two distributions are obtained from one another by replacing 0 with
1 and 1 with 0. '

The method of correlation functions for Minlos-Sinai contours [4] can be used to prove that the
formulated distributions are the limits of the Gibbsian distributions qv;(* /xy(t)) and qv;(* /x4(t), re-
spectively, for any expanding sequence of cubes Vi. Their method also makes it possible to prove the
uniqueness of the Gibbsian distribution for 8 > f;, where B < = is a certain constant, and for all 4 =pu.
In Fig. 5 the region for which uniqueness of the Gibbsian distribution is proved has been shaded, and the
line on which, as demonstrated, there is no uniqueness is designated by.a thick line.
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The natural hypothesis consists of the fact that the Gibbsian distribution
is unique for all (i, B) , with the exception of pairs (i, 8, where 8> c,(~ a Y and Cyis
the value found by Onsager (see [7]). The importantquestion of whether the class of
Gibbsian distributions is exhausted by the twodistributions found above and their
linear combinations also remains open. The following hypotheses canbe advanced.
There are certain conclusions substantiating the proposition that this is so for
v=2. However, for ¥> 2 this is evidently no longer so. Itis possible toassume that
for ¥ = 3 there is an entire additional family of extreme points in the ensemble of

| 741
DO % 7 B,
. 7. 7, 7 7, 7
7B/ MW,
'R/

- - Gibbsian distributions that are limiting for distributions with boundary condi-
Fig. 7. Result of ap- tions x(t), t € T®, such that x(t!, t?, t) =1 for t; = ¢ and x(t!, t2, t%) =0 for
plying the transforma- ty <ec, as well as analogous families that are obtained when t! is replaced by t?
tion TG to the situation and £; it is assumed that these exhaust all the extreme points. Such distribu-

in Fig. 6, where G is the  tions could describe surface phenomena on the boundary of the phases.

contour of maximum

length All that was said above in connection with the Ising model with attrac~
ength.

tion is not difficult to extend to the more general case of arbitrary potentials
U(t) for which the negative part is in a certain sense (precisely defined in a
previous paper by the author [8]) greater than the positive part. In [8] it was proved that for such poten-
tials and for sufficiently large B an estimate analogous to the estimate in Lemma 1 is valid.

5. We will study the Ising model with repulsion, where

U(t):{a>0, it |tl=1, (5.1)
0, if |t|=1.

We find that for such a potential at least two different Gibbsian distributions exist for a > IlT /v,

~ ’ aiy—t ~ —
a>|i)w, B>(“*'—‘t“) Se, where i = b — p=p—va, (5.2)

This result is evidently new from the mathematical standpoint.

We shall study the geometric interpretation introduced in the previous section, but we shall now de-
fine a boundary side as any side that separates two shaded or two unshaded squares. Correspondingly, a
long situation boundary (x4, . . ., x| v|) with the boundary function x(t) is defined as the number I'(xy, . . .,
x| v|/x(t)), equal to the sum of the number of pairs of points ti, tj, i #j, such that lti—tj[ =1, xj =xj, and
the number of pairs of points tj € V,t € T2V, such that [tj—t| =1, xj =x(t). The obvious meaning of
I'(xq, . . ., x| v|/%(t)) is the same as it is in the previous example. From (1.2) it follows that

Wi
exp{_ 8 (_ﬁ 3! x‘.+%F(xh R (t)))}
=1 (5.3)

qV (xl, ceay X[V|/X (t)) = v

D e {—B(—EE sk STl oy (t)))}

x,ex.....xleX =1
’Ehis formula can easily be obtained from (4.4) and from the fact that the sum I'(x, . . ., x| V| /x(t)) +
I'(xq, . . ., x[v]|/x(t)) is independent of (x4, . . ., x| V).

We will call the point t = (t!, t) even if |t! +t?| is an even number, and odd if [t! + t?| is an odd num-
ber. It is obvious that separation into even and odd squares corresponds to the separation of a chessboard
into white and black squares. In our subsequent analysis we will assume that x(t) acquires the values x,(t)
or xy(t}, where

[0, 1€V, if {even,
X ) = :
I, teTN\V, if  fodd, 6.0
o (f) = {0, LETNV, if ¢ odd, '
h 1, teTNYV, if teven

Geometrically it is obvious that in these cases the ensemble of all sides has the same properties as it does
in Section 4 of this paper; in particular, it can be split up into contours (Fig. 6).
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LEMMA 2. For-a Gibbsian distribution in the square V with boundary conditions of the form (5.4)
the probability Pr{G} that the arrangement (xq, ... ., x|y ] contains a certain contour G is such that

Pr{G}gexp{—g(%_—“"Tl\[g(}, (5.5)
/ .
where |Gl is the length of the contour.

The proof is performed in a manner analogous to the proof of Lemma 1. In particular, proceeding
analogously to (4.6}, we use (5.3) to obtain.

4!
Z exp{—ﬁ(—ﬁzxi‘f‘%i:(xxv s Xy /X (t)))}
P!‘ {G} — (x‘.....xM)e,p(G) i=1 )

2 eXP{~B (—ﬁgxﬁr

HEX Xy jEX

(5.6)

s

F(x,, R T (t)))}

The principal difference lies in the fact that instead of a transformation Tg we introduce a different trans-
formation TG(xy, . . ., x|V|) =&y - . ., X[v]), where (x4, . . , x| V|) €9(G); we define this transformation
(Fig. 7) according to the following rule. Assume tj; is a square that is directly below the square tj. Then

X;=2X;, if i lies outside the contour G,

;i = Xpp if 4 and tii lie inside the contour G, (6.7)
;‘ =] — Xp. if ; lies inside G, and T lies outside G,
In other words, it can be stated that the transformation "f"G annihilates the contour G, does not change con-
tours lying outside G, and raises all contours lying inside G upward by one (see Fig. 7). Under these con-
ditions .
v 11
EE

f=] i=1

|G lnor (5.8)

T .oaua(t) = Tl .o, qu/x @) —1G), <

where 'Glhor is the number of horizontal sides of the contour G. Concepts analogous to (4.9) now make it
possible to derive the following result from (5.6):

Pr (G} < exp {-— B (210 ﬂ;'i)} . 5.9)

An analogous estimate is true, of course, if the number of horizontal sides of the contour G is replaced
with the number of vertical sides ’leer- Since min (| Glhor, lleer) = 1/2]Gl, it follows that (5.5) de-
rives from (5.9) and the analogous inequality with |Glyer.

Then reasoning fully analogous to that performed in Section 4 demonstrates that (see (4.11)) for a
Gibbsian distribution with the boundary conditions x,(t) we have

PEO) =1DST<2 i hisewn LEV, (5.10)

P{E(ti):0}<7<%. i fiisodd  LEV,

and analogous inequalities for the Gibbsiandistribution with theboundary conditions x,(t). From this it fol-
‘lows that two noncoinciding Gibbsian distributions exist. These two distributions make the transition into
one another when the field is shifted by 1. Thus, these two distributions do not differ from each other in
their macroscopic characteristics. The ranges of values of the parameters (8, p) for which uniqueness
and nonuniqueness of the Gibbsian distribution, respectively, have been proven in this case are shown in
Fig. 8. The line separating the uniqueness and nonuniqueness regions must pass somewhere between them;
this line can also be described as the line formed by the branching points of the operator Q introduced in
(2.4). It is natural to assume that at those branching points analyticity of the macroscopic field charac-
teristics is violated; however, this remains unproved. With respect to the complete description of all
Gibbsian distributions we can state a hypothesis analogous to the one cited in Section 4. If we adopt this
hypothesis, then we find that in the investigated example the translation-invariant distribution is unique.
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6. We shall now study any potential U(t), t € T, such that

U() =00, Jt]-=1, UG oo (6.1)
14 1

We find that for such a potential there exist at least two different Gibbsian
distributions when

{(6.2)

W >Cop> (L —c) s,

where

Fig. 8. Uniqueness and C= 7 max 2UNU@L t=, .1
nonuniqueness regions ' T ery

in the Ising model with
repulsion. Their hypo-
thetical boundary is
shown by the dashed line.

For the particular case U(t) =0, |t| =1, the analogous result was proved by
means of a more complex method by Moscow State University student Sukhov
in his thesis written under the supervision of Ya. G. Sinai.

The derivation of this result is analogous to the conclusion drawn in

Section 5. In particular, we adopt the definitions of the boundaries and the
functions x¢(t), x4(t) introduced there. We call the situation (x4, . . ., x|y|) allowed if no two shaded squares
have common sides. It is obvious that in view of (6.1) and (1.2) the probabilities of nonallowed situations
are equal to zero. Assume for simplicity that v = 12, where I is an even number. It is clear that the
number of shaded cells in one column of the square V is equal to I/2—g/R for an allowed situation, where g
is the number of horizontal boundary sides in the column. The analogous postulate is also valid for rows,
to that for the allowed situation (xy, . . ., x| y{)

LA L] 14!
o .
exp {—ﬁ(?r‘(x, ..... HypE O)+ 5 =Y D axp—t+ X D mrwwy —l)>} 6.3)

0V Gyt = i=1j=1, tv;él . =1 gV \:h .
[ L 1§ IZ! J-Izl D mrew o)l
exp | =B Tlewe syt + 2 xR U —t )+ =0V b |

XI€X, - K€ X : =1.j=1,i %] i=1peTV\V

LEMMA 3. For a Gibbsian distribution in the square V with boundary conditions of the form (5.4)
the probability is given by the formula
_3(~_\ig (6.4)
<exp{—p (L —cli]}.

The proof of that lemma is performed according to the same technique as that used in the proof of
Lemmas 1 and 2 on t the basis of the transformation T introduced in (5.7). Here it should be noted that
the transformation TG converts an allowed situation into another allowed 51tuat10n and also that for the
allowed situations we have

v i
Z > xgU i — ) + Z > xix U E—1)
i=1 j=t,i#f =1 gaTV\YV
|V| V] Wi - (6.5)
—*‘Z S U — 1) =3 2 T (HUE—1)| < 3 Ut—d)|. .
§=1 je=1,j#i i=lerv\y #—is inside the contour G,

T-is outside the contour G,
—f>1

Then we connect the points t and {, where t = (t!, t?), £= (t1 tz) by means of a corner consisting of a hori-
zontal segment with a length ,tl—tll and. a vertical segment of length ltz—tzl (it is assumed that the first
coordinate axis is horizontal). Ift is inside the contour G and T is outside it, then this corner intersects
one of the sides of the contour G; furthermore, for fixed s =t—";=(si, s? the given vertical side of the
contour G is intersected by no more than Istf corners corresponding to different t, T pairs. We have an
analogous result for the horizontal sides of the contour G. From this we obtain
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Fig. 9. Regions of unique~
ness and nonuniquéness in
the case of a potential of
the type (6.1). Their hypo-
thetical boundary is shown

2 ue—hl
t—is inside the contour G,
t—is outs_iide the contour G,
-1

2 1sllU@] +1Ghe 2

sETY, s} -1 SETV sl 1

(6.6)

UG.ho, |2\U (9 ) <C|G|.

Now the postulate of the lemma derives from (6.3).

Then it is necessary to repeat what was said in the last part of Sec-
tion 5, except that the reference to Fig. 8 must be replaced with a refer-
ence to Fig. 9. In such a model the phase transition evidently exists for
all 8. :

The method developed in Sections 4, 5, and 6 makes it possible to
estimate the region of nonuniqueness of the Gibbsian distribution for other
potentials as well.

by the dashed line.

10.
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