
NEWTON POLYHEDRA AND ESTIMATION OF OSCILLATING INTEGRALS 

A. N. Varchenko 

The aim of this paper is to calculate the principal term of the asymptotic expansion 
of an oscillating integral in a neighborhood of a singular critical point of the phase in 
terms of Newton's diagram of the phase expansion in a Taylor series in a neighborhood of 
this critical point. The main result of this paper consists in the fact that this princi- 
pal term is determined by the point of intersection of Newton's diagram with the diagonal 
of the coordinate octant (under the conditions formulated below). Under these conditions 
the arithmetic progressions to which the indices of all the terms of the asymptotic expan- 
sion belong will depend only on Newton's diagram of the phase function. In this paper we 
specify the form of these progressions in terms of Newton's diagram. The obtained formu- 
las confirm the hypothesis of V. I. Arnol'd that all appropriate discrete invariants of an 
analytic function can be expressed in a simple manner in terms of Newton's diagram for al- 
most all the functions with a given Newton diagram (see [ii and 13]). We calculate below 
the indices of the principal terms of the asymptotic expansion for all the phase functions 
classified in [16] (in two cases our theorems yield an inequality for the index of the prin- 
cipal term). We present an example that refutes the hypothesis of semicontinuity of the in- 
dex of the principal term of the asymptotic expansion. 

§ 0. Introduction 

0.i. Newton's Diagram. Let NC RC R+ be the sets of all nonnegative integers, all 
nonnegative real numbers, and all real numbers respectively. Let K~ N ~. 

Definition. Newton's polyhedron of a set K is defined by the convex hull in R k of the 
set U (n ~- R+~). 

n~ K 

Definition. Newton's diagram of a set K is defined by the union of all compact faces 
of Newton's polyhedron of K. 

Newton's polyhedron is denoted by F+(K) and Newton's diagram by F(K). 

Let /---- ~, anx n, an~ C. Let us write supp /---- {n~ N k lan=/=0}- 

n~N g 

Definition. Newton's polyhedron of a series f (or Newton's diagram) is defined by 
Newton's polyhedron (Newton's diagram) of the set supp f. 

Newton's polyhedron (Newton's diagram) of the series f is denoted by F+(f) (and F(f) 
respect ive!y). 

Definition. The principal part of a series f is defined by the polynomial r = ~, an z'. 
~ l ' ( f )  

~ - ~ a  x n For any c l o s e d  f a c e  ? C F (/) we s h a l l  d e n o t e  by  f¥ t h e  p o l y ~ o m i a l ~ . ~  = . .  

Definition. The principal part of a series f is said to be nonsingular if for any 

a[~ #Ix do not vanish simultaneously at closed face ?CF(/) the polynomials zx Oz,' .... x~ 

{ x ~  R ~ [ x l  • • • x~ ~ 0 } .  
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It easily follows from Sard's lemma that the set of singular principal parts is a semi- 
algebraic subvarlety in the variety of all principal parts corresponding to a given Newton 
diagram. 

0.2. Oscillatin~ Integrals. Let C(R k) be a set of infinitely differentiable functions 
on Rk'with compact supports. Let f: R k ÷ R be an infinitely differentiable function. 

Definition. An oscillating integral with a phase f is defined by 

I (T, rq) = ~. ei:l(::)(p (x) dx, 
g 

where  ~ i s  a r e a l  p a r a m e t e r  and ~ E  C (R~). 

It will be assumed throughout in this article that f is an analytic function at the 
origin of coordinates. 

If the support of a function ~ is concentrated in a sufficiently small neighborhood of 
a zero point, then the oscillating integral will have an asymptotic expansion for T -~ +~: 

k--I 

! ~) 
p n=O 

where p runs through finitely many arithmetic progressions not dependent on ~ that are con- 
structed from negative rational numbers (see, for example, [I]). 

Definition. The oscillation index of the function f at zero is defined by a number 
8(f) which is the maximal of the numbers p having the following property: For any neighbor- 
hood of zero in R k there exists a ~ C (R ~) with a support in this neighborhood such that 
in the asymptotic expansion (0.3) for I (T, ~) there exists an n with av,~ (~) ~ 0. 

Everywhere below it is assumed that /(0)= 0, d/l o = O. 

0.4. Formulation of Principal Result. Let us specify a coordinate system in R k and 
denote by ~ the Taylor series of the function f at zero in this coordinate system. Let us 
denote by to the parameter of the intersection of the straight line x, = . = Xk = t, 
t ~ R , with the boundary of the Newton polyhedron F+(f). This number will be called the 
distance between Newton's polyhedron and the origin. 

THEOREM. Suppose that the principal part of the series ~ is nonsingular. Then: 

i. There exists a method (described in Sec. 2.17) of calculation, on the basis of New- 
ton's polyhedron of a subset in Nk, of finitely many arithmetic progressions constructed 
from negative rational numbers. These arithmetic progressions calculated on the basis of 
Newton's polyhedron F+(f) have the following property: If the support ~E C (R k) is suffi- 
ciently small and the coefficient I(T, ~) in the asymptotic expansion (0.3) for the in- 
tegral ap, n (~) does not vanish, then p will be a term of one of the arithmetic progressions 
calculated by us. 

2. If the distance to Newton's polyhedron is not larger than i, then the oscillation 
index 8(f) at zero will not exceed--(to)-*. 

3. If the distance to Newton's polyhedron is strictly larger than i, then the oscilla- 
tion index 8(f) at zero will be equal to --(to) -~ 

4. If the distance to Newton's polynomial is strictly larger than 1 and the point (to, 
• • ., to) lles at the intersection of Z(k- l)-dimensional faces of the Newton polyhedron 
F+(~), then for any nonnegative ~ ~ C (R ~) with ~ (0)~= 0 and a support lying in a sufficiently 
small neighborhood of zero in Rk, we shall have in the expansion (0.3) of the integral [ (T, 
q) a coefficient a~O.T_ , (~) ~e 0, where ~ = mln (l, k). Moreover, for any~ ~ C (R~), with a 
support lying in a sufficiently small neighborhood of zero, we have in the expansion (0.3) 
for the integral I (T, ~) a coefficient a~(f).~ n (~) -----0 for n E N. 

The hypothesis that the principal term of the asymptotic expansion is determined by 
the distance to Newton's polyhedron has been formulated hy V. I. Arnol'd. 

Remarks. In §5 we present an example of a function f of five variables for which the 
prlncipal part of the series f is nonsingular, to < i, and the oscillation index 8(f) is 
strictly smaller than--(to) • 
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The principal part of the series f cannot always be considered as nonsingular. In Sec. 
2.18 we prove a theorem which asserts that in the case to > i and a principal part of the 
series ~ that is not necessarily nonsingular, the oscillation index B(f3 is not smaller 
than --(to) -x. The case of a not necessarily nonsingular principal part can be examined in 
detail for functions of two variables. 

0.5. Adapted Coordinate Systems. Let ]: R~-+ R be the same as above, let y = (y~, 
, Yk) be a local analytic coordinate system at zero in R k, let ~y be Taylor's series of 

the function f at zero in the coordinates y, and let ty be the distance from the origin to 
Newton's polyhedron F+(~y). Let us write t (/$----supty with respect to all local analytic 

Y 

coordinate systems at zero. The number t(f) is called the height of the function f. 

Definition. A local analytic coordinate system y at zero is said to be adapted to f if 
ty = t(f). 

0.6. THEOREM. Let f: R2-~ R be a function that is analytic at zero, /(0) ----0, d/[o = 
0, d2f I0 is singular, and the germ at zero of the set {x ~ R21] (z) --0} does not have multi- 
ple components. Then: 

I. There exist coordinate systems that are adapted to f. 

2. The oscillation index B(f) of the function f is equal to--(t(f)) -~. 

3. For any nonnegative ~ ~ C (R  2) with ~ (0)~= 0 and a support that lies in a suffi- 
ciently small neighborhood of zero, the quantity max {p I ~n I op, n (~) ~= O} in the expansion 
(0.3) of the integralI (x, q~) will be equal to the oscillation index of the function f. 

4. If there exists a coordinate system y that is adapted to f and such that the point 
(ty, ty) (in a standard coordinate system in which the Newton polyhedron is constructed) 
lies at the intersection of two faces of Newton's polyhedron F+(fy), then for any ~ occur- 
ring in Assertion 3 of the theorem we have a~(/) i (q0) ~/= 0. If such a coordinate system does 
not exist, then for any ~ ~ C (R ~) with a support that lies in a sufficiently small neigh- 
borhood of zero, we have a~(i).i (~)=0. 

Remarks. By allowing for a slightly more complicated proof, it is possible to drop the 
assumption that there are no multiple components in the germ of the set {z ~ R~I/(x) = 0). 
On the other hand, the case in which such components occur will have codimension infinity. 
In §5 we present an example of a function /: R3-+ R for which the oscillation index is 
strictly larger than--(t(f)) -z. In Sec. 3.15 we describe an algorithm of determination of 
adapted coordinate systems for /: R=-+ R. 

The following two propositions can be used for recognizing adapted coordinate systems. 

Let /: R2-+ R be the same as in Theorem 0.6, let y be a local analytic coordinate sys- 
tem at zero, and let y be one of the closed compact faces of Newton's polyhedron F+(fy). 
The straight line on which y lies can be specified by the equation a 1 (~)x I ÷ a 2 (?)z2 ----m (?), 
where a~, a=, and m are natural numbers, with a, and az being relatively prime. 

0.7. Proposition. y is a coordinate system adapted to f if one of the following con- 
ditions holds: 

i. The point (ty, ty) lies at the intersection of two faces of the Newton polyhedron 
r+(~y). 

2. The point (ty, ty) lies on a closed compact face y of the Newton polyhedron F+(fy), 
and both numbers a:(y) and a2(y) are larger than I. 

Now suppose that the point (ty, ty) lies on a closed compact face y of the Newton poly- 

hedron r+ Cf,,) and let at(x) = i. Let /y = L a'~Yn" Let us denote by fy,y the polynomial 
" n ~ - N :  

La, y" virtue of our condition, the polynomial be expressed in the form ~/~,(~). By fY,7 can o 

~EEy 
. / a~(',-)~ /9., ~Y2~ ~ , where Ps is a polynomial of degree s of one variable, s~m(~O. 

0.8. Proposition, If the polynomial Ps does not have a real root of'multiplicity 
larger than m (T)(i + a2 (~'))-~ , then y will be a coordinate system adapted to f. 

0.9. Constancy of Oscillation Indices for Functions of Two Variables along the Stratum 
= const. Proposition. Let /t: R=-+R be a family of functions that are infinitely dif- 
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ferentiably dependent on a parameter t ~ [0,I], and which are analytic at zero in R 2 for any 
t. We shall assume that Milnor's number 

P*' = dimcC(xx' x2))/~'~-x~ ' Ox, / 

of the function ft at zero does not change when t varies. Then the oscillation index of 
the function f does not change when t varies. 

This assertion has been formulated bycArnol'd [3] as a hypothesis for functions with 
any number of variables. 

0.i0. Generalized Functions fl. Let ]: B~-~R be a function that is analytic at zero, 

f(O) = O, df Io = 0. Let us write 

{ /(x) for / ( z ) > O ,  { 0 for / ( z ) ~ O ,  
/+ (x )=  0 for /(x)<O, L ( x ) =  - - / ( x )  for /(x)<O. 

L e t  ~ E  C (R ~).' L e t  us  c o n s i d e r  t h e  i n t e g r a l s  

I .  C~', ¢) = .~ (/+ Cz)):cP @) dx, I_ (x, ¢) = I (/- @))=¢ @) dx, 
k Rk 

where x ~ C, Re x > 0 , and I+ and /_are analytic functions of the parameter r. According 
to the theorems of Bernshtein--Gel'fand [4] and el Atiyah [5], and assuming that the support 
of the function ~ is concentrated in a sufficiently small neighborhood of zero, it is poss- 
ible to analytically continue I+ and I_ on C as meromorphlc functions of the parameter T, 
and their poles belong to finitely many arithmetic progressions that do not depend on ~ and 
that are constructed from negative rational numbers. 

THEOREM. Suppose that the Taylor series f of the function f has a nonsingular princi- 
pal part. Then the arithmetic progressions of numbers containing the poles of I÷ (x, q) and 
I_ (x, ~) can be calculated on the basis of Newton's polyhedron F+(f) in the manner described 
in Sec. 2.17. 

0.ii. Examples. V. I. Arnol'd has posed the following questions. 

Let /: R~-+R be a smooth function, let F: Ilk × Rt_+R be its deformation (i.e., F is 
a smooth function and F(., O) = f), and let 8 be the oscillation index of the function f at 
z e r o .  

For any positive e, does an oscillating integral with a function F(., %) Question i. 
admit a bound 

Rk 

f o r  any smooth  ~ w i t h  a s u p p o r t  in  a s u f f i c i e n t l y  s m a l l  n e i g h b o r h o o d  of  t h e  o r i g i n  i n  R ~ >~ R'? 

Question 2. Is the oscillation index semicontinuous in the sense that the oscillation 
index of the function F(x, Xo) at the point xo does not exceed 8 for any (xo, Xo) lying in 
a sufficiently small neighborhood of the origin in R ~ × Bt? 

Let /i: Bk--~ Il and [z: Ilk-+ R be analytic functions at the origin. Let/~: C ~-+ C, 

~: C~-+Cbe "complexifications" of the functions f, and fa, i.e., fC is an analytic func- 
l 

tion that has at zero the same Taylor series as fl. Suppose there exists an analytic change 
of coordinates y = g(x) in C k that preserves the origin and such that ~, (g (x))= ~ (x). 

Question 3. Are the oscillation indices of the functions ft and f2 at zero equal? 

Let us note that if the change of coordinates y = g(x) is specified by functions with 
real Taylor coefficients, we shall evidently obtain a positive answer to question 3, 

The questions i and 2 were formulated in [3] and [16], whereas question 3 was formu- 
lated in [3]. The example presented in §5 yields a negative answer to all three questions. 

0.1i. Our analysis will proceed as follows. The aim of §i is to prove Proposition 
1.4 in which we summed up the entire analytic part of the paper. In §2 we prove Theorems 
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0.4 and 0.i0. In §3 we prove all the results relating to functions of two variables. In 
§4 we present the results of applying our theorems in the calculation of the oscillation 
indices of the functions classified in [16]. Some of the results presented in §4 were for- 
mulated in [3]. In §5 we present examples that yield negative answers to the questions i- 
3 of Sec. 0.ii. 

In conclusion, the author expresses his gratitude to V. I. Arnol'd for posing the prob- 
lem, and to V. N. Karpushkin and A. G. Khovanskii for numerous useful discussions. 

§i° Resolution of Singularities and Oscillating Integrals 

The aim of this section is to prove Proposition 1.4. 

Let /: R~-+R be a function that is analytic at the origin, f(0) = 0, dflo = 0. Let Y 
be a nonsingular real analytic k-dimensional manifold, and ~: Y-+ R ~ a proper analytic map- 
ping such that at each point of the set S = ~-I(0) there exist local coordinates y~, . ., 
Yk at which 

f°~ (Yl, • •., Yk) = :h y~'.. • y~ • (I.i) 

(1.2) The Jacobian J~ of the mapping ~ has the form 

7,= (Yl . . . . .  Yk) = Y'~' . . .  YY~],= (Yl . . . . .  Yk), where 7~ (0 . . . . .  0) #= 0. 

( 1 . 3 )  In  a n e i g h b o r h o o d  o f  z e r o  in  Rk, v i s  an a n a l y t i c  i somorph i sm o u t s i d e  a p r o p e r  
a n a l y t i c  s u b s e t  in  Rk. 

Let us denote by {(n, m)}y a set of pairs (ni, mi) with ni > 0 and (n~, m~)~= (I, 0) en- 
countered in such notations for y ~ $. Let us write ~r = min {-- (m q- i)/n I (n,m) ~ {(n,m)}y}. 
(Iftheset {(n, m)}yiS empty we shall write SY = -- =). Theset {(n,m)}ywill be called an 
array of multiplicities of the resolution (Y, ~). The number BY will be called the weight 
of the resolution (Y, ~). 

Let ~ ~ C (R~), and f (~, ~) and I+ (T, ~) are functions defined in the Introduction. 

Proposition 1.4. i. If the support of ~ is concentrated in a sufficiently small 
neighborhood of zero, then /+ (% ~) and I-(r, ~) can be analytically continued on C as mero- 
morphic functions of T, and their poles belong to the terms of arithmetic progressions one 
of which consists of negative integers, whereas the others are parametrized by the elements 
of an array of multiplicities {(n, m)}y of the resolution (Y, ~). To the pair (n, m)~ {(n, 
m)}r there corresponds the arithmetic progression --(m + l)/n, --(m + 2)/n, . . .. 

2. We shall assume that for any point y~ $ and any local coordinate system y:, . . ., 
Yk centered at y that satisfies (i.I) and (1.2), there do not exist two pairs equal to (I, 
0) among the pairs (hi, mi) (i = i, ., k) in the expansions (i.I) and (1.2). We shall 
also assume that the weight BY of the resolution (Y, ~) is not larger ~than--i. Let I, 

., j be all the natural numbers strictly smaller than the number --BY. Hence, if the 
support of ~ is concentrated in a sufficiently small neighborhood of zero, then f+ (T, ~) and 
f_ (T~) will have at the points T = --I ..... -T poles of multiplicity not higher than i. 
If aj (or a~) is a residue of I +(T,~) (a residue of I_(~, ~)) at the point r -- --j, where 3" = 
1 ..... ~, thenaf = (--i)J-laf. On the set Re r > BY the functions I+ (% ~) and I (% ~) do 
not have other poles. 

3. Let BY > --i. Let us write T = max {Jl there exists ayE S and a local coordinate 
system yl, ., Yk at the point y that has the properties (1.1)-(1.2) and such that in 
(i.I) and (1.2), j numbers among (m~ + l)/nl, (m= + l)/n2, • ., (m k + l)/n k are equal to 
--BY}. Hence, if ~ has a support that is concentrated in a sufficiently small neighborhood 
of zero, qo (0) ~e 0 , and ~ is nonnegative, then: 

a) The functions I+ (T, ~) and I_ (~, ~) have for r = BY a pole of order not higher than 

J; 

b) the sum of coefficients of I/(T --~y)J in the Laurent expansion of the functions 
f+ (% qo) and f_ (~, q~) at the point ~ = ~y is nonzero. 

4. If the assumptions of Part 2 of the proposition are satisfied and the support of 
is concentrated in a sufficiently small neighborhood of zero, then p in the expansion (0.3) 
of the integral I (v, ~) will run through a set of numbers belonging to the arithmetic pro- 
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gressions described in Part 1 of the proposition and from which we dropped all the inte- 
gers strictly larger than BY. 

5. If BY > --i and the support of 99 is concentrated in a sufficiently small neighbor- 
hood of zero, then: 

a) In the expansion (0.3) of the integral I (~, ~), the quantity p runs through the arith- 
metic progressions described in Part 1 of the proposition; 

b) the oscillation index 8(f) of the function f at zero is equal to the weight 8Y of 
the resolution (Y, ~); 

c) if ~(0)~=0 and ~ is nonnegative, then a~ff)~,~=0 in the expansion (0.3) of the in- 
tegral / (T, ~) ; here T is the quantity defined in Par-t 3 of the proposition. 

The remainder of this section is devoted to the proof of Proposition 1.4. 

It is easy to see that the following objects of study exist: 

(1.5) A neighborhood U of zero in Rk; 

(1.6) a neighborhood V of the set S in Y; 

(1.7) finitely many infinitely differentiable finite functions {~: Y-~ R)in Y. 

They have the following properties: 

(1.8) f is analytic in U and it does not have on U critical values other than zero; 

(1.9) V C  a-* (U); 

(i.i0) the functions {~,,} are nonnegative and ~Iv------ i: 

(i.ii) for any ~ there exists an open set W containing the support of q a, and local 
coordinates on W such that (i.i) and (1.2) are satisfied on W. 

Let us specify these objects. In this section, the assumption that the support of 9~ 
is sufficiently small will signify that the support of 99 lies in U. In this section we 
shall assume that the support of ~ is sufficiently small. 

Proof of Part 1 of Proposition 1.4. For Re r > 0 we have 

R/~ y " 
~t y 

where dy is a volume element in Y and J~ is the Jacobian of the transition from dx to dy. 
We shall prove that in the last sum each term can be analytically continued on C as a mero- 
morphic function of T with poles belonging to the terms of the arithmetic progressions 
mentioned in Part i. 

Indeed, by virtue of (I.ii) we have for any a in some coordinate system the formula 

nk - - m i rak I (/°~')~(~ °a)~lL~ldy = f (Sy'~".. .y~)~(~ o~)T~lJ,:.yt ... y~ IdY~...dY~, (1.13) 
Y ',,V 

where d is equal to 1 or to--i. 

The last integral is a finite sum of integrals 

k 
g ( T - ]  ".ni+rai\ 

II (Yi)s(i) ) (q) o n) ep~ l]~ I dy l . . ,  dye, 
1V" ~ i = l  

where 6(i) is equal to + or --, depending on i. Now the assertion to be proved follows di- 
rectly from the Lemma 1.14 formulated below. 

LEI~ 1.14. Let ~(y,, • -, Yk, ~) be a finite infinitely differentiable function on 
R k that is a meromorphic function of the parameter ~ C  t. Then the function 

k 

l ('q . . . . .  z~, Ix) = (YO~(i))~(Yl . . . . .  Y~,lx)dY, ...dY~, 
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where ~(i) is equal to + or -- (depending on i), can be analytically continued at all the 
values of T~, • ., Tk and ~ as a meromorphic function, and all its poles other than those 
already possessed by the function ~ can lie only on hyperplanes of the form Ti + S = O, 
where the s are natural numbers. 

Lemma 1.14 can be proved in the same way as Lemma 2 in [4]. 

Proof of Part 2 of Proposition 1.4. By virtue of (1.12), it suffices to prove Part 2 
for the integral in the left-hand side of (1.13) with any ~. By virtue of our conditions, 
the right-hand side of (1.13) contains not more than one subscript i for which ni = 1 and 
mi = 0. If there is no such i, then it follows from the conditions of Part 2 and of Lemma 
1.14 that this integral does not have poles on the set Re T > By for f+ or f_. 

Now suppose that such a subscript exists. For definiteness, let n~ = 1 and m~ = 0. 
Thus, let us prove Part 2 for the integrals 

_ ~ m~ f . . .  I 
W 

where  6 i s  e q u a l  t o  1 and --1. 

For  t h i s  p u r p o s e  i t  s u f f i c e s  to  p r o v e  P a r t  2 f o r  t h e  i n t e g r a l s  . . . . .  

! (YO~ (Y2)'~ ''~... (Y~)'~+'% (ep o ~) q):, I],~ I dyl ... dye, (1 .15 )  
W 

where  ~ ( i )  i s  e q u a l  t o  + o r - - .  

Le t  Z be  a n a t u r a l  number s t r i c t l y  s m a l l e r  t han  --BY. From t h e  e x p l i c i t  f o rmulas  o f  

regularization of the integral ~x~(x) dx (see [6]) it then easily follows that: 
@ 

(1.16) The integral (1.15) has for (y~)$, as well as for (Y:)!, a pole of order not 
higher than the first at the point T =--Z. 

(1.17) The residue of the integral (1.15) for (yx)~ at the point T = --~ is equal to 

~W " "-nkl+mk O(t-1) i /o, ~-~,z+~, (Y~)s(~) Oy(~) [(~ ° rt) (p~ I Y~ J] dy~ ... dyk. (l - -  t)! ~ y ~ ) s ( ~ )  . . .  

YI=O 

(I.18) The residue of the integral (1.15) for (yi)! at the point T = --l is equal to 

. .-nkI+m ~ 0(1-1) 
(~--~ t)(l-1}i)! ~u2)s(~)~- ~-~+m, ... (Y~)s(k) ~ [(~ ° u) ~ I]~ [] dy~ ... dye. 

y W  
Y1=O 

This completes the proof of Part 2 of Proposition 1.4. 

Proof of Part 3 of Proposition 1.4. Let us consider the integral (1.13) with any ~. 
If the number of subscripts i in the right-hand side of (1.13) such that --(mi + l)/ni = BY, 
is smaller than the number ~ in Part 3, then it is easy to see that the integral (1.13) has 
for this ~ at the point T = ~y a pole of order strictly smaller than ~. Now let ~ be such 
that the number of subscripts i such that --(mi + l)/n i = BY, is equal to ~. For definite- 
ness, let these subscripts be --i, ., ~. The integral (1.13) is a finite sum of inte- 
grals 

I .~nt+.tt;l "enlf+Irll( (Y0~(O ... (Y~)s(~) (~ ° ~) ~ I ]~ I dyl.. ,  dyk. ( 1 . 1 9 )  
W 

oo 

From t h e  f o r m u l a s  o f  r e g u l a r i z a t i o n  o f  t h e  i n t e g r a l  i x :~(x)dx  i t  f o l l o w s  t h a t :  
0 

(1 .20 )  The i n t e g r a l  ( 1 . 1 9 )  has  a t  t h e  p o i n t  • = By a p o l e  o f  o r d e r  no t  h i g h e r  t h a n  ~ .  

( 1 . 21 )  The c o e f f i c i e n t  o f  l / ( ~ -  ~y)F in  t h e  L a u r e n t  e x p a n s i o n  o f  t h e  i n t e g r a l  ( 1 . 1 9 )  i s  
equal to 
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( U -  ~ - ~+I i+I i ~ y n =  +m-  
• , a j + i l S ( ~ ' + l  ) • • • 

~EW 

(~ ~f~Ynk+mg t m  ^ 
y~{~) (v ~ ~) ~ I ]~ I dYT+~"" dye. 

This proves Part 3 of Proposition 1.4. 

For proving Parts 4 and 5, we shall use the following theorem of I. M. Gel'fand and 
Z. Ya. Shapiro. Let m be a (k -- l)-dimensional differential form that satisfies the rela- 
tlon 

dl /k ~ = dx~ A . . . A dxk. (1.22) 

A form m that satisfies such a relation exists in a neighborhood of points at which df # 0. 
The condition (1.22) invariantly specifies a restriction of the form ~ to a nonsingular 
part of any level line of the function f. 

us write K(/ ,~ ,c )= I ~'~" Let  
f=: 

THEOREM (see  C6], p.  407) .  I f  a f u n c t i o n  1÷ (r, ~ ) h a s  p o l e s  a t  the  p o i n t s - - ~ , ,  - - T ~ , . . . ,  
--x~ .... (x~<x~<...r~<...) and if m~ is the multiplicity of a pole at--rZ, then we have 
an asymptotic expansion 

m l 

K (/, ~, c) .~.' for 2 2 az.r,,c"'-l(lnc)'-t c.--+ + O, (1 .23)  
I=I m~L 

the coefficient a l , m  is equal to the coefficient of I/(T + Tl)m in the Laurent expansion 

for f+ (% ~) at x -~ -- T~ multiplied by (--i)~-V(m -- i)! 

Proof of Part 4 of Proposition 1.4. We have 

0 

c)dc+ I ei'~K(/,9, c) dc" 
--00 0 --Oa 

(1.24) 

Let 

m l 

m l 

K (1, cO, c )~  2 2 ar, ,~(--c)7-~Cln(--c))'~-~ 
/ = 1  m = l  

~r c--~q-0, (1 .25)  

for c--+-- 0 (1.26) 

(1.27) 

be asymptotic expansions for K. 

We shall use the following well-known formulas. Let 0 ---- C (R I) and 8 - i in a neigh- 
borhood of zero. For r -~ +~o we then have the following asymptotic expansions: 

d= q (-- i~) ~+I 
0 

0 

I ei'eC--c)=C]n(--c))qscc)d~ dq F(a+i) (where arg(i,)=T). 

According to [7], the expansions (1.25) and (1.26) can be termwise differentiated with 
respect to c as many times as desired. Then the asymptotic expansion of the integral I (% ~) 
for T -~ q~ can be obtained by termwise application of the formulas (1.27) and (1.28) to the 
expansions (1.25) and (1.26). Since by virtue of our condition, we have for I = i, . . ., 
-- + ----(--1)Z-la~a, ~-+l------~y, it follows that the asymptotic j the relations T~---- i, mz = i, at.1 
terms of K for c + + 0 and of K for c ÷ -0 cancel out for monomials T -~. This completes 
the proof of Part 4 of Proposition 1.4. 

Proof of Part 5 of Proposition 1.4. By virtue of Part 3 of Proposition 1.4 and of the 
Gel'fand--Shapiro theorem we have T~ = --By, mx -- T, and at: ] and ai$ have the same sign, and 
5+ i$~-aI~=0. On the other hand, the principal term of the asymptotic expansion (1.27) (or 

(1.28) 
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j. (ln ~:)q d (In "~)q =i , ---- e+-{ (:~+~) (1.28)) will be -+-~F (or -~-~V+~ ) where d+ F(~-i) . For 0 < ~ < i we have 
• • a+ - 

Red+ = Bed_ ~e 0. The coefficient a~ - in the expansion (0.3) ms e~ual to ~-Td+-~ a,3d_, and 
by virtue of Ned+ = Red_ #= 0 it does not vanish. The other assertions of Part 5 are ob- 

vious. 

§2. Proof of Theorems 0.4 and 0.i0 

In this section we prove the Theorems 0.4 and 0.i0. For a given Newton polyhedron F 
we construct a manifold Y(F) and its projection ~ : Y(F)-+R ~ that will satisfy the condi- 
tions (i.i)-(1.3) for almost all the functions f with a given Newton polyhedron. For such 
a Newton polyhedron we calculate an array of multiplicities {(n, m)}r(D of the resolution 
(Y(F), ~), and thus, we can formulate the assertions of Proposition 1.4 in terms of the geo- 

metrical characteristics of Newton's polyhedron. This will precisely be the proof of Theo- 

rems 0.4 and 0.i0. 

The manifold Y(F) will be constructed as follows. For a given Newton diagram we deter- 
mine a partition into convex cones of the positive octant in a space conjugate to R k. After 
that we refine this partition. With the aid of the theory developed in [8] we construct on 
the basis of this new partition a k-dimensional nonsingular complex manifold X(F) and its 
projection onto ck. The real part of the manifold X(F) and its restriction to its projec- 

tion will be the sought Y(F) and ~. 

The procedure of construction (on the basis of a Newton polyhedron F) of a manifold 
X(F) described below is a local modification of Khovanskii's method of assigning a compact 
complex nonsingular toroidal manifold to an integer-valued compact convex polyhedron in R k. 

Partition of Positive Octant into Convex Cones. Let KeN k . We shall assume that K 
has the following property. Any series / ~ C ~ x l , . . . , ~  ~ for which the Newton polyhedron 
F+(f) coincides with the Newton polyhedron F+(K) belongs to the square of a maximal ideal 
in C~xl  . . . . .  x ~ .  

W i t h  r e s p e c t  t o  t h e  p o l y h e d r o n  F+(K) we d e t e r m i n e  a p a r t i t i o n  i n t o  c o n v e x  c o n e s  o f  t h e  
p o s i t i v e  o c t a n t  i n  a s p a c e  R k* w h i c h  i s  t h e  c o n j u g a t e  o f  R k .  

Let x~, • • xk be standard coordinates in Rk, and let el, ., a k be conjugate 
coordinates in R k*' For a ~R ~" with a t > 0, i = i , . . , k, let us write 

m ( a )  = max  { m  I ( a ,  x) ~ m  V x ~ F +  (K)}. 

L e t  us  n o t e  t h a t  re(a)  > / / 0 .  Two v e c t o r s  a, a '  ~ R  ~* w i t h  at > 0, ~ 0, i = t . . . . .  k , a r e  s a i d  
t o  b e  e q u i v a l e n t  i f  {x ~ F +  (K) [ (a, x) : m (a)} = { x E F +  (K) [ (a ' ,  x) : m ( a ' ) } .  I t  i s  e a s y  t o  s e e  
t h a t  

( 2 . 1 )  Any e q u i v a l e n c e  c l a s s  i s  a c o n v e x  c o n e  w i t h  i t s  v e r t e x  a t  z e r o  t h a t  i s  s p e c i f i e d  
by finitely many linear equations and strictly linear inequalities with rational coeffi- 
cients. 

The closures of equivalence classes specify a partition ~o of the positive cone {a~ 
R~*la~0, i = I ..... k) into closed convex cones that have the properties (2.2) and (2.3). 

(2.2) If ~I is the face of a cone o~Z0, then ~1~Z0. 

(2.3) For any ~i, o2~0, the quantity o I ~ o 2 will be a face of both ~: and o2. 

Theorem i.I of [8] (p. 32) gives an explicit description of an algorithm that makes it 
possible to construct on the basis of ~o a partition ~ of the cone {a~R~°la~O} into 
finitely many closed convex cones with their vertex at zero such that: 

(2.4) Any cone belonging to E lies in one of the cones in Zo. 

(2.5) Any cone belonging to E is specified by finitely many linear equalities and lin- 
ear inequalities with rational coefficients. 

(2.6) If o, is the face of a cone ~ ~ , then ~I ~ ~" 

(2.7) For any~, ~2~ ~, the quantity Ol ~ ~ will be the face of both.the cone o~ and 
the cone o~. 
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(2.8) The structure# of any cone belonging to Z can be completed to the base of an in- 
teger-valued mesh in Rk*. 

Let us construct and specify a Y with the following properties. 

The Manifold x(r). Let ~ E, dim ~ = k, a I (o), .... a k (~) be the structure of a cone o 
that has been ordered once and for all. With each such o we shall associate a copy of C k 
denoted by ck(~). Let us denote by ~ (G): C ~ (G)-+ C ~ a mapping defined by the formulas 

where xl, . .., xk are coordinates in C k, Yl, ., Yk are coordinates in ck(G), anda{(o), 
..., a~ (a) are the coordinates of the vector aJ(~). We shall identify any two copies ck(o) 
and ck(o') with respect to a rational mapping: ~-i (o')o~ (~):C ~ (~)-~ C ~ (~') (i.e., x~ C k (G) 
and x' ~ C (o') will coalesce if ~-I (o')o~ (o): x ~ x'). The thus-obtained set will be denoted 
by x(r). 

From the properties (2.5)-(2.8) of the partition 7 it follows by virtue of Theorems 6, 
7, and 8 of [8, pp. 24-26] that: 

(2.9) x(r) is a nonsingular k-dlmensional algebraic complex manifold. 

(2.10) The mapping =: X (F)-+ C k defined on each ck(o) by = (o): C ~ (o)-+ C ~ is a proper 
mapping onto ck. 

The transition functions between local maps of the manifold X(P) are real on real parts 
of the manifold x(r) which will be denoted by Y(P). The restriction of the projection ~ to 
Y(r) is also denoted by ~. We have: 

(2.11) Y(r) is a nonsingular k-dlmensional real algebraic manifold. 

(2.12) =: Y (F)-+ R k is a proper mapping onto R k. 

We shall use the following lemmas concerning Y(r). 

LEMMA 2.13. Let f(xl, • • ., Xk) be a convergent power series with real coefficients 
(f specifies an analytic function in a neighborhood of zero in Rk) and let F+ (/) - F+ (K) 
Let o~E, dim~ =k • Then: 

I. /o~ (o) [Yl ..... Yk] = y~(a,(o)) . . . y~(ak(o~) /~ (Yl ..... y~) , where y~, ., Yk are coordi- 
nates inC k (o), I= (0 . . . .  , O) =/= O. 

h" 

2. The  acobian o f  the  mapping i s  equal  to  .C, where 

C = const. 

3. A set of points in R k in which ~ is not an isomorphism is a union of coordinate 
planes. 

Assertions 2 and 3 follow directly from the formulas for ~, Assertion i follows from 
the formulas for ~ and the equivalence of all the vectors in a cone o (this signifies that 
Newton's diagram of the series /on (o) in coordinates y~, . . ., Yk is a point). 

LEMMA 2.14. Let f(x~, . ., Xk) be a convergent power series with real coefficients 
F+ (])= r+ (K) , and the principal part of the series f is nonsingular. Then the manifold 
Y(r) and the projection ~: Y (r) -+ R ~, together with the analytic function defined by the ser- 
ies f, will satisfy the conditions (i.i), (1.2), and (1.3). 

Lemma 2.14 easily follows from the conditions of nonsingularity, the proper character 
of the mapping ~, as well as Lemma 2.13 and Lemma 2.15 that follows. 

LEMMA 2 . 1 5 .  L e t  ~ Y . ,  d i m ~ = k ,  I ~ { I  . . . . .  k } ,  T~ = {y  ~ C~ (cO [ y~ = O V i  ~ I ,  Yl  . . . .  , Y~ 

real }. Then 

i. The following conditions (a) and (b) are equivalent: 

#The structure of a convex rational cone ~ is defined as a set of primitive integer vectors 
in the faces of o of dimension i (see [8]). 
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a) For any convergent power series f(x,, ., xk) with real coefficients and with 
F+ (/) = F+ (K), a function fo,l that depends on Yi, i~ I , and is defined on TI, and equal on 
TI to the function fo occurring in Part i of Levana 1.13, will be a polynomial; 

b) n (0) [Tr] = 0. 

2. I f  the  p r i n c i p a l  p a r t  o f  the  s e r i e s  f f s  n o n s i n g u l a r  and ~ (~)[Tx] = 0,  then  the  
set {y ~ TI [/o (Y) ----0} (the function fo being defined in Part i of Lemma 2.13) will be non- 
singular, i.e., the gradient of the restriction of the function fo to TI will be nonvanish- 

ing at the points of this set. 

The proof follows from the definition of the projection ~(o). 

2.16. Array of Multiplicities {(n, m)}y(r) of the Resolution (Y(F), ~). (The definition 
of the array {(n, m)}y can be found prior to Proposition 1.4). Let us describe the pairs 

belonging to {(n, m))~(r). 

The pairs in {(n, m))y(r) are parametrized by one-dimensional cones in ~ with the follow- 
ing property: If o~ Y, dim a = I, a ~ (a) being a unique vector forming the structure of the 

cone ~, then: a) m (a * (a))> O, b) if m(a * (a)) ---- i, then a i(O) v el , where a~ (0) ..... a~ (a) 

are the coordinates of the vector ai(o). 

To such a cone o there corresponds in {(n, 

Lemma 2.13). 

k 

m)}~(r) t he  p a i r  (m(a*(o)), ( ~ a ~ - ( o ) - - | ) )  (see 

The number --(m + l)/n corresponding to this pair and used in the definition of the 
w e i g h t  BY(F) of  the  r e s o l u t i o n  (Y(I ' ) ,  7r) ( see  i t s  d e f i n i t i o n  p r i o r  to  P r o p o s i t i o n  1 .4)  i s  

k 

equal to (--~a](~))Im(a'(=))and it has the following geometrical meaning. Let ti be the 

parameter of the point of intersection of the straight line xl .... ---- z k = t, t~ R with 
k 

the hyperp!ane (a I(o), x) ---- m (a ~(~)); then (--~a}(~))/m(a1(~))=--(tl) -I. 
J=l 

2.17. Proof of Theorems 0.4 and 0.i0. Let K = supp f. With respect to K let us con- 
struct a manifold Y(F) and its mapping ~: Y(F)-+R ~ • If the principal part of the series 
f is nonsingular, then by virtue of Lemma 2.14 the mapping n: Y(F)-+R ~ together with f 
will satisfy the conditions of Proposition 1.4. 

From Propositions 1.4 and Sec. 2.16 we obtain the following: 

Method of Calculation of Arithmetic Progressions That Satisfy the Conclusions of Theo- 
rem 0.i0 and Part 1 of Theorem 0.4. With respect to F+(K) let us define a partition Eo that 
has the properties (2.1)-(2.3). With the aid of the algorithm described in Theorem Ii of 
[8] (p. 32), let us construct a partition E with the properties (2.4)-(2.8). In this case, 
one of the sought progressions will consist of the negative integers, whereas the other 
progressions are parametrized by one-dimensional cones belonging to ~ that have the follow- 
ing property: If ~ Z, dima = I, a I (o) being the only vector forming the structure of the 

k 

cone ~, t hen :  a) m ( a l ( ~ ) ) > O ;  b) i f  m(al(o))= 1, t hen  . ~ a ~ ( ~ ) ~ t ,  where a~(a),..., a~(a) are  
J = l  

the  c o o r d i n a t e s  o f  t he  v e c t o r  a ~ ( o ) .  

To such a cone ~ t h e r e  c o r r e s p o n d s  the  a r i t h m e t i c  p r o g r e s s i o n  

k k 

2~I J = l  

I f  f has  a complex i s o l a t e d  s i n g u l a r i t y  a t  z e r o ,  i . e . ,  i f  

/( 0,) 01 "'"-~ <~ ,  
dimc C ((xl, ..., x~} ~-~xl' 
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we possess a more constructive method of calculating arithmetic progressions that satisfy 
the conclusion of Part i of Theorem 0.4. (Let us note that the case of a singularity that 
is not isolated will have codimension infinity.) It follows from Malgrange's theorem [i] 
that if the coefficient ap, n(~)~O in the expansion (0.3) of the integral I (% ~), then 
e~p will he a root of the characteristic polynomial of monodromy in (k -- l)-dimensional 

homologies of a fiber of Milnor's fibering associated with f (the corresponding definition 
can be also found in [i]). A method of calculation of this polynomial on the basis of New- 
ion's polyhedron (which is more constructive than the above method of description of arith- 
metic progressions) will be presented in our next article. 

Proof of Part 2 of Theorem 0.4. Let to be the distance from the origin to Newton's 
polyhedron F+(~). By virtue of our condition we have t0<~. We shall consider two cases. 

First Case. Suppose that the series f(x,, . .., xk) is divisible by one of the vari- 
ables x,, •., xk. This signifies that 10>i, i.e., to = I. In this case the assertion 
of Part 2 of the theorem follows from the description 2.16 of the array of multiplicities 
{(n, m)}z(r) , the geometrical meaning of the numbers --(m + l)/n for the pairs (n, m) (also ex- 
plained in this section), and Proposition 1.4 (in this case the weight BY(F) of the resolu- 
tion (Y(F), ~) is not larger than --i). 

Second Case. The series f(xl, • .., x k) is not divisible by any of the variables x,, 
• ., xk. In this case it follows from Part 2 of Lemma 2.15 that the condition of Part 2 
of Proposition 1.4 is satisfied (concerning the absence of a point y and of a local coor- 
dinate system y,, . .., Yk). It follows from 2.16 that the number --(to)-* is equal to the 
number BY(F) in Proposition 1.4. Now Part 2 of Theorem 0.4 follows from Part 4 of Proposi- 
tion 1.4. 

Proof of Parts 3 and 4 of Theorem 0.4. It follows from 2.16 and from the condition to > 
1 that the number BY(F) is equal to --(to)-* and that BY(F) > --I. Part 3 of Theorem 0.4 fol- 
lows from Part 5 of Proposition 1.4. For proving Part 4, it suffices to prove that the num- 
ber Z in Part 4 of Theorem 0.4 is equal to the number ~ in Part 3 of Proposition 1.4, and 
then use Part 5 of Proposition 1.4. But the relation Z = ~ evidently follows from the geo- 
metrical meaning of the numbers --( m + l)/n for (n, m) ~ {(n, m)}y(r) described in 2.16, and 
from the definition of the partition Eo. 

2.18. THEOREM. Let /: R~-+R be a function that is analytic at the origin, dflo = 0, 
is its Taylor series, to is the distance from the origin to Newton's polyhedron F+(f), 

to > i, and 8(f) is the oscillation index of the function f at zero. Then ~ ~)>--(t0) -l 

Proof. For F = F+(~) let us construct x: Y-~Y(F)-+R ~ as described above. By virtue 
of [2] there exist Y, =':Y-~Y(F) such that the pair (Y, ~oX') together with f has the prop- 
erties (1.1)-(1.3). By virtue of to > i, the weight of the resolution (Y, ~ox') is not 
smaller than --t~*, and the assertion of the theorem follows from Part 5 of Proposition 1.4. 

§3. Two-Dimensional Case 

In this section we shall prove at first the Theorem 0.6, and then also the other as- 
sertions formulated in the Introduction, for functions of two variables. The proof of 
Theorem 0.6, just as the proof of Theorem 0.4 in §2, consists in considering the resolution 
of the germ at zero of a zero level line of a function, and then calculate for this resolu- 
tion the data occurring in the condition of Proposition 1.4, this being followed by the use 

of Proposition 1.4. 

Thus, it is easy to see that Theorem 0.6 follows from Proposition 3.1 formulated and 
proved below, as well as Parts 3 and 5 of Proposition 1.4, and the obvious fact that the 
height t(f) of a function f of two variables that has at zero a critical point with a criti- 
cal value 0 will not he smaller than i; here t(f) = 1 only if f has a nonsingular second 

differential at zero. 

Let us formulate Proposition 3.1. Let f be the function occurring in Theorem 0.6, let 
Y be a nonsingular real two-dimensional analytic manifold, and let ~: Y-+R' be a proper 
analytic mapping in R 2 that has together with f the properties (i.i)-(1.3). Let (Y, ~) be 
a minimal pair that also has these properties, i.e., for any (Y', ~') that have together 
with f the properties (1.1)-(1.3), there exists a proper analytic mapping ~: Y'-+Y such 

that ~' = ~. 

186 



Proposition 3.1. i. 8Y = --(t(f)) -~, where 8Y is the weight of the resolution (Y, ~) 

defined in §i. 

2. There exists a local analytic coordinate system y at zero in R 2 such that --t/. I = 

By, where ty (defined in Subsection 0.5) is the distance from the origin to Newton's ~oly- 

hedron. 

3. a) If there exists a coordinate system y adapted to f and such that the point (ty, 
ty) (in a standard coordinate system)lies at the intersection of two faces of Newton's 
polyhedron F+(~y), then the number ~ defined on the basis of f, Y, and ~ in Part 3 of Prop- 
osition 1.4 will be equal to 2. b) If such a coordinate system does not exist, then T = i. 

Proposition 3.1 will be proved in Subsections 3.7-3.14. It is proved with the aid of 
Lemma 3.2. 

For formulating this lemma we shall use the function m: {a~R~*la ~ ..... a~0}-+R+ 
defined in §2 for a subset K in N k. 

Let n,: C~-+C~ be an analytic mapping such that the Jacobian J(x~, ., x k) of the 

mapping ~i is equal to x [ ~ ' . . . x " ~ ]  (x I . . . . .  x k ) ,  where xl, • ., x k are the coordinates in 

C ~, J (0 .... , 0)~0 Let ~: C ~ -+C ~ be a mapping defined by the formulas 

a~ a i X i o ~z = X l ... Xk , where a{ ~ N, det  (a~) = _+.t. 

L e t  u s  c o n s i d e r  a f u n c t i o n  g ( x x ,  . ,  xk )  t h a t  i s  a n a l y t i c  a t  z e r o  i n  C k .  L e t  u s  w r i t e  

• i ( x  1 . . . .  . xk) : x 1~'. . . x ~  g ( x ,  . . . .  ,xk)  , w h e r e  n ,  . . . . .  ~ N .  L e t  u s  a l s o  w r i t e  a i = ( a ; , .  . . , a ~ ) ,  

m---- (m 1 . . . . .  m~), n ---- ( n , , . . . , n ~ ) .  L e t  m ( a  i )  b e  a n u m b e r  d e f i n e d  f o r  t h e  v e c t o r  a i  w i t h  
r e s p e c t  t o  t h e  s u b s e t  s u p p  (g (x, . . . . .  x~)) < N ~ i n  §2 .  L e t  u s  d e n o t e  b y  t o  t h e  p a r a m e t e r  o f  
t h e  p o i n t  o f  i n t e r s e c t i o n  o f  t h e  s t r a i g h t  l i n e { x ~ R  ~ l x i  ----t(m~ + l ) - - n i ,  t ~  R , i  = i . . . . .  k }  

' t a i x j =  m ( a  ~) By 8(i) let us denote the number--(m(i) + l)/n(i), 

where m(i) is the multiplicity of a zero of the Jacobian of the mapping ~o~ onto the hy- 
perplane {x ~ R~Ix~ = 0}, n (i) being the maximum degree of the variable xi that divides /o~. 

LEmiA 3 . 2 .  1 .  m (i) ~- 1 - -~ (m,a  i) q - ~ , a ~ .  

2. n(i) = (n, a i) + m(ai). 

3. 8(i) = --(to) -:. 

4. Let k = 2 and ml = n, = 0. 
the variable xl that divides g(xl, 

We shall assume that n is a finite maximum degree of 
0), and that n < n2/(m2 + i). Then: a) --8(i) > (m2 + 

l)/n2; b) if 7 is a compact face of Newton's polyhedron F+(g), that lies on the straight 
line a,x1 +a2x2 =m, then the length of its projection onto the xl axis will be strictly 
smaller than the value of the parameter of the point of intersection of the straight line 
x 1 ~ t, x 2 = (m~ ~ 1 ) t - - n 2 ,  t ~ R  with the line a~x~ + a~x2 = m. 

Parts 1-3 of Lemma 3.2 are obvious. The proof of Part 4 follows from Fig. i. 

Now let us define the concepts to be used in the proof of Proposition 3.1. 

Classes of Components. Let Y be the manifold mentioned in Proposition 3.1. The mani- 
fold Y can be obtained as follows. We carry out a a-process at zero in R 2, and at each 
point of the coalescent RP I at which condition (I.i) is not satisfied for our function f 
and the obtained manifold we again carry out a o-process, etc., until the condition (I.i) is 
satisfied at all the points of the coalescent RP*. It is evident that the manifold Y and 
the projection ~: Y-~R z obtained by this procedure will not depend on the order in which 
the a-processes are carried out. 

For each irreducible component X C ~-*(O) there exists a unique sequence X,, X2, • ., 
X l of irreducible components in n-*(0) such that XI is obtained during the'first G-process 
at zero in R 2, and Xi is obtained during the a-process at the point of the component Xi-1, 
X~ = X. Let us denote by Yi(Xi) the manifold obtained in R 2 after i a-processes carried 
out in this order. The sequence of components X,, . ., Xl will be called a sequence of 
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components preceding the component X, whereas Xl-~ is called a component preceding the com- 
ponent X. 

Let us define the concept of irreducible component of p-th class in ~-~(0), where p 
is a natural number. Each component will belong to one of the classes. At first let us 
define the components of first class. Let X~, X2, • .., Xl be a sequence of irreducible 
components in ~-*(0) that precede the component X1. A component Xl is said to be a compo- 
nent of first class if there exists a local coordinate system ~, ~2 at zero in R 2 that has 
the following property. 

3.3. Property of Coordinate System y'~, y2. For obtaining the manifold Y, we shall at 
first carry out a a-process that yields XI, then a o-process that yields X2, etc., until we 
obtain XZ; after that we carry out all the remaining o,processes in any order. After the 
first a-process the neighborhood of the component X~ in the obtained manifold Y~(X~) will 
be covered by two specified coordinate maps, i.e., in the first map the coordinates will be 
~, and y2/y,, whereas in the second they are Y,/Y2 and ~2. Suppose we have carried out o- 
processes that yielded the componentsX1 ..... X~-I (i-~l -- I), and on the thus-obtained mani- 
fold Yi-1 (Xi-,), the neighborhood of the component Xi-1 is covered by two specified co- 
ordinate maps. In this case the point at which we carry out the o-process for obtaining Xi 
must have the coordinates (0, 0) in one of the specified maps with coordinates Yl and Y2. 
Let us carry out this o-process, and let us cover by two coordinate maps the neighborhood of 
the component X i in the thus-obtained manifold Yi(Xi); the first of these maps uses the co- 
ordinates Y, and y2/yl, whereas the second uses the coordinates yl/y2 and Y2 

It is evident that if Xl is a component of first class, then Xl-~ will be likewise. 
Let us also note that if a neighborhood of the component X 1 in Y1 (X1) is covered by two 
specified maps and if y, and Y2 are the coordinates in one of them, then X1 will be deter- 
mined in this map by the vanishing of one of the coordinates. 

Let us note that if f has a nonsingular principal part in a coordinate system x~x2, 
then all the irreducible components in ~-I(0) will belong to the first class, and x: and 
x2 can be taken as the coordinates y~ and y2. 

Let us assume that we have defined the concept of irreducible components in ~-~(0) of 
ist, 2nd, . .., p-th class, and that if X is a component of j-th class U<P), then the 
component preceding X will belong to a class not higher than the j-th. Let us define the 
concept of irreducible component in ~-*(0) of (p + l)-th class. Let X,, ., X1 be a 
sequence of irreducible components in ~-I(0) that precede the component X1. A component X1 
is said to be a component of (p + l)-th class if: 

(3.4) Xl is not a component of ist, 2nd, ., p-th class. 

(3.5) The sequence XI, ., X1 contains a component Xs (s < l) and a local coordinate 
system Y~Y2 in a neighborhood of a point ys EYe(X,) at which the o-process for obtaining 
Xs+, is carried out; they have the following properties: 

i. Xs is a component of p-th class. 

\ 

Fig. i 
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2. Xs+1 is not a component of the ist, 2nd, . . ., p-th class. 

3. In the local yly2 coordinate system, yS has the coordinates (0, 0), Xs is specified 
by the equation y~ = 0, and the Jacobian of the natural projection of the manifold Ys(Xs) 
onto R 2 is equal (to within the sign) to y~ for some m. 

4. Let us cover the neighborhood of the component Xs+: in Ys+~ (Xs+~) by two specified 
coordinate maps, so that in the first map we have the coordinates ~1 and ~2/~x, whereas in 
the second we have the coordinates -~I/~2 and ~a. After carrying out o-processes we obtain 
X 1 . . . . .  X~_ 1 ( s < i - - i < l )  and the neighborhood, in Yi-, (Xi-~), of the component Xi-~ will 
be covered by two specified maps. In this case the point at which we carry out a o-process 
for obtaining Xi must have the coordinates (0, 0) in one of the specified maps with coor- 
dinates y~ and y2. Let us carry out this o-process and cover the neighborhood of the com- 
ponent Xi in Yi(Xi) by two maps, so that in the first map we have the coordinates y~ and 
Y2/Y~, and in the second the coordinates yl/y2 and Y2. 

Let us note that if the neighborhood of the component Xl in Y~(X l) is covered by two 
specified maps, and if y~ and y= are the coordinates in one of them, then X~ will be deter- 
mined in this map by the vanishing of one of the coordinates. 

It is easy to see that a certain class is assigned to each irreducible component be- 
longing to ~-I(0), 

Definition. Let X:, ., Xl be a sequence of irreducible components in ~-:(0) that 
precede the component Xl, and let X~ be a component of first class. A coordinate system 
YlY2 that has together with Xl the property 3.3 is called a coordinate system adapted to X~. 

LEMMA 3.6. i. If Yly2 is a coordinate system adapted to XZ, and ~i and ~2 are non- 
vanishing analytic functions in a neighborhood of zero in R 2, then ~, g=~ will likewise 
be a coordinate system adapted to Xl. 

2. If Y:Y2 is a local analytic coordinate system at zero in R 2 and Xl is a component 
of first class, then for an appropriate analytic function ~ of one variable, ~(0) = 0, either 
the functions Yl, Y2 ~ ~ (Yl), or the functions Yl ~ ~ (Y2), Y2 will form a coordinate system 
adapted to XT. 

Part 1 of Lemma 3.6 is obvious and Part 2 easily follows from Part i. 

3.7. Proof of Proposition 3.1. By virtue of the absence of multiple components in 
the germ of the set {x~RZJ ](x) = 0}, it is possible to describe an array of multiplicities 
of the resolution (Y, ~) (for the definition, see §i) as follows. For any irreducible com- 
ponent X f_7~-I(0) we shall set m(X) equal to the multiplicity of a zero of the Jacobian of 
the mapping ~: > -+R z on the component X, whereas n(X) is set equal to the multiplicity of 
a zero of the function ]o~ on the component X. Then {(n, m)}y ~ ~n (X), m (X)) I X will be an 
irreducible component of the set ~-I(0)}. 

It is easy to see that to prove Part 1 of Proposition 3.1 it suffices to prove that: 

(3.8) For any component X of (p + l)-th class (p > 0), there exists a component X' of 
p-th class such that (m (X) + l)/n(X) > (m(X') + l)/n(X'). 

(3.9) If X is a component of first class, then (m(X) + l)/n(X)~ (t(f)) -~ 

(3.10) There exists an irreducible component of first class X C~-~(0) such that (m(X)+ 
l)/n(X) = (t(f))-: 

Let us prove (3.8) and (3.9). Let X~, . . ., XZ be a sequence of irreducible compo- 
nents in ~-~(0) that precede the component XZ, and let XZ be a component of (p + l)-th 
class (p > 0). Let Xs, yS, and (~, ~) be (respectively) a component of p-th class, a 
point, and a coordinate system that together with XZ satisfy the conditions (3.4)-(3.5). 
By virtue of (3.5), the neighborhood of the component X~ in Y~(X~) is covered by two speci- 
fied maps. If y~ and y= are the coordinates of one of them, then it is easy to see that: 

(3.11) The restriction of a natural projection ~t,~ : Y~(X~)-+Y~(X~) to this map speci- 
fies a mapping of t~is map in a neighborhood of the point yS in Ys(Xs) in which the coor- 
dinates are y~ and y~. 

1 ~  1 2 

( 3 . 1 2 )  Y~ ° ~ , ,  = Y ~ Y ~ ,  ~ o nt,s = y~ y~,where aJ ~ N and det  (a~) = -+- i .  
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Let the function g(~,, ~2) be defined in a neighborhood of the point yS in Ys(Xs) by 

the equation / o ~, (Yl, Y2) = y~(x,) g(Yi, Y~) , where ~,: Y, (Xs)--~ R ~ is a natural projection 
onto R=. Let n be the maximum degree of the variable ~, that divides g(~, 0). Let us 
prove that 

n (X,) / (m (X~) + I)> n. (3.13) 

Let us note that this inequality suffices for proving (3.8). Indeed, by applying Part 

4 of Lemma 3.2 to @~(x,) g (~,, ~) and to the projection =Ls: Yl (Xl) -+ Ys (X,) , we .obtain (m (Xs) 
+ 1) l n (X,)<(m (X~) + I) / n (Xi). 

We shall prove (3.13) by induction on p. At the same time we shall prove (3.9). 

Let p = i; then XS will be a component of first class. Let ylY2 be a coordinate sys- 
tem adapted to X s. The neighborhood of the component XS in Y(Xs) will be covered by two 

a 1 a ~ 

s p e c i f i e d  m a p s .  I f  y ,  a n d  Y2 a r e  t h e  c o o r d i n a t e s  o f  o n e  o f  t h e m ,  t h e n  ~71 o xs  = y Xyi, g2 o 
a I a 2 

.i 
~s = Y~SY2S , where a# E N and det'(a~) = ±i. Xs is specified in this map by the vanishing of 
one of the coordinates. For definiteness, let this coordinate by y2. Let us consider 
Newton's diagram of the function f in the coordinate system y~y2. £t then follows from 
Lemma 3.2 that (m(Xs) + l)/n(Xs) = (t~) -~, where t~ is the parameter of the point of inter- 
section of the straight line x I ----x s = t(t E R, x~ and x2 being standard coordinates in R 2 
in terms of which Newton's polyhedron is constructed) with the straight line a~xl ~-a~x. = 
m((a, ~, a~)) , where m ((a~, a~)) is a number determined with the aid of the diagram of the func- 
tion f and the vector (~,a~) in §2. 

Since det (a~) = /: i, it follows that a~, and a] are relatively prime. Since Xs+~ is not 
2 a component of first class, it follows that a~ ~ i, ~ ~ i. Now let us note that n is not 

larger than the number of integer points minus one on the segment along which the straight 
line a~x, Jr a~x~ ~ = m ((a~, ~)) intersects the Newton polyhedron of the function f. But since 
aa~ and a~ are relatively prime and since a~>i, a~>i, this number will be strictly smaller 
than t,. 

Let us note that by virtue of Lemma 3.2 the number (t~) -~ is not larger than (t(~,~,)) -~ 
where t(~,.~.) is the distance from the origin to Newton's polyhedron r+ (/(~,)), and this sig- 
nifies that (3.9) is valid. 

Let p > I. Let Xr, yr, and (~, ~=) be (respectively) the component, the point, and 
the local coordinate system in a neighborhood of the point yr in Yr(Xr) whose existence 
proves that Xs is a component of p-th class (see 3.5). The neighborhood of the component 
Xs in Ys(Xs) is covered by two specified maps. If y. and y~ are the coordinates of one of 
them, then 

a 1 al 
gl  ° x , . ,  = Yl Y*. , g~ oX,. r = y~2y~, ( 3 . 1 4 )  

w h e r e  
i a~ ~ N and d e t  (a~) ---- ± t .  

Xs is determined by the vanishing of one of the coordinates yl and y2. For definite- 
ness, let it be the coordinate Y2. Suppose that the function h(~,, ~2) is defined in a 

neighborhood of the point yr by the relation / o xr (Yl, Y2) = Y~ xT)h (g" ~)" 

Let us consider Newton's diagram of the function h(~:, ~2). Let n' be the maximum de- 
gree of the variable ~, that divides h~1, 0). We have already proved that n' < n (Xr) / 
(m (Xr)~-i) . From this inequality, from Part 4 of Lemma 3.2, and from the formula (3.14) 
and the fact that n is not larger than the length of the projection (onto the xl axis) of 
the segment along which the straight line a~x~ q-a~x~ = rn ((a~, a~)) intersects Newton's poly- 
hedron of the function h(~1, ~2), we obtain (3.13). 

Let us prove (3.10) by assuming the contrary. Suppose that (3.10) is not valid. It 
then follows from (3.8)-(3.9) that ~y<--(t(0)-'. Moreover, it is easy to see that BY > 
--i. We obtain a contradiction if we can prove that there exists a Y' and a x': Y'-+ R s that 
satisfy together with f the conditions (1.1)-(1.3) for which there exists in (~')-~(0) a 
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component X such that --~r ~(m (X)+i)/n (X)>(t (]))-i. Indeed, by virtue of Part 5 of Propo- 
sition 1.4 applied to the pair (Y, ~), the index of the first term of the asymptotic expan- 

sion will be equal to BY, whereas the application of Proposition 1.4 to (Y', ~') yields an 
index of the first term of the asymptotic expansion not smaller than --(m(X) + l)/n(X). 

Let us construct (Y', ~') with the required properties. By virtue of the definition of 
the number t(f) there exists a local analytic coordinate system y at zero in R = such that 
- ~ < ~ t  (]) (ty bein~ the distance to Newton's polyhedron F+(~v)). Let us consider New- 
ton's polyhedron F = F+(~I). Let Y(F) and =r: Y(F)-+R2he the manifold and the projection 
constructed with respect to F in §2. It is then easy to see that in ~(0) there exists a 
component X such that (m(X) + l)/n(X) = (ty) -s. If f does not yet have the form (i.i~- 
(1.2) at all the points in ~i(0), it will be necessary to carry out corresponding sequences 
of o-processes at these points and obtain Y', ~': Y'-+R 2. Thus, we have proved (3.10), and 
hence also Part i of Proposition 3.1. 

Let us prove Part 2 of Proposition 3.1. By virtue of (3.10) there exists a component 
of first class such that (m(X) + l)/n(X) = (t(f)) -I. Let y be a coordinate system adapted 
to X. It is easy to see that y is adapted to f. 

Let us prove Part 3a of Proposition 3.1. By virtue of Part 5 of Proposition 1.4, the 
presence of two intersecting components X~ and X2 with (m(X~) + l)/n(Xs) = (m(X2) + i)/ 
n(X2) = (t(f)) -I in a preimage of a zero of any resolution ~': Y'-+R 2 that satisfies (i.i)- 
(2.3) implies the appearance of terms of the form ~-(~(O)-'log ~ in the asymptotic expansion of 
the integral f(~,~). For proving Part 3a of Proposition 3.1, it therefore suffices to prove 
the existence of such a resolution ~': Y'-+'R ~. Let us take the coordinate system y = (Ys, 
y~) whose existence is indicated in Part 3a. Let us consider the Newton polyhedron F of 
the function f in this coordinate system. Let Y(F) and ~r: Y (F) -+R2 be the manifold and 
the projection constructed with respect to F in §2. It is then easy to see (by virtue of 
Lemma 2.3) that in ~-s(0) we have two intersecting components X~ and X2 with (m(X~) + i)/ 
n(X:) = (m(X=) + l)/n(X=) = (t(f)) -~, and ] o ~r will have the form (i.i)-(1.2) in a neigh- 
borhood of their intersection point. But if f does not yet have the form (1.2)-(1.2) at all 
the points of ~r~(0) , it will be necessary to carry out corresponding sequences of o-pro- 
cesses at such points and obtain Y' and ~': ]7'--~R ~. Then X~ and X2 will not cease to inter- 
sect. This completes the proof of the Part 3a. Part 3b easily follows from Part 2 of Lem- 
ma 3.6. 

3.15. Propositions 0.7 and 0.8 follow from Proposition 3.16. 

Proposition 3.16. Let f satisfy the conditions of Theorem 0.6, and let y = (y:, y=) be 
a local analytic coordinate system at zero in R =. Then the functions is(y:, Y~) and f=(y~, 
y=) defined for Ys and ya by the algorithm described below will be coordinate functions of 
a coordinate system adapted to f. 

Algorithm of Determination of Functions fs(Y~, Y=) and f=(y~, y=). At first we shall 
determine the transition from y~, y~ to zs, z=, where either z: = y~, z~ = y~, or zs = y=, 
z~ = y~. After that we have fs = z~ and ]~ = z~ ~ a~z~ ~ a~z~ + ... ~ a~z~, where n and as, a~, 

• , an can be determined by the rule described below. 

Transition from y:, Y2 to zs, z=. Let us consider the Newton polyhedron F+(~). Let 
x~ and x2 be standard coordinates used for constructing ~+(~). If there exists a point 
(x~, x~) ~ F +  (~)  s u c h  t h a t  x~ + x ° , ~ ~ 2 ~  a n d  x~ =~ x ° ~, we s h a l l  w r i t e  z~ = Ys a n d  z= = y~ i n  t h e  
c a s e  x ~ x $ ,  a n d  z s = y~ a n d  z= = Ys i n  t h e  c a s e  x ~ x ~ .  I f  t h e r e  i s  n o  s u c h  p o i n t  
we s h a l l  w r i t e  f~  = Y s ,  f=  = Y~.  

D e t e r m i n a t i o n  o f  t h e  N u m b e r s  a s ,  • . ,  a n  a n d  n i f  z s  a n d  z= H a v e  B e e n  D e t e r m i n e d ±  
The numbers as, • •, an are determined by induction. 

Determination of as. In the coordinate system zsz2 let us express f(z~, z2) in the 
form f ---- f~, ~- f~I+i -~- • ~- ]~ ~- .... where the f~ are homogeneous terms of degree i of Taylor's 
series, f~,~=O, f~,(1, ~) being a polynomial in ^_ (It follows from the definition of the 
functions z: and z2 that the degree of this polynomial is not smaller than ds/2). If f~ dl (I , 

1) does not have a real root %o of multiplicity strictly larger than ds/2, then n = I and 
as = 0. But if such a %o exists, we shall write as = %o and seek a2. 

Determination of the Numbers a~ if the Numbers a~, . . .= aT,-~ Have Been Determined. 
~-a z ~-~ J--z. Let us assign to z~' Let us consider a coordinate system z~ ---- z~ n- a~z~ ~- .... , ~ , .~ -- , 
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the weight Z, and to zl the weight i. Let us express ~(z~, z~) in these coordinates in the 

form I = ~L q- ~l +x~-''" where the f~ are homogeneous (in the weights just mentioned) poly- 
' l 

nomlals of degree i, ~z ~=0" If deg~/~z (I, ~) <d:/(l~- I), we shall write n = Z -- i, and the 

algorithm is terminated. Let degx/~! (I, %) >dl/(l + I) . If there does not exist a real root 

~o of the polynomial ~l(i, X) of multiplicity strictly larger than dl/(Z + i), then n = Z - 
i, and the algorithm will be terminated. If such a root exists, we shall write a Z = lo, 
and then seek el+,. 

Proposition 3.16 easily follows from Part 2 of Lemma 3.6 and (3.8)-(3.10). 

3.17. Proof of proposition 0.9. Let us denote by I~: C2-+C a complexification of the 
function ft. By virtue of the theorem of L~ and Ramanujam [9], the germs at zero of the 
sets {z~C~[~ (~ =0} are topologically equivalent for any t~[0, I]. According to the re- 
sults of Zariski and Hironaka [i0, 15], this signifies that the number of irreducible com- 
ponents in a germ at zero of the set {z~C~I~ (x) = 0}, and of their characteristic Puiseux 
exponents and their linkage factors does not change when t varies. According to [12] and 
[14] this signifie s that there exists a family of nonsingular two-dimensional analytic mani- 
folds Yt that smoothly depend on a Earameter t~[0, I], and a family of mappings ~:: Yt-~R 2 
on R a that smoothly depend on t~[0, i], and such that: 

a) For a given t~[0, I], the pair (Yt, zt) together with ft satisfies the conditions 
(1.1)-(1.3). 

b) The number of irreducible components in J~x(0) does not change with t, and each of 
these components smoothly depends on t; if Xt is an irreducible component in ~(0), then 
the multiplicity of a zero of the Jacobian of the mapping zt on Xt and the multiplicity of 
a zero of the function /~o ~ on Xt will not change with t. 

On the other hand it is easy to see that BY > --1. Now Proposition 0.9 follows from 
Part 5 of Proposition 1.4. 

§4. Calculation of Principal Term of Asymptotic Expansion for Functions Classified 
in [16] 

At present we possess a far-reaching classification of the first cases of singularity 
of critical points of functions. In [16] we can find a survey of this theory. In this 
section we present the results of calculations of the principal terms of the asymptotic ex- 
pansion of oscillating integrals whose phases are functions classified in [16]. Some of 
the results presented below were formulated in [3]. 

Each of the functions classified in [16] has its literal notation. For example, 
S ~ denotes k,$q-I 

x2z q- yz ~ q- z~+1 + b x ~ + ~  + axy3~+q+l, 

where a = a o q- . . . n u a~_~y k-~, b = b o q- . . • q- b¢~-1~ ~-~, k ~ i, q > O , b o=/=0 • We shall use these 
notations. The calculation results are listed in Tables i-5. The functions listed in a 
table will be called by their names given in [16]. The upper row of a table lists the lit- 
eral notation of the functions, and the lower row the indices of singularity at a zero of 
these functions. 

Definition. Let I: R~-~R be an analytic function, and B(f) its oscillation index at 
zero. The singularity index at a zero of a function f is defined by the number B(f) + k/2. 

The reason for this definition can be found in [3]. 

The singularity indices of tabulated functions will be calculated in terms of their 
oscillation indices. The oscillation indices will be calculated by the formulas obtained in 
Theorems 0.4 and 0.6 with the use of the fact that all the functions listed in [16] have a 
nonsingular principal part, or (in the case of functions of two variables) they are written 
in an adapted coordinate system. This assertion can be easily verified in each particular 

case. See Tables 1-5. 

§5. Examples 

At first we shall present an example that gives a negative answer to the questions i- 

3 of Sec. 0.ii. 
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TABLE i. Simple Singular- 
ities 

Ak D k E e [  E~ Es 

k--i k--2 

TABLE 3. 

J3, 0 

Js, p 

TABLE 2. Unimodal Singularities 

Ps, Tpq r X~, J~o 

i i 
< T  2 

Er,.IEla El4, Q16 Z12] Z13~ Qu 

t t  8 13 B 5 
2i i5 24 i t  9 

W12 W~s, Sn  

l i  9 
2O i6 

Bimodal Singularities 

Zl, 0 El9 

Z~, p 
WI, o IVI ~, ~-I Q~, o Zm 

WLvlVI:z7 Q~.v 
Sl, o S~ ~-q-1 lI'17 QI~ 

81, p S~. 2q 

7 
12 

Q~2 $12 U12 

17 t5 7 
30 26 i2 

S17 U1, 0 gl,2q-ll 
UL 2q 

i i  
i8 

Els 

i7 
30 

Eio 

i3 
24 

Z,s 

to 
17 

Z19 IVls 

i6 17 
27 28 

QlS Qls 

25 29 
42 48 

~13 U16 

21 19 
34 3O 

TABLE 4. 
Four-Jet 

Jk. o 

2k -- i 
3k 

Singularities of Corank 2 with a Nonzero 

E6~ E6,,,.+l Eel+2 
Xk, o yk r, s 

X k ,  p 

6k --  i 
9 k + 3  

4k 
6k+3 

6 k +  i 
9 k + 6  

3k-- i 
4k 

Z. ~ ] Z? Z .~ Z ~ Zl~+61 % P for k > 2 ~, o L 0 12k+61-1 k / Z'2 
Z12k+6i+l z, p 

3k--  i 
4k 

2 i + 5  

Z~+a i ~ Z~ Zi 0 
' ~6i+l.1 Zai+lg Z6i+13 Zsl+6i ss+si Zi ' p 

6 i + i 7  4 i + i 2  
9i-1-27 6 i + i 9  

6i + i9 
9i + 3,0 

2 i + 2  
3 i + 4  

6 ~ + 8  
9i + 15 

4~ + 6  
6i + i t  

6i + t0 
9~ + i8 

i2k - -  i 
i 6 k + 4  

Wlze+l 

9k 
i2k ~ 4 

IVy, o IVy, z¢-1 

Wk, i T-V~, uq 

t2k + 2 
t6k + 8 

TV12,~+5 

9k + 3  
t2k-+-8 

W~k+6 

12k q-5 
t6~ + t2 

1 9 3  



T&BLE 5. Singularities of Corank 3 with a Reduced Three- 
Jet and a Three-Jet x~y 

Q~.o 
q~,~ 

4k--  i 
Ok 

i2k q- i 
isa + 6 

8k@ 2 t2k + 5 
iSk q- f2 

t2k - -  3 
16k 

i8k - -  3 
~ + 2  

Sk, o S # 
/f, ~q-1 812k+4 

S~, t S ~' ~,2q 

Ok t8k + 3 
~k + 2 24k + iO 

Slzk+s 

12k + 3 
16k + 

Ux,,,~ 

t5k -- i 
tSk + 6 

Uk, 2q 

O'k, 2q-1 

l ok+  t 
12k q- 6 

U12~+4 

ibk + 4 
l~k -k i2 

V V ~ 1, 0 I ,  2q-1 

v V:~ --1, P 1, Zq 

5 
8 

Example i. Let us write F(xl, x2, xa, %) = (lx~ + ~ + x~ + z~) 2 q- ~P + x~ p ~- x~ p, where I is 
a real parameter and p a sufficiently large natural number. Let 8~ be the oscillation in- 
dex of the function F(., ~) at zero. F has the following properties: 

(5.1) F(., ~) has for any I an isolated singularity at zero; 

(5.2) 80 = -5/8; 

(5.3) 8~ =-3/4 for ~ > O; 

(5.4) B~ > --(1/2 + 7(P)) for ~ < 0 and limy(p) =0; 

(5.5) there exists a neighborhood U of zero in R' and a neighborhood V of zero in R 
such that the oscillation index of the function F(.,%),%EV at any of its critical points 
x °E U,x °~0 is smaller than --i. 

It is easy to see that the properties (5.2) and (5.4) give a negative answer to ques- 
tion 2 of Sec. 0.Ii, and the properties (5.2), (5.4), and (5.5) give a negative answer to 
question 1 of Part 0.ii. Finally, let us note that the change of variables x, = ix,,x2=x~, 
xs= x, carries F(., ~) into F(., --~). Thus, we obtain a negative answer to question 3 of 
Part 0.11. 

Property (5.1) can be verified by a direct calculation. The properties (5.2) and (5.3) 
of the function F follow from Part 3 of Theorem 0.4 by virtue of the nonslngularity of the 
principal part of the function F(., ~) for the given ~. 

For proving the property (5.5), it suffices to note that at critical points ~ = (~,~,z~) 
of the function F(., ~o) that are near zero, we have x~ = x~ = 0 for small ~o. As is 
easy to see, this implies 

o,/ o ~  O,F O~,Ox~ (Xo,~o) = 0 ,  (xo,~,o):/= O; -q~_~ (Xo ,~o )~O,  
o z  3 

i.e., the rank of the second differential is not smaller than two. It follows from Lemma 
4.1 of [17] that in a certain coordinate system (ul, u2, u,) in a neighborhood of the point 
x °, the function F(x, ~o) can be reduced to the form ~ (ul)~-~-~ ~ . This function has a 
nonslngular principal part. Thus, the property (5.5) follows from Part 2 of Theorem 0.4. 

Proof of Property (5.4). We shall prove that there exists a pair (Y, ~) that satis- 
fies together with F(., A) (~ < 0 being fixed) the conditions (1.1)-(1.3) and has the fol- 
lowing property. There exists an irreducible component X C x-t (0) such that (m(X) + I)/ 
n(X) = 1/2 + y(p), where m(X) is the multiplicity of a zero on X of the Jacobian of the 
mapping ~, n(X) is the multiplicity of a zero on X of the function F(.,%)ox and lim ? (p) ---- 0. 

By virtue of Part 5 of Proposition 1.4, the existence of such a pair (Y, ~) implies the 
property (5.4). 
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By a change of variables u, = g(x,), u= = x2, u3 = x3 let us reduce the function F(x~, 

x2, x3, X) to the form (-- u, ~ + ~ + ~)2 + ~ (u,) + ~P + ~P, where ~= aiu I is a conver- 

i=4p 

gent power series, with atp ~= 0. Let us prove the existence of a pair (Y, w) for such a 
function f. 

Let us carry out a o-process ~: y,_+ }{3 at zero in R 3- . The neighborhood of a coales- 
cent RP 2 will be covered by three maps whose coordinates tl, t2, t3 are expressed by u,, u2/ul, 
uJu,; u,/u~, u~, us~u2; u,/us, us~us, u 3 . In these coordinates the function /o~ 1 will have the form 
t, ~ [ ( - - t  + t~ + t]) 2 + t, ~v'' ~1 (t,, t2; t,)],  t~ [ ( - -  t, ~ q- t + t]) ~ + ~v-4 ¢~ (t,, t2, ts)l, ~ [(--t,' + t~ + 
I) 2 + t~P-~¢8 (t,, t2, t3)], where ~,, ~2, and ~3 are analytic functions. The multiplicity of a 
zero of the Jacobian of the mapping ~ on a coalescent RP 2 is equal to two. A proper pre- 
image of the set {u~RSl/(u)=0} intersects a coalescent RP ~ along a set ZI specified in 

each of the maps by the equations--I q- ~ Jr ~ =0, tl = 0; --t~ ~- I -~ t~---- 0, t~ = 0; --t~ ~- t~ ~- | 

= O, t8 = O. 

It is easy to see that in a neighborhood of any point of this set the function 
can be reduced by a change of coordinates to the form 

d (d + (5.6) 
where i.~ is an analytic function, and the coalescent RP 2 is specified by the equation v: = 0. 

Let us carry out a o-process ~2:Y=-+Y, centered at Z~. The multiplicity of a zero of 
the Jacobian of the mapping ~io~2 on the newly coalescent submanifold X~ is equal to three. 
Let us denote by Z= the set along which X~ intersects with a proper preimage under a mapping 
~ion2 of the set {uER3]/(u)=O} . It is easy to see from (5.6) that in a neighborhood of 
any point of the set Z2 the function /o~ox= can be reduced by a change of coordinates to the 
form 

+ (5.7) 
where ~ is an analytic function, and X~ is specified by the equation v~ = 0. 

Next let us carry out (2p-4) successive o-processes as follows. We denote the i-th 
o-process by ni+=: Y~+~-+ Y~+~ , the manifold coalescent during the i-th o-process by Xi+~, 
and the intersection of Xi+~ with a proper preimage of the set {u ~R~I/(u)= 0} by Zi+=; 
the o-process ~i+= is centered at Zi+,. 

It is easy to prove by induction that Zi+~ (i = 0, ., 2p -- 4) is a nonsingular 
manifold. The multiplicity of a zero of the Jacobian of the mapping n~oa~ ...o~i+~ on Xi+, 
is equal to 3 + i. In a neighborhood of any point of Zi+~ the function /o~,o~o ...o~i+~ can 
be reduced by a change of coordinates to the form 

+ vy (5.8) 

where ~i+2 is an analytic function and Xi+~ is specified by the equation v~ = 0. 

For i = 2p -- 4 we conclude from (5.8) that the multiplicity of a zero on Xap-s of the 
function /o~o...on=v_ 2 is equal to 4p -- 2. On Y=p-= we therefore have for the component X=p-~ 
the relation (~(X~p_s)~-i)/n(X=p_s)=2p/(4p--2). It follows from Hironaka's theorem [2] that 
there exists a real analytic nonsingular three-dimensional manifold Y and a proper analytic 
mapping no: Y-+ ~=~_~ such that the pair (Y, ~on=o...o~=p-2on0) together with f satisfies the 
conditions (1.1)-(1.3). For an irreducible component X in [~,o~= ..... ~_~o~0]-'(0) that is a 
proper preimage of the component X~p-~ under the mapping TO, we have (m(X) + l)/n(X) = 2p/ 
(4p -- 2). Thus, we have proved the property (5.4). 

Now let us present an example of a polynomial f of five variables whose principal part 
is nonsingular, and with a distance to from the origin of coordinates to its Newton poly- 
hedron (defined in 0.4) smaller than i, and an oscillation index 8(f) at zero that is 
strictly smaller than l-(to) -* 

Example  2.  L e t  /----- xa -5  -~ -~ ~- ( x a - -  (x~-~ x~ -~ x , - ~  x~))x~,/_ =: x, , -7- . -4- x~ v-~ 
(x~-- (--x~+x~+x~+x~))x s • f and f_ have the following properties: 

(5.9) f and f- have a nonsingular principal part; 

(5.10) f and f_ have the same Newton polyhedra; 
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(5.11) the oscillation index of the polynomial f at zero is equal to --(3/4 + I); 

(5.12) the oscillation index of the polynomial f_ at zero is not smaller than --(1/2 + 
i + ~(p)), where limT(p)=O; 

p-*¢o 

(5.13) the distance to from the origin to the Newton polyhedron F+(f) is smaller than i. 

From the properties (5.9)-(5.13) follow the sought properties of the polynomial f. 

The property (5.10) is obvious. The properties (5.9) and (5.13) can be verified by 
direct simple calculations. Let us prove the property (5.11), whereas the property (5.12) 
can be proved in a similar way. 

By affecting a change of variables v---- x~-~ (x 4 ~- (x~-~x~ q- x~-5 x~)), we obtain / = (r~ ~- 

4 ~- 4 ~-x~)' q- x~P~ - 4 p ~- zi p ~u (x 4_ (4 ~- x, 4 ~- x~ ~-x~)) v. By affecting a change of variables 

u ----- x4-- (4-~ x~-~ x~ 4- 4) and also v = s + t, u = s -- t, we obtain ] - (xt 2 ~- x~ ~- x~ ~- x~3) ' + 
x, ~p -~ x~ p-~ x~ p ~- s ~ -- t ~ . Thus, we have obtained f = F(xl, x2, x,, I) + s 2 - t 2, where F is 
the function occurring in Example i. It is easy to see that 8(f) = 8(F(., i)) --1/2 --1/2. 
Now the property (5.11) follows from the property (5.3) of the function F. 

x~V x~ p ~" Example 3. Let us write / = (--x, 2 + x~ + x~ + x~) 2 ~ + - ~ . Let 8(f) be the os- 

cillation index of the function f at zero. Then: 

(5.14) ~(/)>--(+q-T(P)), where limT(p)=0; 

(5.15) 8(f) > --(t(f))-*, where t(f) is the height of the function f. 

The proof  of  t h i s  a s s e r t i o n  fo l lows  from p r o p e r t y  (5.4) o f  the  f u n c t i o n  F in Example 1. 
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