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Triton Binding Energy and Three-Nucleon Potential 

T. Sasakawa and S. Ishikawa 

Department of Physics, Tohoku University, Sendai 980, Japan 

Abstract. The method of  continued fractions proposed by Horfi6ek and 
Sasakawa is applied to calculate the binding energy of  the triton. By this 
method,  the Faddeev equation is solved very quickly. We solved it with 34 
channels for the super-soft core (TRS), Paris (PARIS) and Argonne (AV) 
potentials with Tucson-Melbourne (TM) three-nucleon potential. The binding 
energy obtained from these realistic two-nucleon potentials without a three- 
nucleon potential is at most 7.7 MeV. If we include the TM three-nucleon 
potential taking a cutoff mass of  A = 800 MeV for the dipole rrNN form factor, 
the tri ton is overbound (9.3 ~ 9.7 MeV), whereas for A = 700 MeV, we get 
binding energies which almost agree with the experimental value; TRS + TM, 
8.47; PARIS + TM, 8.32; AV + TM, 8.42 MeV. 

1 Introduction 

As a bridge between nuclear and particle physics, the triton should yield insight 
into fundamental questions such as, to what extent the three-nucleon force is 
important,  to what extent the relativistic effect is important,  in what manner the 
effect of  quarks manifests itself, etc. As a first step to answer these questions, we 
might have to be provided with a good triton wave function, which reproduces 
the correct binding energy by a "classical" approach using potentials. In this case, 
in principle, the tri ton wave function is obtained if we solve the Faddeev equations. 
In practice, however, we should perform an extensive calculation. To meet this 
necessity, we demonstrate in the present paper a new way of  calculating the triton 
binding energy by solving the Faddeev equations for various realistic two-nucleon 
potentials with a three-nucleon potential, and discuss the effect of  the three- 
nucleon force to the binding energy of  triton. 

To make clear our discussions, first let us explain the meaning of  the word 
"channel". The total spin of  the triton is 1/2. Under this condition, the interacting 
pair and the spectator can take various angular momenta.  Table 1 shows the first 
thirty-four possible angular momenta.  In solving the Faddeev equations, if we 
take the first 5 (18, 26, 34) states, we say that we have performed a 5 (18, 26; 34)- 
channel calculation. 

Up to 1983, all efforts to obtain the experimental value 8.48 MeV of  the 
triton bindhag energy by solving the Faddeev equations with two-nucleon realistic 
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Table 1.34 channels in the triton 

Channel Interacting 
number pair 

2S+IL s l i 

1 1S o s 1/2 

2 3S1 Sll2 
3 3D 1 s112 
4 3S 1 d3l 2 
5 3D 1 d 3/2 
6 3Po P112 
7 1P 1 p 112 
8 IP 1 P312 
9 3/~ 1 P 1/2 

10 3/~ 1 P3]2 
11 3D 2 d3[ 2 
12 3D 2 d512 
23 ID 2 d3/2 
14 1D 2 d5/2 

25 3P 2 P312 
16 3F 2 P3/2 
17 3P 2 fs/2 

Spectator Channel Interacting Spectator 
number pair 

2S+XL s l] 

18 3F2 fs/2 
29 1F 3 fs/2 
20 1F 3 f712 
21 30 3 d5] 2 
22 3G 3 ds/2 
23 3/) 3 g7/2 
24 3G 3 g7/2 
25 3F 3 f5/2 
26 3F 3 fT/a 
27 3G 4 9"7/2 
28 3G 4 g9/2 
29 1G 4 g7/2 
30 1G 4 99/2 
31 3F 4 f7]2 
32 3H 4 f7/2 
33 3F 4 h9/2 
34 3H 4 h9/2 

potentials such as the Reid soft core potential (RSC) [1] or other potentials for 
not only the 5-channel but also 18-channel calculations [2] was in vain. 

In 1984, we also performed 18-channel calculations [3] for some realistic 
potentials such as RSC, the velocity dependent potentials (URG) [4] and the Paris 
potential (PARIS) [5]. Later, we extended the calculation to include the Ueda- 
Green potential (UG) [6], the super-soft core potential (TRS) [7], and the Argonne 
potential (AV) [8]. The results show that so far as we take only account of two- 
nucleon realistic interactions the calculated binding energy of the triton is about 
1 MeV short of the experimental value. 

By 1983, some authors took account of the Tucson-Melbourne three-nucleon 
potential (TM) [9] in the first order perturbation energy E3 for 5-channel calcula- 
tions. In 1984, we performed, for the first time, the 18-channel calculation taking 
account of E3 for TM three-nucleon potential. The results are given in ref. [3 ]. It 
shows that the 5-channel calculations cannot give a value beyond 8 MeV, whereas 
all 18-channel calculations yield values beyond it. This result gave a hope of 
getting the triton binding energy. 

We found the reason why the effect of the three-nucleon potential is almost 
hidden. The matrix elements which give the largest contribution to the first order 
perturbational value E3 are those between the interacting pair in the 3S 1 state 
with the spectator in the sl/2 state and (1) the interacting pair in the 3D1 state 
with the spectator in the Sl/2 state yielding -1.11 MeV (binding), and (2) the 
interacting pair in the aS 1 state with the spectator in the d312 state yielding 
1.11 MeV to E3. Thus, these two largest contributions cancel out. This is for the 
18-channel calculation of RSC (RSC18). For RSC5 and for other realistic poten- 
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tials, the cancellation is not so drastic as in RSC18, but the situation remains 
almost the same. In RSC5, the sum of these two matrix elements gives even a 
repulsive effect, as seen in Table 4 of ref. [3]. This is one of the reasons why the 
effect of the three-nucleon potential was not easily detected. Another reason is 
the following. Among 171 independent matrix elements for Ea, 16 matrix ele- 
ments exceed 0.1 MeV in the absolute value. The sum of these matrix elements 
yields the binding energy-Ea of 0.24 MeV, whereas the sum of all matrix elements 
yields 0.89 MeV. This shows that the contributions from small components are 
very important, and the 5-channel calculation does not take enough matrix 
elements. We also found that Ea strongly depends on the ~rNN form factor and its 
cutoff mass [3]. 

In the present paper, we shall discuss the result of the 34-channel calculation 
for realistic two-nucleon potentials (2NP), specifically, TRS, PARIS and AV with 
the three-nucleon potential TM. To perform this calculation, we extended the 
method of continued fractions (MCF) [10] to handle the three-nucleon bound 
state. By this method, we can solve the 34 (26, 18)-channel Faddeev equation 
with 2NP + TM in 600 (300, 180) seconds by a computer available at Tohoku 
University (ACOS 1000). Since MCF is so efficient, we think that it is worthwhile 
to describe this method in some detail. This will be done in Sect. 2. The result of 
calculations for 2NP as well as 2NP + TM will be discussed in Sect. 3. The sum- 
mary and conclusion will be given in Sect. 4. 

2 Method of Continued Fractions (MCF) Applied to Faddeev Equation 

The MCF was originally intended to handle potential scattering. Examples given 
in ref. [ 10] show that this method is very efficient both for local and non-local 
potentials. In the present section, we extend the method to the treatment of 
bound state of a three-nucleon system. 

One of the merits in this method is that we need not solve equations in a 
coupled form for a three-nucleon system, where the masses of the three nucleons 
are the same. We need only calculate the coupled matrix elements, whatever the 
number of channels is. Thus, once we store the matrix elements, the rest of the 
calculations, for which MCF is applied, needs almost no time. Indeed, the compu- 
tational time that was written in Sect. 1 is for MCF. Another merit is its flexibility 
within a framework of continued fractions. In fact, each article in ref. [10] 
presents a different version of the method. The method that will be described in 
the present section is a further version. By making use of this flexibility, we can 
choose a version that minimizes the computational time, even when we write out 
the convergence in terms of order-by-order (and not in terms of the computational 
time) an adopted version is a little bit slower than other versions. In any case, 
the big merits are its simplicity of the algorithm and, of course, a very quick 
convergence. 

2.1 Faddeev Equation 

The solution �9 of the three-body Schr6dinger equation 

( E -  H0 - V12 - V23 - Val) q~ = 0 (1) 
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is expressed as a sum of  three components 

~I, = q5(12, 3) + ~(23, 1) + q5(31, 2). (2) 

The component  q)(12, 3) represents the state in which a pair of  particles 1 and 2 
are interacting in the final state, while the particle 3 is standing as the spectator. 
With (2), we decompose (1) into 

(E - N o  - Vljqs(12, 3) : V12(q~(23, 1) + q5(31,2)) (3) 

and two other equations which are obtained from (3) by cyclic permutations of 
1, 2, and 3. Eq. (3) is called the Faddeev equation. 

If three-nucleon forces 

W12 3 -= W12,3 -t- W23,1 -b [4131,2 (4) 

are acting in the three-nucleon system, we may extend the Faddeev equation (3) 
as 

(E - H 0  - V12)cb(l 2, 3) = Vm[dp(23 , 1) + ~(31, 2)1 

+ W12,3[~(12, 3)+  ~(23, 1) + ~(31, 2)]. (5) 

Of course, there are other ways of extending (3) to accommodate three-nucleon 
potentials. In any way, if we solve the equation as exactly as possible, the way of 
accommodating the three-nucleon forces should not affect the calculated binding 
energy. Recently, the Los Alamos group [11] showed that if we perform the 
34-channel calculations, the way of  extending (3) to include (4) does not affect 
the result. 

For simplicity, we use the following notations: 

q~ = q~(12, 3), 0q~ : ~(23, 1) + q?(31,2), 

v -  v = vO. + + 0.). (6) 

Eq. (5) reads then 

-Ho - : 

Further, if we denote by Go the Green function 

1 
G o-  

E - H o - V '  

Eq. (7) is expressed for a bound state as 

�9 = GoUt.  

This is the equation that we have to solve. 

(7) 

(8) 

(9) 

2.2 Equation for Binding Energy 

Let IF0) and If) be functions which are regular at the origin of  the relative coordi- 
nate for an interacting pair as well as of  the coordinate for the spectator relative 
to the center of  mass of the interacting pair. Both of  these functions are chosen 
so that these functions decrease when three particles are parted from each other 
to a large distance. Except for these requirements, the choice of  these functions 
is rather arbitrary. 
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Defining the potential V 1 by 

UIFo)(flU 
Ua = U (flUIFo) ' (10) 

we use (I 0) in (9) to obtain 

UlFo)(f lUl~)]  
Iq ~)=Go U~IO)+ ~]U--~o) J ( i1)  

1 ( f lUid)  
GoUIFo) - -  (12) 

1 - GoUl <f lVfFo)  

Further, we introduce two functions IF1) and IqS~) by 

I&} = GoUIFo} (13) 

and 

1 
l~1) - [F~) = JFa) + GoU, Iq~l). (14) 

1 - % g ,  

If we multiply (f]U from the left of  (12), we obtain 

(flUl~x) - (flUlFo) = 0. (15) 

This equality should be satisfied at a bound state. Namely, the solution of  (15) 
determines the binding energy of  the three-nucleon system. 

2. 3 Method o f  Continued Fractions 

Now, our task is to calculate the matrix element (fjUl,bl) in (15). In this sub- 
section, we show that this matrix element is calculated as a continued fraction. 
We note that (14) takes a form of  the scattering equation with [F~) as the initial 
state. Therefore, the method similar to ref. [10], which is designed for scattering 
problems, may be applied. 

We define the potential U2 by 

U~IFa)<fIU 
U= = U1 (16) 

(fIUJF1) 

In the first paper of  ref. [ 10], we defined U2 in another way. This is an example 
of  the flexibility of  MCF. 

If we put  (16) in (14), we obtain the following equality after some calcula- 
tions: 

where q5 2 is defined by 

(fIUIF1) 2 
(flUl'~q > = <flUlF~> - ( f lU id2) '  (17) 

Irb ) = l & )  + GoU I'b2), 

IF2  = GoUIlFI>. 

(18) 

(19) 



8 T. Sasakawa and S. Ishikawa 

In the course of  deriving (17),  we used a relation 

GoU2IF1) = 0. (20) 

A similar manipulation is extended to any order n: 

IFn) = GoUn-llFn-1), (21) 

Ioi',,) = IFn) + GoU~I~,), (22) 

U, , - l lF , ,_ l ) ( f l f  
Un = U~-I - (23) 

( f lUlFn_l)  

Using these functions, we obtain continued fractions 

(flUIFn) z 
(flUlO;n) = (24) 

(flUlFn) - (flUl~ + l ) " 

To get (flUlq~x) in (15), we start from (24) for some chosen number N and 
assume that 

Cb~v = FN. (25) 

Then we calculate (f[Ul~bN), (flUl~bN_~) etc. by (24), until we calculate (flU[~b~). 

2.4 Discussions for MCF 

The functions IF0) and If) are arbitrary. As to If), we have chosen the following 
form. Let ~ be the relative coordinate between the interacting pair 1 and 2, and 

be the coordinate of  the spectator 3 relative to the center of  mass of  the pair 
1 and 2. We designate by q (p) momentum of  the interacting pair (the spectator). 
For a tr i ton of  the binding energy - IEI, p and q satisfy the relationship 

- t E l  = (h2/M)q 2 + (3fiZ/4M)p 2, (26) 

where M is the nucleon mass. We take p as real, and q as pure imaginary; q = ilql. 
Let 4)ls([q[,x) [4)3s(Iq[,x) and q~3D([q[, x)] be the normalized Sturm-Liouville 
function of  the as0 [3S1 and 3D1] two-body state for a given energy - (h2/M)q 2, 
multiplied by (~.q/(1 - Xq)) 1/2, where Xq is the eigenvalue. We let uo(py) stand for 
the normalized plane wave in the s state: 

Uo(py) = p sin py/(py).  (27) 

Denoting by • the spin function of  the spectator, we choose the function If) to 
be given by 

f l  M dp uo(py)(~ls(,q[,x)[~So(~C) | X]S=l/Z I f> = 

+ ~b3s(lq[, x)[3St(x) | X]J=l/2 + ck3o(lql, x)[3D1(2) | X]s=l/2}, (28) 

where 1S0(2) etc. denote the spin-angular function of  the interacting pair and J 
represents the total spin of  triton. In (28), PM is a cut-off momen tum which is 
chosen judiciously. However, since the function If) is a trial function, we need 
not to be nervous in choosing PM- 
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As for IF0), we have taken the following function, 

IF0) = GoVQ_.If). (29) 

For  any perturbat ion method  to converge very quickly, the starting function 
should be chosen so that it has an important  character o f  the solution. This gen- 
eral requirement is fulfilled by the above choice o f  IF0). Since the operator  
Go VQ in (29) is a part o f  the kerne l  o f  (9), the function IF0) and hence IF1), 
which is the starting function o f  MCF, should be very similar in its behavior to 
the true wave function. Especially, due to the presence o f  the permutat ion 
operator  Q in (29) and U in (9), the functions IF0) and hence IF1) have a node 
which is characteristic o f  the Faddeev component  for a soft core potential  [12]. 
If  we started the calculation o f  the continued fraction by  such a function without  
a node as (28), the convergence would be very slow. 

In Sect. 3, we shall demonstrate the result o f  calculations taking 

If) = (28) (30) 

in all equations. However,  since If) is arbitrary, some other choice is o f  course 
possible. For  instance, taking (30) up to (15) and 

If) = [Fn) (31) 

for n />  2 in (23) including (16), we made the order-by-order comparison o f  the 
left-hand side of  (15) for RSC5 taking E = 7.031 MeV. In the case (I) [(II)] o f  
Table 2, the result o f  the choice (30) [(31)] is demonstrated.  From this table, we 
see that the choice (31) is bet ter  than (30) for the order-by-order convergence. 
However, the choice (31) takes more time than the choice (30), because for (31) 

Table 2. Order-by-order comparison of conver- 
gence, used (30) for If) (Case I) and (31) for If) 
(Case II). Diff(m) denotes the value of the right- 
hand side of (15) when the continued fraction 
(24) starts from m [=N in (25)]. This table illus- 
trates the calculation for RSC5 (E = 7.031 MeV) 

Diff(m) 

m (I) (II) 

1 - 0.02529 - 0.22963 
2 - 0.00416 - 0.12590 
3 0.01555 - 0.00512 
4 0.00163 0.00465 
5 0.00039 - 0.00168 
6 - 0.00292 -0.00044 
7 - 0.00012 - 0.00008 
8 - 0.00006 0.00002 
9 - 0.00068 -0.00004 

10 - 0.00001 0.00000 
11 0.00000 0.00000 
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we have to calculate (FiIUIOpj), N -  1 ~>j >~ i + 1, thus one more loop than the 
choice (30) [although, in practice, the difference of  the computational time is not 
significant for a very fast computer].  

3 Triton Binding Energy 

Using the technique given in Sect. 2, we solved the Faddeev equation taking TRS, 
PARIS and AV as the two-nucleon potentials and TM as the three-nucleon poten- 
tial for 5, 18, 26 and 34 channels. We show the calculated results without (with) 
including TM in Table 3 (Table 4). Also, we add, for comparison, the results from 
RSC, URG and UG without TM in Table 3, and RSC with TM in Table 4 for 5- 
and 18-channel calculations. The results of  the Los Alamos group [ 11 ] are shown 
in parenthesis. [For 26-channel calculations, the states which are taken into 
account are different for both  groups. The twenty-six states of  the Los Alamos 
group include all channels in Table 1, provided that eight states with odd L 
(odd l) are deleted below state number  19.] In our calculation, the dipole form 
with cutoff  mass A = 800 MeV is taken as the rcNN form factor in TM. Although 
the method of  calculation by the Los Alamos group and by us are completely 
different, the agreement of  the results in Table 3 is impressive, which shows that 
the binding energy obtained from realistic two-nucleon potentials is at most 
7.7 MeV. Since TM is quite singular at small distances, a difference of  t reatments 
causes some difference in the result. Nevertheless, the results from Los Alamos 
almost agree with ours in Table 4. Thus, we conclude that if we include the TM 
three-nucleon potential, we get overbinding for any realistic two-nucleon poten- 
tial. Here, we record some numbers used in our calculations: Xmax = 8 fm, 40 mesh 
points for 0 ~< x ~< 8 fm, and Pmax = 6.03825 fm -1. 

In ref. [3], we have pointed out that the calculated binding energy depends 
strongly on the assumed lrNN form factor and the cutoff  mass. Table 5 lists the 

Table 3. Triton binding energy for some realistic two-nucleon potentials without TM three-body 
force 

Number of channels RSC URG UG TRS PARIS AV 

5 7.03 (7.02) 7.48 7.40 7.46 7.48 7.45 (7.44) 
18 7.24 (7.23) 7.50 7.44 7.49 7.56 7.58 (7.57) 
26 7.55 7.63 7.67 
34 7.55 7.64 7.68 (7.67) 

Table 4. Triton binding energy for some realistic two-nucleon potentials with TM 

Number of channels RSC + TM TRS + TM PARIS + TM AV + TM 

5 7.56 (7.55) 8.62 8.27 8.18 (8.26) 
18 9.11 (8.93) 10.08 9.49 9.64 (9.49) 
26 9.62 9.06 9.16 
34 (8.86) 9.71 9.18 9.29 (9.36) 
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Table 5. A-dependence of (2NP + TM)34 

2NP + TM 
Potential 2NP A = 700 800 

TRS 7.55 8.47 9.71 
PARIS 7.64 8.32 9.18 
AV 7.68 8.42 9.29 

34-channel results (2NP + TM)34, with the dipole form factor for A = 700 and 
800 MeV. This table shows that if we take TM as a phenomenological three- 
nucleon potential with A as a parameter, it is possible to find a value of  A near 
700 MeV, that fits the tr i ton binding energy, for each of  realistic 2NP + TM. 

4 Summary and Conclusion 

The method o f  continued fractions [10], which was originally intended to handle 
scattering problems, is extended to treat a bound state. It is applied to the Faddeev 
equation with two and three nucleon potentials. By this method,  we can get the 
binding energy in a very short time. 

Using this method,  we have solved the Faddeev equation for the triton with 
the super-soft core, Paris and Argonne two-nucleon and the TUcson-Melbourne 
three-nucleon potentials for 34 channels. 

The binding energy obtained from these three realistic potentials is at most  
7.7 MeV, if we omit the three-nucleon potential (Table 3). If we solve the Faddeev 
equation including the Tucson-Melbourne three-nucleon potential, the tr i ton is 
overbound for all o f  these realistic potentials (Table 4), for the dipole 7rNN form 
factor with a cutoff  mass o f  A = 800 MeV. If  we take A = 700 MeV, we obtain 
the tr i ton binding energy which almost agrees with the experimental value: 
(TRS + TM)34, 8.47 MeV; (PARIS + TM)34, 8.32 MeV; (AV + TM)34, 8.42 MeV. 

At this moment ,  we are assuming that the Tucson-Melbourne potential is the 
only three-nucleon potential, neglecting all other  kinds of  three-nucleon potentials. 
Therefore, the value of  A should be taken as a parameter that represents all other 
effects, not  only the two-pion exchange three-nucleon process. Nevertheless, it is 
interesting to see that a value of  A which is not so strange can reproduce the 
tr i ton binding energy. 
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