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GENERATION OF INTEGRAL CHARACTERISTICS OF SYMMETRIC-RANGE 

RESIDUE CODES 

A. A. Kolyada and M. Yu. Selyaninov UDC 681.14 

In the residue number system (~NS) with the bases mz, mz,...,m k are, the number A from 
the symmetric range 

k 
where M~ = ~ mi, [X] and IX[ are, respectively, the nearest integers to X on the left and on 

the right, has the same residue representation as its complement code A~ED~= {0, I .... ,Mk--I } 
mod Mk, defined as 

Ag ={~' if A~O, 
+ M h, if A < 0. 

Operations on numbers from the range Dk normally use the integral characteristics of non- 
positional codes (rank, nucleus, coefficients of mixed-radix representation, etc.) correspond- 
ing to the elements of the set Dk, and not D E. This increases the complexity of many non- 
modular operations in RNS, primarily multiplication and division. In order to overcome this 
weakness of the traditional construction of modular arithmetic, a symmetric RNS has been pro- 
posed, whose code is easily converted into symmetric mixed-radix code ~I]. By using the lat- 
ter instead of the ordinary code, we manage to speed up the execution of some RNS operations, 
such as division [2,3]. 

In this article, we consider the generation of the most useful symmetric integral char- 
acteristics of residue code, i.e., characteristics corresponding to the range Dk, by the meth- 
od of signed numbers using the operation of restriction of the interval-residue code [4-6]. 
Unlike the k-step recursive procedure generating the symmetric mixed-radix code [I], the pro- 
posed algorithm is strictly parallel. Its running time is I + ]log2 k[ modular operations. 

We introduce the following notation: IX] m is the least nonnegative remainder congruent 
with Xmod m; IX[~ is the least absolute value remainder congruent with X modulo 

m ---fm~ I Xl~<~-m ; 

I [X], if X-~[X] +.-~-; 
[X]-= 

I iX] + 1, i f  X >/[X] + -~- ; 
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cz~,t = I A M ~  1 Imi, 

1~ii t 
M~.t = "~n~ Mz = I ]  m~ (i, l = 1, 2 . . . .  ,/0; 

/'=1 

ml, mz,...,mk is a system of pairwise relatively prime moduli. 

The relevant integral characteristics of nonpositional code are defined as follows~ 

Definition I. The symmetric rank and nucleus of an integer A in the system with the 
moduli ml, m2,...,m I (1 > I) are, respectively, the integers o~(A) and n~(A) satisfying the 
relationship s 

l 

t A I~z = ~ Mi.L%,l - -  PF (A) Ml, 
~=l ( t )  

l - - I  

Definition 2. The symmetric int-erval number of /-th order of an integer A with respect 
to the moduli m0 = I, ml, me,...,m I (1 /> 0) is N~(A) = [A/M1]- , M0 = I. 

Definition 3. The symmetric mixed-radix representation of the number A ED-k with respect 
to the moduli ml, mz,...,m k is a representation of the form 

k 

A = ~ aFM~_l, (2)  
i=1  

where a~ is an integer coefficient satisfying the inequality --mi/2 ~< a~ < mi/2 (i = I, 2,..., 

k). 

Repeating the manipulations of [7-9] for the rank Pl(A) and the nucleus ~l(A) of the 
number AEDz, we prove the following theorem. 

THEOREM I. In the RNS with the moduli ml, m2,...,m I (1 > I), the rank 0~(A) and the 
symmetric nucleus q~(A) of any integer satisfy the formulas 

A 

o7 (A) = ~ (A) + 07 (A), 

where 

A 

~F ( A) = ~ (A) - -  m,OF ( A), 

p,(A)= ~ L m, JJ' 

1--1 

~,( ) Ira,' 
i=I 

e~(A) is Amerbaev' s symmetric correction defined by 

(3) 

(4) 

(5) 

(6) 

PI-I(A) is the normalized rank of A in the RNS with the moduli ml, m2,o..,ml-1 [7, p. 142]. 

Remark. The rank pl_1(A) of any integer A satisfies the inequality 0 ~ Pl-1(A) ~ 1 -- 2 

[7], and since 

min [MX1] > m t + l  
xeoT 2 ' 

the  above e x p r e s s i o n  f o r  O~(A) impl ies  t h a t  t h i s  q u a n t i t y  t akes  only  two va lues  0 and 1, i f  
m I > 2(1- 2). 

Definition 4. The interval-residue representation of an integer A in the system with 
the moduli ml, m2,...,ml-i is a representation of the form 
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A = ~ Mia_l(zi.z_ ' + "It_ 1 (A)MI_ v (7) 
i = l  

where the integer il_~(A) is called the interval index of A. The characteristic Jl(A) = 
[Ii_l(A)/m~] is called the nuclear interval index of A with respect tO the modulus m~ (L > ~). 

We thus obtain the following theorem. 

THEOREM 2. In the RNS with the modu!i m~, mz,...,m~, the ~-th order symmetric interval 
number of any integer A satisfies the relationship 

Nf-(A) = J, CA) q- OF(A), l = 2, 3 . . . . .  k. (8) 

Proof. From (7) we find tha~ 

I--I 

"I t I(A)= MAt--~ J/~Ll--lO$i'l--! 
- -  - -  M I _  I ' 

~ I  

and therefore using (6) and our notation we obtain 

l--I 

�9 I  ~ A I I t_ I (A) Iml = ~t,t -- ~ I = nl (A), 

where A is an integer. Then, by. Euclid's lemma from divisSbility theory and Definition 4, 
we represent the interval index Il-l(A) of A in th~ form 

II-I (A) = ~l (A) + Jt (A) ml. 

Substituting (9) in (7) and applying (|) and (4), we obtain 

I--1 t - - i  

A = ~ Mia_l%.t_ 1 -6 (~]~ (A) -6 Jt (A) mz)Mi_~ = ~ M~,t-z~ -6 nz (A) M~_ 1 - -  Of- (A) Mz -6 
t=1  i = 1  

l - - I  

+ 0F (A) Mt -6 Jz (A) Mt = ~=1 ~-~ M~'t-~~ q- Bf" (A) Mr_ , -1- (Jr (A) -6 07- (A)) M, = [ A I~t -6 (Jr (A) q- Of- (A)) Mr, 

whence follows the sought result (8). 

THEOREM 3. The coefficient a~ of the symmetric r e p r e s e n t a t i o n  of A ED~ 
radix number system with the bases m I, mz,...,m k satisfies the formula 

where 
aF = I J l - i  (Tl (A)) + 07"-1 (A) I:t, 

(9) 

in the mixed- 

(10) 

l - - I  
A 

Tl (A) = ~ M~,t-l%,l-i + ~t (A) Mr_ v 
~=, (11) 

l = 3 , 4  .... ,k. 

Proof. Using (4) to compare (I) and (|I), we see that 

t Tt (A)I~t = I A i~t. ( 1 2 )  

Then, applying the modified Euclid's lemma and (2), we may write 

I--I 

T~ (A) = Ni- (Tt (A)) Mt q- I A [~t = Ni- (Tt (A)) M~ _I_ aT-Mr_ 1 -k ~ aFM,_ r 
i = l  

Hence it follows that 

NF-I (Tl ( , 4 ) )  = N 7  (T~ (A)) mt + a F. 

Expressed in terms of the least absolute value remainders, mod mL, this leads to an important 
formula for the l-th digit of the symmetric mixed-radix code ofAED~ : 

a-f = INF_I(Tz(A))I'~ ~, l =  2,3 . . . . .  k. (13) 

Now in order  to  ob t a in  (10) from (13),  i t  s u f f i c e s  to apply Theorem 2 [see (8)] and e q u a l i t y  
(12). 
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From Theorems I-3 we see [see (3)-(6), (8), (10)] that generation of the sought symmetric 
integral characteristics of residue codes [0~(A), n-(A),l^ N-(A),lA a-]l reduces^ to computing some 
approximate values of these characteristics [o/(A), ~/(A), N/(A) = Jl(A), al = IJ/-l(T / x 
(A))Im/] and finding the corresponding Amerbaev's symmetric corrections. We will show that 
these characteristics may be generated by the method of signed numbers, based on the opera- 
tion of restriction of interval-residue representations of the numbers T/(A) (1 = 3, 4,...,k). 

Using the relation 

mz-~a-~ ~ ~'~-~ + [ m~-l~a-l ] m~ " (14) 

which follows from Euclid's lemma, we can easily transform (11) to the form 
I--2 A 

7", (,4) = ~ M~,l_2~,,_ ~ + ~1l-2 (,4) Ml_ ~ + J,_~ (L (A))MI_ ~, (15) 

where 
l--! 

A ]l ~|l- i  (A)  = ml--l~i'l--L 
mi  "~- i  ' ( 1 6 )  

i : l  

l--1 

y 
m/ (17) 

i=1 

Jl--I (T,(A)) = Pl--1 (A) + n,(A), (18) 
l 

�9 z~ [---~--i " ( 1 9 )  

Note that (6) and (19) are equivalent, since by (14) 

[ m~ Jim/ m~ 

Let us now consider the generation of Amerbaev's symmetric corrections. 

Definition 5. Numbers of the form 

! 
ZF(A) = T , ( A ) - -  ~-M~, t = 1,2 . . . . .  k, (20) 

where T I(A) = IA!ml and T/ (A)  (1 = 2,  3 , . . . , k )  a r e  d e f i n e d  by ( 1 1 ) ,  a r e  c a l l e d  s i g n e d  numbers .  

THEOREM 4. If m I > 2(/ -- 2) (l = 2, 3 .... ,k), then for Amerbaev's symmetric correction 
O~(A), whereAED~ , we have 

O[- (A) ----- I 0, if Z[- (,4) < 0, 

1 I, if Z~-(A)>~O. 

Proof. Adding and subtracting @Z(A) M/ in the right-hand side of (11) and then using (I) 
and (4), we represent T/(A) in the form 

T, (A) = ] A lift 4- 07 (A) M,, l = 2, 3 . . . . .  k. 
Then f rom (20) ( l) 

Z~(A) = IA 1~ + 07(A)---~- M~. (21) 

The sought result now may be obtained from (21) if we note that -4~1/2 <~ JA!~ l < M1/2 
and the correction 8~(A) takes only two values, 0 or I, since m I > 2(/ -- 2) (see remark). 

This relationship between A_merbaev's symmetric corrections and the signs of the signed 
numbers (20) is a key element in the proposed method of generating integral characteristics 
of nonpositional codes. The following lemma also plays an important role in this method. 
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LEtIMA. Let the moduli me, m3,...,m k of the RNS be odd numbers, and m~>2(~--2)(i>4), 
then : 

mt-1 implies Z-(A) ~> 0, and Yl_i(Tt(A))<---~ I) for all I = 3, 4,...,k, J~_~ ~Tt_I(A))> 2 

implies J~(A) < 0; 

^ m ~ - - I  ^ -- I 
2) if ~(A)>-- 2 - then Z:(A) >-- 0, and if ~qs(A)~< ms then Z:(A) < 0; 

3) the number Z~(A) and the remainder !A!m ~ have the same sign. 

Proof. Substituting (15) in (20), we obtain 

ZF (A) = T,_, ( A) + ( Jt_1(T~ (A)) -- -'~-) Mt-, �9 (22) 

Adding and subtracting @~_:(A)MI-: in the right-hand side of (22) and using (I) and (4), we 
represent the signed number Z~(A) (Z = 3, 4,...,k) in the form 

ZF (A) = ,A,'~,_, + (It_ , (T,(A)) + OF-: (A)---~-)M,_,.  (23) 
/ 

rri~--I 
First let 7:_ I (T,(A)) > 2 

Since the modulus m I (~ = 2 3, ,k) is odd, the number ml--! ' "'" 2 is an integer; therefore, 

m ~ -  I Jl-1(Tl(A)) > 2 +i and regardless of the particular value of the correction 0~_:(A) (whether 
mz i 

0 or I) we have the inequality JI_I(Tz(A))+OZ-I(A)---~-~, and thus also Z~(A) ~> 0 [see (23)]. 

_ m~ I 
If gl-i (Tz(A)) > , then as in the previous case we obtain Ji-I (Tz (A)) ~- 01-i (A)---2- < 2 ' 

which reduces (23) to Z~(A) < 0. 

Parts 2 and 3 of the iemma are proved similarly, using the numbers 

m s 

ml 
and Z~- (A) = [ A 1~, -- -2-"  

From (22) and (24) we see  t h a t  in  c a s e  o f  i n d e t e r m i n a c y ,  when dt-: (Tt(A))= rot--1 (~ = 
2 

A 

3, 4 , . . . , k )  o r ~ s ( A ) =  ms 1 2 , t h e  s i g n e d  number Z~(A) (Z = 2, 3 . . . .  ,k)  c o i n c i d e s  w i t h  the  

nu:ffber Z~_:(A), so that the procedure of restriction of the interval-residue representations 
of the numbers T3(A)' T~(A),...,Tk(A) described by (]6)-(]9) in conjunction with the above 
iemma makes it possible to determine the signs of all the signed numbers (20), and hence also 
Amerbaev's symmetric corrections @~(A) (l = 2, 3,...,k). 

The preceding discussion suggests the following algorithm to generate the symmetric 
integral characteristics of the residue code (~I, ~2 .... ,~k ) =([AIm:, IAImz , .... IAImk) of 
the number AED-~. 

I. For all Z = 3, 4,...,k + ] compute ~l-i(A) and PZ-I(A) [see (16) and (17)]. 

2. Use (10), (11), (]3), (18) to determine approximate values of the k- I highest-order 
digits in the mixed-radix code of the number A: 

as = ~ ,  a~ = I P~_~ (A) + ~ (A) I~ ,  l = 3, 4 . . . . .  k, 

and generate the characteristics 

m~ . 
SI---- 0, if ~z<-~-, 

I, if ~I >~ , 
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rule 

8 2 

0~ 

St = 

l, if 

Hz = [ O, 
if 

I, if 

A 

0, if ~]2 (A)~< m2--  ! . 
2 ' 

I, if ~(A)> m2--] 
2 ' 

if 9~_~ (A) + ~, (A) ~ 2 ; 

Pl-~ (A) + ~% (A) > m~ -- 1 
2 ' 

al @ m~ 1 
2 ' 

" m z - - I  l = 2 , 3  . . . . .  k. 
at = 2 ' 

/ = 3 , 4  . . . . .  k; 

3. Apply the lemma and Theorem 4 to generate Amerbaev's symmetric corrections by the 

OF (A) = $1, OF (A) =HzSyH,OF_t  (A), t = 2, 3 , . . . ,  k, 

or  i n  p a r a l l e l  f o rm 

o 7  (A)  = . . . .  Vs H2n  . . .  l = 2 ,  s . . . . .  

4. Use (3), (4), (I0), (13) to compute the sought symmetric integral characteristics 
of the residue code: the rank p~(A), the nucleus ~k(A), the coefficients 

aF = [~x 17,, a F = l a~ + 0F_~ (A)I~, l = 2, 8 . . . . .  k, (25) 

of the mixed-radix code. 

The l-th order symmetric interval number N~(A) of A (l = 1, 2,~ -- I) is determined 
by the k -- I highest-order digits of the mixed-radix representation: 

N F  (A) = a-i-+1 + aT+~mt+ 1 + ... + a~ml+lmt+2 .'. mk_v 

If tha mixed-radix code of A is not generated, the characteristic N~(A) (1 = 2, 3,.o., 
k -- I) may be obtained by computing from (7) the residue code of the nuclear interval index 
Jl(A) in the system with the moduli ml+z , ml+2,...,m k and then using (8). 

Under conditions of maximum parallelism, the propos6d algorithm generating the symmetric 
integral characteristics of the residue code required I + ]log2 k[ modular operations. 

Our results lead to the following conclusions. 

I. The symmetric integral characteristics of residue codes, like their known analogs 
[10], have the same structure, which is largely determined by Amerbaev's symmetric 
corrections. 

2. The method of signed numbers provides a universal and efficient apparatus for gen- 
erating symmetric integral characteristics of residue codes. 

3. The existing generators of integral characteristics of nonpositional codes [5, 6] 
may be easily adapted for use with symmetric-range residue codes. 
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MINIMIZATION METHODS FOR FUNCTIONS ON SIMPLE SETS 

V. S. Mikhalevich, N. N. Redkovskii, 
and A. E. Perekatov 

UDC 519.6 

INTRODUCTION 

Historically, the main efforts in the development of numerical methods of nonlinear pro- 
gramming concentrated on the solution of nonlinear programming problems in general form. A 
whole arsenal of such methods is currently available, including penalty function methods, 
different versions of the linearization method, etc. Yet the use of general methods is not 
necessarily justified in many special cases. 

In this article, we consider special optimization methods for the solution in a number 
of common problems. These are primarily minimum seeking problems on sets of "simple" struc, 
ture [I]. Let E n be an Euclidean space, and x the elements in this space with the components 
x i, i = 1,...,n. Simple sets are a parallelepiped {x:a~xi~bi}, a ball{x:llx[[<~R}, a sphere 
~:]]x[ I = R}, a simplex {x:x I + ... +xn= I, x~0}, and so on. In the development of any mathe- 
matical model, these constraints naturally arise before the introduction of other more con- 
straints. 

The existing approaches to the construction of special numerical methods of minimizing 
f(x) on such sets may be divided into two groups. In one group, the direction of descent Pk 
in the scheme Xk+ I = x k + ~kPk is projected onto the set D on which the minimum is sought. 
The step ~k is chosen so that the sequence x k does not leave the set D. One of the first 
studies in this direction is [2]. This approach is developed in [3, 4] mainly for parallele- 
piped constraints. 

The methods of the other group first construct a nonlinear transformation x=~(~, such 
that xE D for any z E E n. The minimum of f(x) on D is sought by applying to f[~ (~] the methods 
of unconstrained minimization over z. 

The relevance of both groups of methods is attributable to the fact that the iterative 
sequences x k generated by the various algorithms remain inside the feasible region D. This 
is a very important aspect if the variables x ~D are devoid of concrete physical meaning in 
the particular mathematical model. Methods ensuring that x~E D in each iteration is preferred 
to other algorithms if the solution of the optimization problem may stop by hitting a time 
limit, before the computations stop algorithmically. Algorithms ensuring x~CD make it pos- 
sible to dispense with additional efforts to correct the approximate solution x, and to ensure 
the inclusion x, E D. 

The use of the transformations x=~(z) for minimizing f(x) on D w~s first considered in 
detail in [5]. In order to eliminate the constraint xED, the following transformations were 
used in [5]: 

f o r  O = {x : x i >1 O} x ~ = [z~] z, x ~ = exp  [z~], x i = I z~ [; 

f o r  D = { x : O ~ x i ~ l }  xt = s i ~  z ~, x ~ = [ e x p ( z  i) + e x p ( - -  z~)]-l exp (zi); 

f o r  D = {x : ai  ~< x ~ ~<b~} x ~ = a~+(b I -  a~)sinzz t. 

Translated from Kibernetika, No. 4, pp. 25-35, July-August, 1986. Original article sub- 
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