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We consider the Euclidean space E n with vectors z = {zl, z 2 ..... Zn}. We shall under- 
stand a polynomial mathematical programming problem to be a problem of the following kind: 
Find: 

under the constraints 

inf Po (z) ( 1 ) 

P i ( z ) = 0 ,  i =  1 . . . . .  m, ( 2 )  

where  P 0 ( z ) ,  P i ( z ) ,  i = 1 . . . .  , m a r e  p o l y n o m i a l  f u n c t i o n s  o f  z .  

The fact that the constraints (2) are given in the form of equalities does not substan- 
tially limit the generality of the problem since any polynomial inequality of the form R(z) = 
0 can be reduced to the polynomial equality R(z) + t 2 = 0, where t is an additional variable. 

Introducing new variables and using quadratic substitutions of the form z~ = Yi, Z=k = 
2 I 

Z'Zk, y. = v', etc , the degree of the polynomials in (I) and (2) can be reduced to qua~ 
i i " 

ratics by considering them as functions of an expanded set of variables; new quadratic equal- 
ities corresponding to the above-mentioned substitutions appear here. Any problem of the 
form (1)-(2) can therefore be reduced to a quadratic extremal problem: Find 

infKo(x), x~E n, n ~ n ,  (3)  
x 

unde r  t h e  c o n s t r a i n t s  

Ki(x)= 0; i =  1 . . . . .  N; m>~m, ( 4 )  

where K v ( x ) ,  v = 0, 1 . . . . .  m a r e  q u a d r a t i c  f u n c t i o n s .  

A method is proposed in [i] to obtain the lower bound for the optimal value of the tar- 
get function and which we shall designate dual since it uses Lagrange multipliers. 

Let us consider the Lagrange function: L(x, u) = K0(x) + ~, uiKi(x) = (A(u)x, x) + 
i=! 

(s x) + c(u). Here A(u) are symmetric ~ • ~ matrices, s are vectors of dimensional- 
ity ~, and c(u) are constants dependent on the vector of Lagrange multipliers u = {u I ..... 
u~}. Let ~(~) be the set of such values of u = {u I ..... uN} for which the matrix A(u) is 
positive definite (non-negative definite). For u E ~ m~n L(x, u) = ~(u) is achieved at a 
certain point x(u) that is the solution of the linear system of equations 

2A (u) x + l (u) = O. ( 5 )  

Let  us d e t e r m i n e  ~(u)  = L ( x ( u ) ,  u)  f o r  u 6 ~. For  any a l l o w a b l e  ~, L(~,  u)  = K0(x) ,  c o n s e -  
q u e n t l y  ~ (u )  5 K0(x) f o r  a r b i t r a r y  u. Hence,  ~* = sup ~(u)  5 Ko(x) f o r  a r b i t r a r y  a l l o w a b l e  

x, i.e., ~* ~ f*, where f* is the optimal value of the target function in the problem (3)- 
(4) (if the system of equations (4) is incompatible, we will consider that f* = +~), ~(u) 
is a concave function on ~, and ~ is a convex or empty set. In this latter case we consider 

The problem of finding ~* = sup ~(u) refers to convex programming. Sufficiently effec- 
uE~ 

tive algorithms have been developed for it, in particular good practical results are given 
by an r-algorithm with special regulation of the step multiplier [2]. Problems of the form 
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Proof. 
sidual 

(i)-(2) and their corresponding (3)-(4) can be non-convex and multiextremal. Consequently, 
it is impossible to guarantee the equality 4" = f* in the general case. One approach to ob- 
taining a global optimum can be the method of branches and boundaries with utilization of the 
above-mentioned dual estimates. The algorithm to find the maximal weighted independent set 
of vertices of a graph, described in [3], can be an example of such an approach. However, 
the method of branches and boundaries is not sufficiently effective for all problems. It 
is interesting to investigate those classes of polynomial non-convex problems for which 4" = 
f*. Let us note that when going over from polynomial to quadratic problems different quad- 
ratic Substitutions can be utilized and 4" will vary depending on th%s. Moreover, new con- 
straints can be generated that are algebraic consequences of the previous ones by keeping 
the domain of allowable solutions unchanged. The dual estimates do not decrease here but 
grow in certain cases and increase the chances of agreement between 4" and f*. 

It is easy to prove the following theorem. 

THEOREM i. If 4" = ~ ~(u) is achieved on the set ~, then 4" = f*- 

The gradient of the function 4(u) for u 6 Q agrees with the vector of the re- 

e , ( u )  = {K~ (x (u))}~l.  

i f  t h e  maximum ~ ( u )  i s  a c h i e v e d  a t  a c e r t a i n  p o i n t  u* C ~,  t h e n  K i ( x ( u * ) )  = 0, i = 1 . . . . .  
m, i . e . ,  x ( u * )  i s  an a l l o w a b l e  p o i n t ,  h e r e  f*  ~ K 0 ( x ( u * ) )  = 4 ( u * )  = 4*.  But  4"  i s  t h e  l ower  
bound for f*. It thus follows that f* = 4*- Q.E.D. 

Therefore, if ~* < f*, then the supremum of 4(u) is achieved on the boundary of the do- 
main S. Let u* be a point on ~\~ in any neighborhood of which there are, for an arbitrarily 
given ~ > 0, points u C ~ for which 4" - 4(u) < e is valid. The rank of the matrix A(u*) 
should agree with the rank of the adjoint matrix (A(u*)ls i.e., the system (5) should 
have a solution for u = u*. 

Let us clarify the above by examples. 

I. Find min [(Ax, x) + (c, x)] under the constraints (x, x) -- 1 = 0, x C E n. 

We reduce the matrix A to diagonal form by an orthogonal transformation. In the new 
variables y = {Yl, -'', Yn} we obtain the following problem: Find min K0(y) where 

Ko (Y) = ~ %iY~ + ~ alga, (6 )  
i = I  ~=I 

under the constraints 

KI(g) =~y~--I = 0 .  (7) 

Let ~l, -.., An be the eigennumbers of the matrix A written in non-decreasing order with 
their multiplicity taken into account, and the minimal eigennumber has the multiplicity 
Let us examine the Lagrange function of the problem (6)-(7) 

L (y, u) = tO0 (y) + uK1 (y). 

For u > --l I L(y, u) is positive definite and can be written in the following form 

For u + ~i > 0 

al , _ * 
t (g, u) = (~'i + u) gi + 2 (~ + u) 4 (X~ + u) 

i ~ I  i=1  

I t .  

1 ~ a?  
( u ) =  min~ L(x,u)  ~ - - - ~  % ~ + u  U. 

If a I ~ 0, then for u > --ll, u § --ll, 4(u) + --~. Therefore, max 4 (u) is achieved in the 
domain of positive-definiteness -ll < u* < +~ and the global extremum of the problem (6)-(7) 
corresponds to it. If a I = 0, then max 4 (u) can be achieved on both the boundary of the 

U 
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positive-definiteness domain (u + 11 = 0), hence 4" = f*. Analogous reasoning holds even 
in the case of multiple eigennumbers of the matrix A. 

II. We consider the problem of minimizing a fourth degree polynomial of one variable 

rain (x ~ + ax ~ + bx). 

Let us make the substitution: x 2 -- y = 0. We obtain the following quadratic problem 

min(y ~ § ay + bx) 

under the conss x 2 - y = 0. The Lagrange function has the following form (for u > 0) 

( a u) C iou)2 b2 L (x, y, u) = y2 q- ay + bx + u (x' - -  9) = !t q- ~ + u x q- ~ - -  " 2 4u " 

F o r  u > 0 ( i n  t h e  p o s i t i v e - d e f i n i t e n e s s  d o m a i n  i n  y ,  x o f  t h e  L a g r a n g e  f u n c t i o n )  $ ( u )  = 

a - - u  ~. F o r  b r 0 ,  u ~ +0 ,  ~ ( u )  ~ - . F o r  u ~ -I-~, ~ ( u )  -~ - ~ .  T h i s  means  - -  oo 
2 4u 

max ~ ( u )  i s  a c h i e v e d  a t  t h e  p o i n t  u * ,  0 < u* < +~ o f  t h e  d o m a i n  f ~ : u  > 0 a nd  t h e  u n i q u e  g l o b a l  
U > 0  

b 
op t imum x - 2u ~ w i l l  c o r r e s p o n d  t o  i t .  F o r  b = 0 ,  a =  0 ,  we h a v e  u* -- a ,  ~ ( u * )  = 0 ,  x* = 0. 

F o r  b = 0 ,  a < 0 ,  sup  ~ ( u )  i s  a c h i e v e d  a t  a p o i n t  on t h e  b o u n d a r y  o f  f~, u* = 0 ,  h e r e  y* = 
u_>0 

x . 2  = - a / 2 ,  ~* = - a 2 / 4 ,  w h i c h  c o r r e s p o n d s  t o  two d i s t i n c t  g l o b a l  min imums  x* = •162 
T h e r e f o r e ,  i n  a l l  c a s e s  sup  ~2(u) = ~* = f * .  

U >  0 

I t  t u r n s  o u t  t h a t  t h e  r e s u l t  o b t a i n e d  f o r  p o l y n o m i a l s  o f  f o u r t h  d e g r e e  c a n  be  e x t e n d e d  
t o  p o l y n o m i a l s  o f  a r b i t r a r y  e v e n  power  i n  one  v a r i a b l e .  L e t  u s  c o n s i d e r  a p o l y n o m i a l  o f  t h e  
e v e n  power  2 n ,  n _> 1,  o f  t h e  v a r i a b l e  x~ f o r  w h i c h  t h e  c o e f f i c i e n t  o f  t h e  h i g h e s t  power  
e q u a l s  1 : 

'2n 

P2,  = + Y (8) 

Let us introduce the notation x k = x k, k = 0, i, ..., n. In this notation (we note that 
x 0 = i), the problem of minimizing P2n(Xl) is transformed into a quadratic extremal problem 
of the following kind: 

Find the minimum of 

K~. (x) = x~ + Z a2~_~x.x._k -4- a~_ix~_~ ( 9 )  
~ 1  i = 0  

under the constraints 

xpxq- -  x~x~ = O, p q- q = r q- s <~ 2n - -  2, ( 1 0 )  

p > / q ,  p > r > / s ,  

where p, q, r, s are non-negative integers. The expression in the left side of the equality 
of the form (i0) is denoted by R(p, q; r, s) while Q2n denotes the set of different allowable 
tetrades. 

Remark. Among the equalities of the form (i0) part is evidently algebraically redundant; 
certain equalities are even linear consequences of others, precisely these can be discarded 
without damage to the further discussion. We knowingly conserve the whole set of expressions 
R(p, q; r, s) to simplify the notation and the proof. 

We compare the Lagrange multiplier l(p, q; r, s) to each equality of the form R(p, q; 
r, s) = 0. The set of Lagrange multipliers forms the vector I. 

Let x = (x I ..... Xn), x 0 = I. 

We form the Lagrange function of the quadratic problem (9)-(10): 

L ~ ,  X) = K2~ (~  + Z k (P, q; r, s) R (P, q; r, O. 
~ , q ; r , s )  6Q2n 
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Let Q(P2n)(~(P2n)) be the set of such vectors % for which the quadratic function L(x, %) in 
x is positive (non-negative) definite. The function ~(A) = mixnL(x , %) is defined for % 

Q(P=n)" If the supremum 9(I) agrees with f* = m~n P(xm) for % 6 ~(P=n), then we will say 

that P2n possesses the ~-property. If this supremum is achieved on %* ~ Q(P=n) then we Will 
say that the polynomial P2n possesses the strong m-property, here (see Theorem I), ~(%*) agrees 
with f*, i.e., P=n possesses the ~-property. 

Let u show that the m-property is conserved under a shift of the origin. Thus the fol- 
lowing theorem is valid. 

THEOREM 2 (on shift). If P(x~) possesses the m-property, then the polynomial P(x~) = 
P(xl + a ) also possesses the m-property for arbitrary a. 

Proof. We introduce the variable x~ = xm - a. Then P(x~) = P(xm!. Therefore, the pas- 
sage from ~he pol~nomial P to P is reduced to the substitution: x~ = x~ + a in P(xm). If 
we define x k = xl , k = i .... , n, then we obtain the following expressions for x k 

- = = C~a x~_~. ( 11 ) 
i ~ O  

We need two lemmas to continue the proof. 

LEMMA i. Let there be given a system of equalities of the form 

g ~ - - g y = O ;  i , ] ~  1 . . . . .  k; i=/=]. ( 1 2 )  

n n 

Then any linear form ~(y) \~c ig i  unOer the condition i = 0 can be written in the form Y.. 

i=I {=l 

of a linear combination of the left sides of (12). 

Proof. For k = i the lemma is trivial. For k > i it can easily be proved by induction 
from n to n + i by using the simple identity 

n + l  n--1 

i~]  [ ~1  

LEMMA 2.  Any e x p r e s s i o n  o f  t h e  fo rm x ~ x -  - x - x ~ ;  ~ + q = p + ~ ,  w h e r e  s ,  q ,  p ,  r a r e  - - -  q P - 
n o n - n e g a t i v e  i n t e g e r s ,  go o v e r  i n t o  e x p r e s s i o n s  o f  t h e  v a r i a b l e s  x 0 ,  x~ ,  . . . .  x n u n d e r _ s N b -  
s t i t u t i o n s  o f  t h e  fo rm ( 1 1 ) ,  w h i c h  a r e  l i n e a r  c o m b i n a t i o n s  o f  e x p r e s s i o n s  o f  t h e  f o r m  XsX q - -  

X p X r ,  s + q = p + r ;  s ,  q ,  p ,  r a r e  n o n - n e g a t i v e  i n t e g e r s .  

Proof. Let us use the equalities (Ii) 

- - -  " '  - a % %  , a : C ! % _ ;  = 

", 1~0 / ". i = 0  ./~0 / 

- . 

t=0 i , ] : ~ q - i = t  " ~ i,]:i+y=t 

As follows from the binomial identities and equalities s + q = p + 

y c ' =  E ~ J ~i+~-- ~+~ O. 

Using Lemma I repeatedly for different t, we find that the expression x~x- - x~x~_ is repre- _q_ 
sentable in the form of a linear combination of expressions of the form XsX q - XpXr, s + q = 
p + r; s, q, p, r are non-negative integers. The lemma is proved. 

We continue the proof of the theorem. 

The polynomial P(x I) possesses the m-property. This means that there is a vector of the 
Lagrange multiplier %* such that the Lagrange function L(x, %) of the quadratic problem (9)- 
(i0) for X = %* is non-negative-definite in x and ~(%*) = f*, where f* = min P(xl). In place 

X I 

of components of the vector x let us substitute expressions from (ii) into L(x, I*). (The 
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formulas (ii) can be considered as the passage from one coordinate system to another). We 
obtain a quadratic function ~(~, I*) in ~ and since a positive (non-negative) definite quad- 
ratic function goes over into a positive (non-negative) definite function under nonsingular 
coordinate transformations, then L(x, I*) will be non-negative definite. Let us note that 
the domains of the values L(x, I*) and ~(~, I*) are in agreement, from which ~* = min ~(~, 

I*) = f*. On the other hand, by using Lemma 2, we arrive at the deduction that the expres- 
sion ~(~, I*) can be written in the form of the Lagrange function of the quadratic problem 
corresponding to finding min P(xl); 

under the constraints 

min K (~) (13) 

x v x  q - xrx  s = O, (p, q; r, s) 6 Q~n, (14) 

where g(~)  i s  the  r e s u l t  of  s u b s t i t u t i n g  the  exp re s s ions  (11) i n t o  K2n(X) from (9) in p lace  
of components of the vector x; the appropriate Lagrange multipliers are here expressed lin- 
early in terms of components of I*. Therefore, for the problem (13) and (14) there exists 
a vector of the Lagrange multiplier %* for which the appropriate quadratic function of ~ is 
non-negatively definite and its minimum agrees with f* by the value of the minimum of the 
polynomials P(xl) and P(xl). This means that the polynomial P also possesses the m-property. 
Theorem 2 is proved. 

Let us turn to the proof of the main result. 

THEOREM 3. Any polynomial P2n(Xl) of the form (8) of even degree possesses the m-prop- 
erty. 

Proof. The m-property is proved for n = 2 (see example 2). We prove the theorem by 
induction over n. Let the w-property be valid for polynomials of the form (8) of degree 2n. 
We prove its validity for polynomials of degree 2(n + i). According to Theorem 2 (on the 
shift), the m-property is conserved for a shift in the argument, consequently, it can be as- 
sumed without limiting the generality that the global minimum is found at 0 and the value 
of the polynomial is 0 at 0. It will hence follow that the coefficients of the lowest powers 
are a 0 = a I = 0 and a 2 = 0 for the polynomial P~ under consideration, i.e., it is 

2 L L I  ~= 

0 = x~.P2n(Xx), where the polynomial P2n(Xl) takes on non- representable in the form P2n+2(xl) 
negative values on the whole axis. By the assumption of induction the m-property is satis- 
fied for P2n(Xx), i.e., for the corresponding quadratic problem a vector is found for the 
Lagrange multiplier I* for which the Lagrange function L2n(X , I*) will take on non-negative 

n 

values for any x, i.e., can be written in the form L2n(X) = 21~(x)@r'-. where s are lin- 
i=l 

ear functions of (xl, ..., Xn), and r 2 is a non-negative constant. 
2 * Let us consider the expression xiL2n(X). The quadratic form 

t~ 

L;n+~ (x) = ~ -l~ (x) -+- r2x~, 

corresponds to it, where ~i(x) is a linear function of the variables x z ..... Xn, Xn+ I that 
n 

is obtained from ~i as follows: if s = 2 li~z~ q- li~ then ~i(~) = " , ~ l~jx/+~ It is easy 
i=1 /'=0 

to  see  t h a t  L~n+2(x) i s  ob t a ined  from the  Law f u n c t i o n  of  the  q u a d r a t i c  problem co r r e -  
sponding to minimization of the polynomial P2n+2(xl) for the samevalues of the Lagrange mul- 
tipliers that form the vector I*, however these values refer to "transformed" constraints: 
to constraints of the form XpXq - XrX s = 0 that refer to the problem of minimizing P2n(Xl), 
will correspond to the const)afnts Xp+xXa+ ~ - Xr+~Xs+ ~ = 0 in the problem of minimizing 
P~ The minimal value of L~n+2(x~ is achieved for ~ = 0 and equals 0. Therefore, 
for definite values of the Lagrange multiplier of the quadratic problem corresponding to 
minimization of the polynomial P2n+2~ (x I) an exact estimate is obtained, i.e., the polynomial 
P~ I) possesses the m-property. By the theorem on the shift the arbitrary polynomial 
P2n+2(xl) of degree 2n + 2 with coefficient 1 in the highest term will possess this same 
property. Theorem 3 is proved. 

We conclude with some remarks. 
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i. Reduction of the problem of minimizing P2n(Xl) to a quadratic problem is not unique. 
5 This is related to the non-uniqueness of the representation of x , e.g., x I = xlx 4 = x2x ~ = 

xs, etc. Depending on the representation taken, the optimal Lagrange multipliers change, 
however, the m-property is independent of a specific representation. 

2. The minimal number of constraints that must be taken into account in formulating 
the equivalent quadratic problem for the minimization of P2n(Xl) is (n - i) since the vari- 
ables x2, ..., x n must be determined. The remaining constraints are redundant, i.e., their 
addition does not narrow the domain of allowable values. The role of the redundant con- 
straints is to broaden the number of dual variables of the Lagrange function which generally 
results in more exact estimates. Addition of constraints, which is a linear combination of 
the available ones, is not reflected in the accuracy of the dual estimates since the "contri- 
bution" of this constraint to the Lagrange function is equivalent to a definite change in 
the Lagrange multiplier for the available constraints. 

3. As a rule, redundancy in the number of constraints results in non-uniqueness of the 
vector of the optimal Lagrange multiplier ~*. According to the geometric meaning of the op- 
timal Lagrange multipliers, they are coefficients of the expansion in gradients of the con- 
straints orthogonal to the manifold cutout by constraints antigradient to the target func- 
tion at the optimal point. Under non-uniqueness of the expansion, the set of allowable vec- 
tors of the coefficients form a linear manifold. The intersection of this manifold with 
~(P) indeed yields the set of optimal Lagrange vectors. The assumption that under minimiza- 
tion of the polynomial function of many variables P(x I .... , x n) by the construction of an 
equivalent quadratic problem when using a fixed set of redundant constraints, an exact dual 
estimate is obtained for the value of the global minimum (analog of Theorem 3), is very prob- 
able. If this assumption can be proved successfully, then a method based on dual estimates 
appears in the arsenal of methods to find the global minimum of polynomial functions of sev- 
eral variables. This method can be combined in different forms with the method of branches 
and boundaries and the method of relaxation of constraints. Of still greater interest is 
the extension of the theory noted in this paper to the general class of polynomial problems 
with constraints of the form of (i) and (2). In the general case, can a method be given to 
generate a redundant system of constraints in order to assure that the dual estimate will 
turn out to be exact? An experimental investigation of the efficiency of the proposed method 
of dual estimates goes on at present in a number of classes of extremal problems of graph 
theory and nonconvex quadratic problems with linear constraints [3]. 
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