
EFFICIENT ALGORITHM FOR FINDING ALL MINIMAL EDGE CUTS OF A

NONORIENTED GRAPH

A. V. Karzanov and E. A. Timofeev UDC 519.17

Consider the following problem: In an n-vertex nonoriented graph G (possibly with mul-
tiple edges), find all minimal (as to the number of edges) edge cuts. To solve this problem
an algorithm is proposed with a complexity O(%n2), where % is the number of edges in a minimal
edge cut of graph G. The order of growth of complexity with respect to n and % is lower than
in former algorithms. For example, the algorithm proposed in [I] has a complexity O(nm),
where m is the number of edges of graph G, while the complexity of the algorithm of [2] is
0(%~n2). Note that while the complexity (as to n and %) grows in the same order as in the
Ford--Fulkerstone algorithm [3], the given algorithm finds minimal edge cuts in the entire
graph and not only between specified vertices as in the Ford--Fulkerstone algorithm.

The algorithm constructs a structure graph F(G) (see [4]) from which any minimal edge
cut of the graph G can be found in O(n) operations, as follows from the following properties
of the graph F(G) (see [4]):

I) Any minimal edge cut of the graph G is a minimal edge cut of the graph F(G) and can
be found in O(n) operations;

2) any two simple cycles of F(G) have not more than one common vertex and the number of
edges of F(G) is O(n).

Thus, of all presently known algorithms that find all minimal edge cuts of G, the pro-
posed algorithm has the lowest complexity and gives all minimal edge cuts of a graph in a
simple and compact form.

I. Definitions and Notation

Let V(H) be the set of vertices of graph H; (_X, Y), the set of edges of the graph con-
necting two subsets of vertices X and Y. If Y = X, (X, X) is called a cut of the graph
(henceforth, for the sake of brevity, an edge cut is Galled a cut). Further, c(X, Y) is the
number of edges in the set (X, Y), and c(u, v) in particular denotes the multiplicity of edge
(u, v). A cut consisting of k edges is called a k cut. The number ~(G)=minc{X,X-) is called

x

the edge connectivity of graph G. A graph G in which %(G) ~ k is called k-connected.

A k plant is a connected graph whose any two simple cycles have not more than one common
vertex; the multiplicity of an edge is k if the edge does not belong to a cycle or k/2 is the
edge belongs to a cycle and k is even. If k is odd the k plant has no cycles, i.e., is a
tree whose every edge has a multiplicity k.

A st~ct~al g~aph of graph G is called a % plant F(G) [% = %(G)] such that there exists
a mapping ~:V(G)-->V(P(G)) having the following properties:

I) ~(u) = ~(~ if and only if the vertices u and v are not separated by even one % cut
of the graph G;

2) if (X, X) is a % cut of graph F(G), then (~-I(X), ~-i(~)) is a % cut of graph G and any
% cut of G can be obtained in this way.

Note that a given graph G can have several structural graphs F(G). F(G) then denotes
any of these graphs.

For example, the graph G shown in Fig. I has as structural graphs both the graph G it-
self and the graph H, the mapping ~ in the latter case not being a mapping onto V(H) (since
no vertex of the graph G turns into the vertex 0).

Translated from Kibernetika, No. 2, pp. 8-12, March-April, 1986. Original article sub-
mitted March 19, 1984.

156 0011-4235/86/2202-0156512-50 O 1986 Plenum Publishing Corporation

f r o

6t, / ~ H: ' " " ,~

F i g . 1

Let f be a flow in graph G from vertex s to t; Gf is then an oriented graph (orgraph)
obtained from G by replacing each edge with two oppositely oriented arcs and removing the
arcs saturated by the flow f [5]; id (v) [od (v)] is the indegree (outdegree) of vertex v in
the orgraph.

The vertices of the starting graph G are assumed to be numerated by the figures I, 2,...,
n. If H is a certain subgraph of G, then H i is a graph obtained from H by contracting the set
of vertices {I, 2,...,i} into one new vertex once again denoted by i.

2. Algorithm AI for Constructing F(G)

In this section the algorithm AI for constructing the structural graph F(G) is described,
validated, and its complexity 0 (nm) is estimated. Since the algorithm AI is a component part
of algorithm A2 whose complexity is O(Xn2), it is discussed in a separate section.

To simplify the description of the algorithm, let us assume that there is a certain a
priori known skeleton tree G1.of the graph G and that the numeration of the vertices of graph
G is such that in the graph G~ the vertex i is adjacent to the vertex i + I (i = I, 2,...,
n -- I). [Obviously, in a connected graph this can always be carried out in O(n 2) operations.]

2.1. Description of Algorithm AI

Step 0. Using the Podderyugin algorithm [I, 5] find the edge connectivity of the graph
G, the number % = X(G).

The following transformations are next carried out in the cycle from i to n -- I with a
step I.

Step I. Find a flow f of power % from vertex i to i + I in the graph G i. For this pur-
pose first find all paths consisting of one or two edges connecting i and i + I and then com-
plete them to a flow of power % using the Ford--Fulkerston algorithm [3].

Step 2. Construct the orgraph G~. Find its strong-connectivity components by the algo-
rithm described in [6]. Construct the orgraph D~ contracting each strong-connectivity compo-
nent into one vertex.

Step 3. Numerate the vertices of orgraph D~�9 accordance, with the following rule. Let
xl, x2,:..,Xp be the vertices of orgraph D~ and X~, X~,o..,X~, the corresponding subsets of
graph GI; then: I) iEX~,iq- IEX~, 2) xj is a vertex different from Xp, from which into the set
{xl, x2,...,xj-l} go at least %/2 arcs of the orgraph D~ (j = 2, 3,..~ -- I).

�9 ~ ~

Step 4. Record X~, X~,...,X~. Construct the graph G i+I and turn to the next value of i.

Step 5. In the cycle on i from n -- 2 to I and with a step --I construct a % plan t r(G i)
from the % plant F(G i+I) and the collection of subsets of vertices of the graph Gz: XI, X~,...,
X~. This construction takes place as follows:

P

1) l e t V {F (G~)) = V (F (G~+L)) U U {x~} - ~ + , (i -~- 1};
i=!

2) v e r t i c e s S and T of t he graph F(G~) a r e assumed to be a d j a c e n t i f and o n l y i f S and T
are adjacent in F(G i+l) ~ X~ -- , or S = X , T = and [i k[= I, or S=X~, TEv{r(~+I)),

r being adjacent to ~i+l(i ,-hi) in r (~ + l) and ~j(T)~X~ when ~ , (T) ~ = O , or ~,.~,(T')=i=O

when ~ l (T) - - - - O , where T ' = / = ~ + I (i + I) i s an a d j a c e n t to T v e r t e x in P(O t+I) v e r t e x in

which ~, (T') =f= ~;

3) the mapping ~; is defined putting

~7 ~ (s) = / ~ ' (s), s E v (r (o'+'));
| x ~ \ ~ , + , (i + I), s = x~;

157

6 6 6

S 4 [5 ~ ~

: < ~ 2

3 Y
3
a b c

F i g . 2

~ 2

F 7 1

$

2

a 3 b

Fig. 3

4) for each.vertex X~ (j = I, 2,...,p) of the ~ pSant F(G i) such that ~[I(X})=~, the
1 degree Xj is 3, one of the edges incident to X$ has a multiplicity % and two others j '

the multiplicity %/2; the edge of multiplicity % is contracted into one vertex.

This concludes the description of algorithm At.

2.2. Example

Figure 2 shows the graphs G, G 2, and F(G2). It is easily verified that X~ = {I}, X~ ={8},
I 4 X ' �9 X~ ={5}, X4 = { }, 5 ={3}, X~ = {2} . Figure 3a shows the graph F(G) before applying step 5.4

and Fig. 3b, after contracting the edges in step 5.4. Note that the cut ({I, 6, 5}, {2, 3, 4})
in the structural graph F(G) is shown twice.

2.3. Validation of Algorithm AI

To demonstrate the validity of algorithm AI one must prove that all minimal cuts of graph
G have been found and that the obtained % plant is a structural graph of the graph G.

Steps I through 4 are applied n -- I times and at each application give all minimal cuts
separating vertices i and i + I in the graph G i. This assertion follows from Lemmas I and 2.
Since any % cut of graph G is a % cut separating vertices i and i + I in the graph G i for a
certain i (see [I, 5, Sec. 2.5]), one can conclude that the algorithm finds all % cuts. To
prove that the % plant obtained at step 5 is a structural graph of the graph G, it is suffi-
cient to show that step 5 produces a structural graph F(G i) of the graph G I for any i. The
last assertion is proved by simply testing the properties I) and 2) of the definition of a
structural graph.

Thus, to complete the demonstration of the algorithm validity it is necessary to prove
two lemmas.

LEMMA I. Let f be a flow of power k in graph G from vertex s to t; then for the arc
(u, v) of orgraph Gf not to belong to a strong connectivity component of orgraph Gf it is
necessary and sufficient that the edge (u, v) belongs to a k-cut separating the vertices s
and t in graph G.

Proof. Necessity. Let us assume the opposite: There exists an edge (u, v) of graph
G which does not belong to even one k-cut separating the vertices s and t in graph G and such
that the vertices u and v lie in different strong connectivity components of the graph Gf.

To be definite, let us assume that f(u, v) > O, so that f(v, u) = 0. Consider a set S
consisting of vertex u and all vertices of graph Gf accessible from u. We will show that the
set S has the following properties:

I) sES, since s is accessible from any vertex of Gf;

2) I~S, since in Gf there are at least two strong connectivity components;

3) c(S, S) > k, since the cut (S, ~) separates s and t [in view of properties I) and 2)]
and contains an edge (u, v) not belonging to any k-cut separating s and t;

4) for any edge (p, q) (p E S, qE 5) f(q, p) = O, since otherwise S would contain a vertex q
and this contradicts the definition of set S.

Properties 3 and 4 lead to a contradiction: notwithstanding the definition of S, there
exists an arc (a,b) (aES, bES) such that f(a, b)<c(a, b), i.e., Gf is the arc (a, b).

158

Sufficiency. Let the edge (u, v) of graph G belong to the k-cut (S, S) that separates
the vertices s and t (u, s6S, v, t6S). Since for any edge (p, q)(p6S, q6S)] (P, q)=c~, q) and
f(q, p) = 0, the orgraph Gf includes no path from u to v, i.e., u and v lie in different
strong connectivity components.

This proves Lemma I.

Before formulating the next lemma, let us denote by Df an orgraph obtained from Gf by
contracting each strong connectivity component into a single vertex. The vertices of orgraph
Df (subsets of the vertices of graph G) are denoted by capital letters.

LEMMA 2. Let the vertices s and t of graph G be adjacent and let f be a maximal flow
from s to t with a maximum power % = %(G), the orgraph D then contains a single vertex S(T)
for which od (S) = 0 [id (T) = O] and for IV(Df) I ~ 3 there exists a single vertex W ~ T such
that c(W, S) ~ %/2.

Proof. Let S(T) be a strong connectivity component of orgraph Gf containing the vertex
s(t) and let U be an arbitrary vertex of the orgraph Df (U z S, T); then, from the condition
of flow conservation we have

od (S) = id (T) = 0, id (S) = od (T) = ~, (1)

id (U) = od (U).

S ince any c u t of g r aph G has a power of a t l e a s t % and s i n c e f o r any edge (u, v) o f g r aph G
the o r g r a p h Gf has o n l y one a r c (u, v) o r (v , u) , we have id (U) + od (U) ~ %. Hence and
c o n s i d e r i n g (1) we have (u ~ S, T) :

id (U) = o d (V) ~ ~2. (2)

S ince the o r g r a p h Df has no l o o p s , by removing the v e r t e x S we o b t a i n an o r g r a p h which
a l s o has no l oops and c o n s e q u e n t l y c o n t a i n s a v e r t e x W w i t h z e r o o u t d e g r e e [W ~ T i f IV(Df) l
3] . Thus, in the o r g r a p h Df we have od (W) = c(W, S) . From t h i s and f rom (2) we ge t

od(W) = c(W, S) ~ ~/2. : (3)

The e x i s t e n c e of v e r t e x W i s thus p r o v e d . This v e r t e x i s the o n l y one t h a t s a t i s f i e s
p r o p e r t y (3) s i n c e t he o r g r a p h D i n c l u d e s the a r c (T, S) (i n v iew of t he a d j a c e n c y of v e r -
t i c e s s and t in g r aph G).

This completes the proof of Lemma 2.

2.4. Estimation of the Complexity of Algorithm AI

All graphs used in algorithm AI are specified by an adjacency list (see [6]). Step 0
has a complexity O(n, m) [I, 5, Sec. 2.5]. The total complexity of step | is O(n, m) [I, 5,
Sec. 2.5]. The complexity of a single application of step 2 is O(m) and of step 3, O(m)
since the orgraph D~ has no more than An arcs; the complexity of steps 4 and 5 is O(n) since
the structural graph has not more than 4n vertices as follows from the following lemma.

LEMMA 3. Let F(G) be a structural graph of the graph G constructed by the algorithm At;
then IV(r(G))i ~ 4n.

Proof. A minimal cut (X, X) of graph G is called parallel if for any other minimal cut
either X n Y= ~, or X]n Y= ~, or X N Y = ~, or X N Y = ~- The set of all parallel cuts
of graph G is denoted as P(G).

The truth of the lemma follows from the following inequalities:

I v (r (6))1 P (r (6)) + (4)
[P(F (O))] ~ 2 [P (G)]; (5)

IP(O)l~2n-- 3. (6)

I n e q u a l i t y (4) f o l l o w s f rom the f a c t t h a t p a r a l l e l c u t s o f a % p l a n t F(G) c o n s i s t e i t h e r
o f an edge o f m u l t i p l i c i t y X or of two a d j a c e n t edges of a c y c l e , i . e . , t h e number o f p a r a l l e l
c u t s I P (F (G)) I of a X p l a n t i s e q u a l to the number o f e d g e s .

Inequality (5) results from the fact that after edge contraction at step.5.4 to each
parallel % cut of the graph G i separating the vertices i and i + I in graph G I correspond not
more than two parallel cuts of the graph F(Gi).

159

Let us prove inequality (6). The proof is by induction on n. It is easy to verify that
(6) holds for n = 4. Let us assume that (6) is true for all graphs with fewer than n ver-
tices and show that it is also true for all graphs G having n vertices.

If for any parallel cut (X, X), IXI = I or IXI = I, then F(G) is a star with n + I ver-
tices or a cycle with n vertices, i.e., IP(G) I = n ~ 2n -- 3.

If for a certain parallel cut (X, X), IXI ~ 2 and IXI ~ 2, then contracting the set X
(set X) we get a graph G X (Gx, respectively). Since the cut (X, X) is parallel, any minimal
cut of the graph G is either a minimal cut of graph G X or a minimal cut of graph G~. Thus,
IP(G) I = IP(Gx) I + IP(G~)] - I. By assumption, we have IP(Gx) I ~ 21XI -- I, IP(G~)I ~ 21XI --
I. Consequently, IP(G) I ~ 21V(G) I -- 2.

This proves Lemma 3.

The complexity of algorithm AI is thus O(nm).

3. Al$orithm 2 for Finding All Minimal Cuts of Graph G

This algorithm specifies all minimal cuts with the aid of structural graph F(G) making
use of algorithm AI with somewhat modified steps I and 2.

It is assumed (as in algorithm At) that we already know a certain skeleton tree G$ of
graph G and that the numeration of the vertices of graph G is such that in the graph G~ the
vertex i is adjacent to vertex i + I (i = I, 2,...,n -- I).

3.1. Description of Algorithm A2

Stage 0. Preparation to Stage i.

The following is assumed for i = I, 2 ,n -- I:

I) the flow fi in graph G~ from vertex i to i + I is 0;
�9 ~

2) the orgraph G~ is equal to the graph G~;

3) the orgraph G~ is constructed from orgraph G~ by contracting edges not incident to i
or i + I.

Let k = I.

Stage I. Construction of structural graph F(Gk), the mapping ~k:V(Gh)-+V(F(G~)), and the
graph J(Gk).

F(Gk) is 9onstructed with the aid of algorithm AI by taking into account the flows fi
and orgraphs G~ and G~ already found.

The following transformations are carried out in the cycle from i to n -- I with a step I.

Step 1.1. Check if there is a path connecting the vertices i and i + I in graph G~ con-
sisting of one or two edges. If such a path is found, go to step 1.3.

Step 1.2~ Find a path connecting vertices i and i + I in orgraph G~. Add this path to
the flow fi~$etting a new flow fl (of power k + I). Construct a ne W orgraph G~ and from it,
an orgraph G~ contracting all edges not incident to i or i + I in G~. Next apply steps 2-4 of

AI and return to step 1.1 with the next value of i.

Step 1.3. Construct a new orgraph G~ (the path found does not contain more than two
edges). For this purpose carry out the following operations:

a) Convert the edges of the found path into arcs;

b) contract the remaining edges (these are the edges obtained at the preceding operation
of Stage 2, see below).

~i
In the.orgraph Gf contact the edges incident to vertices i and i + I, obtaining the or-
~i ~l �9 graph Df (Df w~ll no longer have edges). A~plying the algorithm described in [6], find the

strong connectlvlty components of orgraph D~. Obtain the orgraph D~ after contracting each

strong connectivity component into one vertex. Apply steps 3 and 4 of algorithm AI and re-
turn to step 1.1 with the next value of i.

After steps 1.1-1.3 have been carried out for every i (i = I, 2,...,n -- I), apply step 5
of algorithm At. The result will be the structural graph F(Gk) and mapping ~�9

160

Next construct the graph J(Gk) , letting V(J(Gk)) = V(F(Gk)) and assuming that two ver-
tices S and T of graph J(G k) are adjacent if there exists an edge of graph G that does not
belong to G k and connects the subsets ~Z[(S) and ~I(T) in graph G.

Stage 2. Construction of (k + 1)-connected subgraph Gk+ of graph G from k-connected
subgraph G k .

Step 2.1. Let H = Gk, J(H) = J(Gk), and F(H) = r(Gk).

Step 2.2. Find vertex U of degree k in the graph F(H). If no such graph exists [i.e.,
F(H) consists of a single vertex], assume Gk+ I = H, increment k by one, and go to Stage I.

Step 2.3. In graph J(H) find the edge (U, W). If no such edge exists, let %(G) = k and
go to Stage 3.

Step 2.4. Let H = H + (U, W). Construct the graphs F(G) and J(H), contracting the re-
spective subsets of vertices of the path connecting U and W in the k plant F(H). Let H =
and go to step 2.2.

Stage 3. Construction of structural graph F(G) from the available % plant F(H) of %-
connected subgraph H, where % = A(G).

To the % plant F(H) successively add the edges of graph G that do not belong to H and
connect different vertices of the % plant. The resulting A plant is the structural graph
(G) of the graph G.

This completes the description of algorithm A2.

3.2. Validation of Algorithm A2

It is easily seen that at each application of step 2.2 the graph F(H) is a structural
graph of the graph H and two vertices of graph J(H) are adjacent if and only if there is an
edge of graph G that does not belong to H and connects the corresponding subsets of vertices
of graph G.

The inequality %(H) > k (at step 2.2) will hold when the graph r(H) is contracted into
one vertex by adding edges at step 2.4.

The algorithm A2 arrives at stage 3 when a subset of vertices U of graph G has been
found such that all edges of the cut (U, U) belong to G. By construction, c(U, ~) = k in the
graph H, and H is a skeleton graph of G such that %(H) ~ k, so that %(G) = k.

3.3. Estimation of the Complexity of Algorithm A2

To demonstrate that the algorithm A2 has a complexity O(%n 2) we have first to prove
the following lemma.

LEMMA 4. The graph Gk has no more than kn edges.

Proof. The proof is by induction on k. The lemma is true for k = I, since GI is a tree.
Let us assume that G k has no more than kn edges and show that Gk+ I has no more than (k + 1)n
edges. For this it is sufficient to prove that for a given k the number of applications of
steps 2.2 through 2.4 is not more than n. In fact, by construction ~l(U)~=~, ~l(W)~=O.
Consequently, at step 2.4 they are contracted if only two nonempty subsets of vertices of
graph Gk, and since the graph G k has n vertices, there are not more than n such contractions.

This proves Lemma 4.

Now let us show that the total complexity of applications of Stage I is O(%n2).

Step 1.1 has a complexity O(n); since it is applied not more than An times its overall
complexity is O(%n2).

Step 1.2 has a complexity O(An) since the number of edges in graph G k is according to
Lemma 4 not more than An. The number of applications of step 1.2 is not greater than n -- 2
(see [I]). Thus, its overall complexity is O(%n2).

~ The complexity of step 1-3 is O(m i + n), where mi is the number of arcs in the orgraph
since the construction of D~ consists in contracting O(n) edges.[complexity O(n)] and in

finding the Strong connectivity components (complexity O(mi) , see [6]). Since each arc of
orgraph G~ belongs to a single path of flow fl and all flows fi (i = I, 2 ,n -- I) have no
more than n -- 2 paths of length ~3, all other paths have a length ~2 (see [I]), then

161

n

~ m i ~ (n - - 1) (a - - 2) + 2%n~3n ~.

Consequen t ly , the t o t a l complex i ty of a p p l i c a t i o n s of s t ep 1.3 f o r a g iven k is equal to
O (n 2) . The t o t a l complex i ty of a l l a p p l i c a t i o n s of s tep 3 of a l g o r i t h m A1 i s , acco rd ing to
(4) , O(~n2). The t o t a l complex i ty of a l l a p p l i c a t i o n s of s t eps 4 and 5 of A1 i s , in a c c o r -
dance wi th the r e s u l t s of Sec. 2 .4 , O(kn2).

Thus, a l l a p p l i c a t i o n s of Stage 1 have a complex i ty O(~nZ).

The complex i ty of Stage 2 f o r a g iven k i s O(nZ), s ince acco rd ing to Lemma 3 t h e graph G k
has no more than kn edges so t h a t a s i n g l e a p p l i c a t i o n of s t eps 2.2 th rough 2.4 has a com-
p l e x i t y O(n) .

The complex i ty of Stage 3 is O(n2).

Consequen t ly , the compl ex i t y of a l g o r i t h m A2 is O(~n2).

I �9

2.

3.
4.

5.

6.

LITERATURE CITED

V. D. Podderyugin, "An algorithm for finding the edge connectivity of graphs," Vopr.
Kibern., No. 2, 136 (1973).
E. A. Timoffev, "An algorithm for constructing minimax k-connected oriented graphs,"
Kibernetika, No. 2, 109 (1982).
L. R. Ford, Jr., and D. R. Fa• Flows in Networks, Princeton Univ. Press (1962).
E. A. Dinits, A. V. Karzanov, and M. V. Lomonosov, "On the structure of a system of mini-
mal edge cuts of a graph," in: Investigations in Discrete Optimization [in Russian],
Nauka, Moscow (1976), pp. 290-306.
G. M. Adel'son-Vel'skii, E. A. Dinits, and A. V. Karzanov, Flow Algorithms [in Russian],
Nauka, Moscow (1976).
A. Aho, J. Hopcroft, and J. Ulman, Design and Analysis of Computing Algorithms [Russian
translation], Mir, Moscow (1979).

THE EQUIVALENCE PROBLEM FOR REAL-TIME DETERMINISTIC PUSHDOWN AUTOMATA

V. Yu. Romanovskii UDC 51:621.391

The decidability of the algorithmic equivalence problem was proved independently in [I,
2] for deterministic automata with pushdown memory (DPDA) under two constraints: I) real-time
computability; 2) empty-stack computability. In this article, we relax the second constraint
and prove decidability of the equivalence problem for any tWO real-time DPDA. The general
equivalence problem still remains open.

The decision algorithm is based on the alternate stacking construction proposed by Valiant
[3]. We had to modify this model, which, although applicable directly to strict real-time
DPDA, failed us in this particular case. It follows from our results that alternate stacking
may diverge only for so-called "small configurations," i.e., configurations for which the
norm is not too large. The notion of configuration norm for a deterministic PD-automaton in-
troduced in this study characterizes the "distance" of the equivalence class of the given
configuration from the initial configuration. The norm has the following properties: All
equivalent configurations have the same norm (invariance) and there are infinitely many non-
equivalent configurations with the same norm (finiteness). For strict real-time DPDA, the
number of all configurations with a given norm is finite. Valiant's alternate stacking is
modified by adding a certain transformation of small configurations into equivalent finite-
length configurations. The properties of PD-automata are no longer sufficient for implement-
ing this transformation. We have to shift to the class of nested stack automata, for which
the emptiness problem is decidable [4]. Since the proof of existence of constants is inef-
fective, the question of complexity of this algorithm remains open.

Translated from Kibernetika, No. 2, pp. 13-23, March-April, 1986 Original article sub-
mitted October 15, 1984.

162 0011-4235/86/2202-0162512.50 O 1986 Plenum Publishing Corporation

