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Consider the following problem: In an n-vertex nonoriented graph G (possibly with mul- 
tiple edges), find all minimal (as to the number of edges) edge cuts. To solve this problem 
an algorithm is proposed with a complexity O(%n2), where % is the number of edges in a minimal 
edge cut of graph G. The order of growth of complexity with respect to n and % is lower than 
in former algorithms. For example, the algorithm proposed in [I] has a complexity O(nm), 
where m is the number of edges of graph G, while the complexity of the algorithm of [2] is 
0(%~n2). Note that while the complexity (as to n and %) grows in the same order as in the 
Ford--Fulkerstone algorithm [3], the given algorithm finds minimal edge cuts in the entire 
graph and not only between specified vertices as in the Ford--Fulkerstone algorithm. 

The algorithm constructs a structure graph F(G) (see [4]) from which any minimal edge 
cut of the graph G can be found in O(n) operations, as follows from the following properties 
of the graph F(G) (see [4]): 

I) Any minimal edge cut of the graph G is a minimal edge cut of the graph F(G) and can 
be found in O(n) operations; 

2) any two simple cycles of F(G) have not more than one common vertex and the number of 
edges of F(G) is O(n). 

Thus, of all presently known algorithms that find all minimal edge cuts of G, the pro- 
posed algorithm has the lowest complexity and gives all minimal edge cuts of a graph in a 
simple and compact form. 

I. Definitions and Notation 

Let V(H) be the set of vertices of graph H; (_X, Y), the set of edges of the graph con- 
necting two subsets of vertices X and Y. If Y = X, (X, X) is called a cut of the graph 
(henceforth, for the sake of brevity, an edge cut is Galled a cut). Further, c(X, Y) is the 
number of edges in the set (X, Y), and c(u, v) in particular denotes the multiplicity of edge 
(u, v). A cut consisting of k edges is called a k cut. The number ~(G)=minc{X,X-) is called 

x 

the edge connectivity of graph G. A graph G in which %(G) ~ k is called k-connected. 

A k plant is a connected graph whose any two simple cycles have not more than one common 
vertex; the multiplicity of an edge is k if the edge does not belong to a cycle or k/2 is the 
edge belongs to a cycle and k is even. If k is odd the k plant has no cycles, i.e., is a 
tree whose every edge has a multiplicity k. 

A st~ct~al g~aph of graph G is called a % plant F(G) [% = %(G)] such that there exists 
a mapping ~:V(G)-->V(P(G)) having the following properties: 

I) ~(u) = ~(~ if and only if the vertices u and v are not separated by even one % cut 
of the graph G; 

2) if (X, X) is a % cut of graph F(G), then (~-I(X), ~-i(~)) is a % cut of graph G and any 
% cut of G can be obtained in this way. 

Note that a given graph G can have several structural graphs F(G). F(G) then denotes 
any of these graphs. 

For example, the graph G shown in Fig. I has as structural graphs both the graph G it- 
self and the graph H, the mapping ~ in the latter case not being a mapping onto V(H) (since 
no vertex of the graph G turns into the vertex 0). 
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Let f be a flow in graph G from vertex s to t; Gf is then an oriented graph (orgraph) 
obtained from G by replacing each edge with two oppositely oriented arcs and removing the 
arcs saturated by the flow f [5]; id (v) [od (v)] is the indegree (outdegree) of vertex v in 
the orgraph. 

The vertices of the starting graph G are assumed to be numerated by the figures I, 2,..., 
n. If H is a certain subgraph of G, then H i is a graph obtained from H by contracting the set 
of vertices {I, 2,...,i} into one new vertex once again denoted by i. 

2. Algorithm AI for Constructing F(G) 

In this section the algorithm AI for constructing the structural graph F(G) is described, 
validated, and its complexity 0 (nm) is estimated. Since the algorithm AI is a component part 
of algorithm A2 whose complexity is O(Xn2), it is discussed in a separate section. 

To simplify the description of the algorithm, let us assume that there is a certain a 
priori known skeleton tree G1.of the graph G and that the numeration of the vertices of graph 
G is such that in the graph G~ the vertex i is adjacent to the vertex i + I (i = I, 2,..., 
n -- I). [Obviously, in a connected graph this can always be carried out in O(n 2) operations.] 

2.1. Description of Algorithm AI 

Step 0. Using the Podderyugin algorithm [I, 5] find the edge connectivity of the graph 
G, the number % = X(G). 

The following transformations are next carried out in the cycle from i to n -- I with a 
step I. 

Step I. Find a flow f of power % from vertex i to i + I in the graph G i. For this pur- 
pose first find all paths consisting of one or two edges connecting i and i + I and then com- 
plete them to a flow of power % using the Ford--Fulkerston algorithm [3]. 

Step 2. Construct the orgraph G~. Find its strong-connectivity components by the algo- 
rithm described in [6]. Construct the orgraph D~ contracting each strong-connectivity compo- 
nent into one vertex. 

Step 3. Numerate the vertices of orgraph D~�9 accordance, with the following rule. Let 
xl, x2,:..,Xp be the vertices of orgraph D~ and X~, X~,o..,X~, the corresponding subsets of 
graph GI; then: I) iEX~,iq- IEX~, 2) xj is a vertex different from Xp, from which into the set 
{xl, x2,...,xj-l} go at least %/2 arcs of the orgraph D~ (j = 2, 3,..~ -- I). 

�9 ~ ~ 

Step 4. Record X~, X~,...,X~. Construct the graph G i+I and turn to the next value of i. 

Step 5. In the cycle on i from n -- 2 to I and with a step --I construct a % plan t r(G i) 
from the % plant F(G i+I) and the collection of subsets of vertices of the graph Gz: XI, X~,..., 
X~. This construction takes place as follows: 

P 

1 ) l e t  V {F (G~)) = V (F (G~+L)) U U {x~} - ~ + ,  (i -~- 1}; 
i=! 

2) v e r t i c e s  S and T of  t he  graph  F(G~) a r e  assumed to  be a d j a c e n t  i f  and o n l y  i f  S and T 
are adjacent in F(G i+l) ~ X~ -- , or S = X , T = and [i k[ = I, or S=X~, TEv{r(~+I)), 

r being adjacent to ~i+l(i ,-hi) in r ( ~ + l )  and ~j(T)~X~ when ~ , ( T ) ~ = O ,  or  ~,.~,(T')=i=O 

when ~ l ( T ) - - - - O ,  where T ' = / = ~ + I ( i + I  ) i s  an a d j a c e n t  to  T v e r t e x  in  P(O t+I) v e r t e x  in  

which ~, (T') =f= ~; 

3) the mapping ~; is defined putting 

~7 ~ (s) = / ~  ' (s), s E v (r (o'+')); 
| x ~ \ ~ , + ,  (i + I), s = x~; 
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4) for each.vertex X~ (j = I, 2,...,p) of the ~ pSant F(G i) such that ~[I(X})=~, the 
1 degree Xj is 3, one of the edges incident to X$ has a multiplicity % and two others j ' 

the multiplicity %/2; the edge of multiplicity % is contracted into one vertex. 

This concludes the description of algorithm At. 

2.2. Example 

Figure 2 shows the graphs G, G 2, and F(G2). It is easily verified that X~ = {I}, X~ ={8}, 
I 4 X '  �9 X~ ={5}, X4 = { }, 5 ={3}, X~ = {2} . Figure 3a shows the graph F(G) before applying step 5.4 

and Fig. 3b, after contracting the edges in step 5.4. Note that the cut ({I, 6, 5}, {2, 3, 4}) 
in the structural graph F(G) is shown twice. 

2.3. Validation of Algorithm AI 

To demonstrate the validity of algorithm AI one must prove that all minimal cuts of graph 
G have been found and that the obtained % plant is a structural graph of the graph G. 

Steps I through 4 are applied n -- I times and at each application give all minimal cuts 
separating vertices i and i + I in the graph G i. This assertion follows from Lemmas I and 2. 
Since any % cut of graph G is a % cut separating vertices i and i + I in the graph G i for a 
certain i (see [I, 5, Sec. 2.5]), one can conclude that the algorithm finds all % cuts. To 
prove that the % plant obtained at step 5 is a structural graph of the graph G, it is suffi- 
cient to show that step 5 produces a structural graph F(G i) of the graph G I for any i. The 
last assertion is proved by simply testing the properties I) and 2) of the definition of a 
structural graph. 

Thus, to complete the demonstration of the algorithm validity it is necessary to prove 
two lemmas. 

LEMMA I. Let f be a flow of power k in graph G from vertex s to t; then for the arc 
(u, v) of orgraph Gf not to belong to a strong connectivity component of orgraph Gf it is 
necessary and sufficient that the edge (u, v) belongs to a k-cut separating the vertices s 
and t in graph G. 

Proof. Necessity. Let us assume the opposite: There exists an edge (u, v) of graph 
G which does not belong to even one k-cut separating the vertices s and t in graph G and such 
that the vertices u and v lie in different strong connectivity components of the graph Gf. 

To be definite, let us assume that f(u, v) > O, so that f(v, u) = 0. Consider a set S 
consisting of vertex u and all vertices of graph Gf accessible from u. We will show that the 
set S has the following properties: 

I) sES, since s is accessible from any vertex of Gf; 

2) I~S, since in Gf there are at least two strong connectivity components; 

3) c(S, S) > k, since the cut (S, ~) separates s and t [in view of properties I) and 2)] 
and contains an edge (u, v) not belonging to any k-cut separating s and t; 

4) for any edge (p, q) (p E S, qE 5) f(q, p) = O, since otherwise S would contain a vertex q 
and this contradicts the definition of set S. 

Properties 3 and 4 lead to a contradiction: notwithstanding the definition of S, there 
exists an arc (a,b) (aES, bES) such that f(a, b)<c(a, b), i.e., Gf is the arc (a, b). 
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Sufficiency. Let the edge (u, v) of graph G belong to the k-cut (S, S) that separates 
the vertices s and t (u, s6S, v, t6S). Since for any edge (p, q)(p6S, q6S)] (P, q)=c~, q) and 
f(q, p) = 0, the orgraph Gf includes no path from u to v, i.e., u and v lie in different 
strong connectivity components. 

This proves Lemma I. 

Before formulating the next lemma, let us denote by Df an orgraph obtained from Gf by 
contracting each strong connectivity component into a single vertex. The vertices of orgraph 
Df (subsets of the vertices of graph G) are denoted by capital letters. 

LEMMA 2. Let the vertices s and t of graph G be adjacent and let f be a maximal flow 
from s to t with a maximum power % = %(G), the orgraph D then contains a single vertex S(T) 
for which od (S) = 0 [id (T) = O] and for IV(Df) I ~ 3 there exists a single vertex W ~ T such 
that c(W, S) ~ %/2. 

Proof. Let S(T) be a strong connectivity component of orgraph Gf containing the vertex 
s(t) and let U be an arbitrary vertex of the orgraph Df (U z S, T); then, from the condition 
of flow conservation we have 

od (S) = id (T) = 0, id (S) = od (T) = ~, ( 1 ) 

id (U) = od (U). 

S ince  any c u t  of  g r aph  G has  a power of  a t  l e a s t  % and s i n c e  f o r  any edge (u,  v) o f  g r aph  G 
the  o r g r a p h  Gf has  o n l y  one a r c  (u,  v) o r  (v ,  u ) ,  we have id  (U) + od (U) ~ %. Hence and 
c o n s i d e r i n g  (1) we have (u ~ S, T) :  

id (U) = o d ( V ) ~  ~2. (2) 

S ince  the  o r g r a p h  Df has  no l o o p s ,  by removing  the  v e r t e x  S we o b t a i n  an o r g r a p h  which 
a l s o  has  no l oops  and c o n s e q u e n t l y  c o n t a i n s  a v e r t e x  W w i t h  z e r o  o u t d e g r e e  [W ~ T i f  IV(Df) l 
3 ] .  Thus,  in  the  o r g r a p h  Df we have od (W) = c(W, S) .  From t h i s  and f rom (2) we ge t  

od(W) = c(W, S ) ~  ~/2. : (3) 

The e x i s t e n c e  of  v e r t e x  W i s  thus  p r o v e d .  This  v e r t e x  i s  the  o n l y  one t h a t  s a t i s f i e s  
p r o p e r t y  (3) s i n c e  t he  o r g r a p h  D i n c l u d e s  the  a r c  (T, S) ( i n  v iew of  t he  a d j a c e n c y  of  v e r -  
t i c e s  s and t in  g r aph  G). 

This completes the proof of Lemma 2. 

2.4. Estimation of the Complexity of Algorithm AI 

All graphs used in algorithm AI are specified by an adjacency list (see [6]). Step 0 
has a complexity O(n, m) [I, 5, Sec. 2.5]. The total complexity of step | is O(n, m) [I, 5, 
Sec. 2.5]. The complexity of a single application of step 2 is O(m) and of step 3, O(m) 
since the orgraph D~ has no more than An arcs; the complexity of steps 4 and 5 is O(n) since 
the structural graph has not more than 4n vertices as follows from the following lemma. 

LEMMA 3. Let F(G) be a structural graph of the graph G constructed by the algorithm At; 
then IV(r(G))i ~ 4n. 

Proof. A minimal cut (X, X) of graph G is called parallel if for any other minimal cut 
either X n Y= ~, or X]n Y= ~, or X N Y = ~, or X N Y = ~- The set of all parallel cuts 
of graph G is denoted as P(G). 

The truth of the lemma follows from the following inequalities: 

I v (r (6))1 P (r (6)) + (4) 
[P(F (O))] ~ 2 [ P (G)]; (5) 

IP(O)l~2n-- 3. (6) 

I n e q u a l i t y  (4) f o l l o w s  f rom the  f a c t  t h a t  p a r a l l e l  c u t s  o f  a % p l a n t  F(G) c o n s i s t  e i t h e r  
o f  an edge o f  m u l t i p l i c i t y  X or  of  two a d j a c e n t  edges  of  a c y c l e ,  i . e . ,  t h e  number o f  p a r a l l e l  
c u t s  I P ( F ( G ) ) I  of  a X p l a n t  i s  e q u a l  to  the  number o f  e d g e s .  

Inequality (5) results from the fact that after edge contraction at step.5.4 to each 
parallel % cut of the graph G i separating the vertices i and i + I in graph G I correspond not 
more than two parallel cuts of the graph F(Gi). 
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Let us prove inequality (6). The proof is by induction on n. It is easy to verify that 
(6) holds for n = 4. Let us assume that (6) is true for all graphs with fewer than n ver- 
tices and show that it is also true for all graphs G having n vertices. 

If for any parallel cut (X, X), IXI = I or IXI = I, then F(G) is a star with n + I ver- 
tices or a cycle with n vertices, i.e., IP(G) I = n ~ 2n -- 3. 

If for a certain parallel cut (X, X), IXI ~ 2 and IXI ~ 2, then contracting the set X 
(set X) we get a graph G X (Gx, respectively). Since the cut (X, X) is parallel, any minimal 
cut of the graph G is either a minimal cut of graph G X or a minimal cut of graph G~. Thus, 
IP(G) I = IP(Gx) I + IP(G~)] - I. By assumption, we have IP(Gx) I ~ 21XI -- I, IP(G~)I ~ 21XI -- 
I. Consequently, IP(G) I ~ 21V(G) I -- 2. 

This proves Lemma 3. 

The complexity of algorithm AI is thus O(nm). 

3. Al$orithm 2 for Finding All Minimal Cuts of Graph G 

This algorithm specifies all minimal cuts with the aid of structural graph F(G) making 
use of algorithm AI with somewhat modified steps I and 2. 

It is assumed (as in algorithm At) that we already know a certain skeleton tree G$ of 
graph G and that the numeration of the vertices of graph G is such that in the graph G~ the 
vertex i is adjacent to vertex i + I (i = I, 2,...,n -- I). 

3.1. Description of Algorithm A2 

Stage 0. Preparation to Stage i. 

The following is assumed for i = I, 2 .... ,n -- I: 

I) the flow fi in graph G~ from vertex i to i + I is 0; 
�9 ~ 

2) the orgraph G~ is equal to the graph G~; 

3) the orgraph G~ is constructed from orgraph G~ by contracting edges not incident to i 
or i + I. 

Let k = I. 

Stage I. Construction of structural graph F(Gk), the mapping ~k:V(Gh)-+V(F(G~)), and the 
graph J(Gk). 

F(Gk) is 9onstructed with the aid of algorithm AI by taking into account the flows fi 
and orgraphs G~ and G~ already found. 

The following transformations are carried out in the cycle from i to n -- I with a step I. 

Step 1.1. Check if there is a path connecting the vertices i and i + I in graph G~ con- 
sisting of one or two edges. If such a path is found, go to step 1.3. 

Step 1.2~ Find a path connecting vertices i and i + I in orgraph G~. Add this path to 
the flow fi~$etting a new flow fl (of power k + I). Construct a ne W orgraph G~ and from it, 
an orgraph G~ contracting all edges not incident to i or i + I in G~. Next apply steps 2-4 of 

AI and return to step 1.1 with the next value of i. 

Step 1.3. Construct a new orgraph G~ (the path found does not contain more than two 
edges). For this purpose carry out the following operations: 

a) Convert the edges of the found path into arcs; 

b) contract the remaining edges (these are the edges obtained at the preceding operation 
of Stage 2, see below). 

~i 
In the.orgraph Gf contact the edges incident to vertices i and i + I, obtaining the or- 
~i ~l �9 graph Df (Df w~ll no longer have edges). A~plying the algorithm described in [6], find the 

strong connectlvlty components of orgraph D~. Obtain the orgraph D~ after contracting each 

strong connectivity component into one vertex. Apply steps 3 and 4 of algorithm AI and re- 
turn to step 1.1 with the next value of i. 

After steps 1.1-1.3 have been carried out for every i (i = I, 2,...,n -- I), apply step 5 
of algorithm At. The result will be the structural graph F(Gk) and mapping ~�9 
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Next construct the graph J(Gk) , letting V(J(Gk)) = V(F(Gk) ) and assuming that two ver- 
tices S and T of graph J(G k) are adjacent if there exists an edge of graph G that does not 
belong to G k and connects the subsets ~Z[(S) and ~I(T) in graph G. 

Stage 2. Construction of (k + 1)-connected subgraph Gk+ of graph G from k-connected 
subgraph G k . 

Step 2.1. Let H = Gk, J(H) = J(Gk), and F(H) = r(Gk). 

Step 2.2. Find vertex U of degree k in the graph F(H). If no such graph exists [i.e., 
F(H) consists of a single vertex], assume Gk+ I = H, increment k by one, and go to Stage I. 

Step 2.3. In graph J(H) find the edge (U, W). If no such edge exists, let %(G) = k and 
go to Stage 3. 

Step 2.4. Let H = H + (U, W). Construct the graphs F(G) and J(H), contracting the re- 
spective subsets of vertices of the path connecting U and W in the k plant F(H). Let H = 
and go to step 2.2. 

Stage 3. Construction of structural graph F(G) from the available % plant F(H) of %- 
connected subgraph H, where % = A(G). 

To the % plant F(H) successively add the edges of graph G that do not belong to H and 
connect different vertices of the % plant. The resulting A plant is the structural graph 
(G) of the graph G. 

This completes the description of algorithm A2. 

3.2. Validation of Algorithm A2 

It is easily seen that at each application of step 2.2 the graph F(H) is a structural 
graph of the graph H and two vertices of graph J(H) are adjacent if and only if there is an 
edge of graph G that does not belong to H and connects the corresponding subsets of vertices 
of graph G. 

The inequality %(H) > k (at step 2.2) will hold when the graph r(H) is contracted into 
one vertex by adding edges at step 2.4. 

The algorithm A2 arrives at stage 3 when a subset of vertices U of graph G has been 
found such that all edges of the cut (U, U) belong to G. By construction, c(U, ~) = k in the 
graph H, and H is a skeleton graph of G such that %(H) ~ k, so that %(G) = k. 

3.3. Estimation of the Complexity of Algorithm A2 

To demonstrate that the algorithm A2 has a complexity O(%n 2) we have first to prove 
the following lemma. 

LEMMA 4. The graph Gk has no more than kn edges. 

Proof. The proof is by induction on k. The lemma is true for k = I, since GI is a tree. 
Let us assume that G k has no more than kn edges and show that Gk+ I has no more than (k + 1)n 
edges. For this it is sufficient to prove that for a given k the number of applications of 
steps 2.2 through 2.4 is not more than n. In fact, by construction ~l(U)~=~, ~l(W)~=O. 
Consequently, at step 2.4 they are contracted if only two nonempty subsets of vertices of 
graph Gk, and since the graph G k has n vertices, there are not more than n such contractions. 

This proves Lemma 4. 

Now let us show that the total complexity of applications of Stage I is O(%n2). 

Step 1.1 has a complexity O(n); since it is applied not more than An times its overall 
complexity is O(%n2). 

Step 1.2 has a complexity O(An) since the number of edges in graph G k is according to 
Lemma 4 not more than An. The number of applications of step 1.2 is not greater than n -- 2 
(see [I]). Thus, its overall complexity is O(%n2). 

~ The complexity of step 1-3 is O(m i + n), where mi is the number of arcs in the orgraph 
since the construction of D~ consists in contracting O(n) edges.[complexity O(n)] and in 

finding the Strong connectivity components (complexity O(mi) , see [6]). Since each arc of 
orgraph G~ belongs to a single path of flow fl and all flows fi (i = I, 2 .... ,n -- I) have no 
more than n -- 2 paths of length ~3, all other paths have a length ~2 (see [I]), then 
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n 

~ m i ~ ( n - -  1 ) ( a - - 2 ) +  2%n~3n ~. 

Consequen t ly ,  the  t o t a l  complex i ty  of  a p p l i c a t i o n s  of s t ep  1.3 f o r  a g iven  k is  equal  to  
O ( n 2 ) .  The t o t a l  complex i ty  of  a l l  a p p l i c a t i o n s  of s tep  3 of  a l g o r i t h m  A1 i s ,  acco rd ing  to 
(4 ) ,  O(~n2).  The t o t a l  complex i ty  of a l l  a p p l i c a t i o n s  of s t eps  4 and 5 of  A1 i s ,  in a c c o r -  
dance wi th  the  r e s u l t s  of  Sec. 2 .4 ,  O(kn2).  

Thus, a l l  a p p l i c a t i o n s  of Stage 1 have a complex i ty  O(~nZ). 

The complex i ty  of Stage 2 f o r  a g iven  k i s  O(nZ), s ince  acco rd ing  to  Lemma 3 t h e  graph G k 
has no more than kn edges so t h a t  a s i n g l e  a p p l i c a t i o n  of  s t eps  2.2 th rough  2.4 has a com- 
p l e x i t y  O(n) .  

The complex i ty  of Stage 3 is  O(n2).  

Consequen t ly ,  the compl ex i t y  of  a l g o r i t h m  A2 is  O(~n2). 
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THE EQUIVALENCE PROBLEM FOR REAL-TIME DETERMINISTIC PUSHDOWN AUTOMATA 

V. Yu. Romanovskii UDC 51:621.391 

The decidability of the algorithmic equivalence problem was proved independently in [I, 
2] for deterministic automata with pushdown memory (DPDA) under two constraints: I) real-time 
computability; 2) empty-stack computability. In this article, we relax the second constraint 
and prove decidability of the equivalence problem for any tWO real-time DPDA. The general 
equivalence problem still remains open. 

The decision algorithm is based on the alternate stacking construction proposed by Valiant 
[3]. We had to modify this model, which, although applicable directly to strict real-time 
DPDA, failed us in this particular case. It follows from our results that alternate stacking 
may diverge only for so-called "small configurations," i.e., configurations for which the 
norm is not too large. The notion of configuration norm for a deterministic PD-automaton in- 
troduced in this study characterizes the "distance" of the equivalence class of the given 
configuration from the initial configuration. The norm has the following properties: All 
equivalent configurations have the same norm (invariance) and there are infinitely many non- 
equivalent configurations with the same norm (finiteness). For strict real-time DPDA, the 
number of all configurations with a given norm is finite. Valiant's alternate stacking is 
modified by adding a certain transformation of small configurations into equivalent finite- 
length configurations. The properties of PD-automata are no longer sufficient for implement- 
ing this transformation. We have to shift to the class of nested stack automata, for which 
the emptiness problem is decidable [4]. Since the proof of existence of constants is inef- 
fective, the question of complexity of this algorithm remains open. 

Translated from Kibernetika, No. 2, pp. 13-23, March-April, 1986 Original article sub- 
mitted October 15, 1984. 
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