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We shall  cons ider  two- level  dynamic s y s t e m s  with d i sc re t e  t ime  in which the upper  level  (the center) can 
use  var ious  modes of control .  One such mode that to a l a rge  extent uses  informat ion  about the actions of a 
l ower - l eve l  e lement  and the s t r a t egy  of punishment  has been  studied in [1]. But the imposs ib i l i ty  of s imu l -  
taneously  punishing all these  e l emen t s  which mus t  be ove rcome  by the center  with the aid of a bluff [2] cons t i -  
tutes a shor tcoming  when such a control  is used in s y s t e m s  with a r b i t r a r i l y  many e lements  at the lower  level .  

In this paper  we shall  cons ider  s o m e  other  modes  of control  by the cen te r  that  do not expl ici t ly  use  in- 
fo rmat ion  about the act ions of the l ower - l eve l  e lements  (subsystems}.  For  the s ta t ic  case ,  such a control  in 
two- leve l  s y s t e m s  has been studied, for  example ,  in [3]. 

1. H i e r a r c h i c a l  S y s t e m s  w i t h  O n e - S t e p  P l a n n i n g  in  

t h e  S u b s y s t e m s  

Let  us consider  the s imp le s t  case ,  when the Iower - l eve i  e lements  a r e  planning for  only one s tep ahead in 
t ime.  The planning per iod T is r e p r e s e n t e d  at the cen te r  by a fixed integer .  

The overa l l  dynamic equation of the s y s t e m  is 
X 1 

xt+, = ft  ( t, ut, vt . . . . .  vT), t = O, T - -  1, (1.1) 

where  x 0 is fixed, x.t is a phase  s ta te  vec tor  of d imens ion  k, u t is the control  p e r f o r m e d  by the cen te r  (a vector  
of d imens ion  m), v~ is the control  of the i - th  e lement  of the lower  level  (subsystem) (a vec tor  of d imens ion  ri) ,  
i =  1, n. 

The ( in tegra l - te rminal )  p e r f o r m a n c e  c r i t e r ion  of the center  is 
T--I 

l ~ {1 .2)  I (x, u, v) = ~ a (x,, ut,v t ..... vt ) + gr  (Xr), 
t=O 

x = (x0 . . . . .  x r ) ,  u = (uo . . . . .  u r _ 1 ) ,  

�9 . . ~ �9 �9 ~, U T _ _  1 ~ . .  �9 ~ U T ~  1 )  

whereas  the p e r f o r m a n c e  c r i t e r i a  of the s u b s y s t e m s  at the instant  t a r e  h~(xt, ut, v~), t = 0, T - 1, i = i :  n. 

The control  space  of the cen te r  at  the instant  t can depend on the running s ta te  x t of the sy s t em,  and it 
is specif ied by the mapping Ut(xt); the control  spaces  of the subsys t ems  at the instant  t depend on the s y s t e m  
s ta te  x t and the center  control  ut; they a r e  specif ied by the mappings V~(xt, ut). The cen te r  se lec t s  its control  
u t in the knowledge of the s ta te  xt ,  but without knowing the choice of the s u b s y s t e m s ;  the cen te r  communica tes  
its control  to the s u b s y s t e m s ,  and a f te r  that the s u b s y s t e m s  se lec t  the i r  controls  v~, with xt  and ut being known 
to them.  Moreover ,  the cen te r  mus t  ensure  the fulf i l lment of the phase  cons t ra in t s  

xt E X~, t--~- 1, T. (1.3) 

The fulf i l lment  of the conditions (1.3) is s t rongly  dependent on the controls  se lec ted  by the s u b s y s t e m s ,  
but the s u b s y s t e m s  a r e  not obliged to o b s e r v e  these  conditions. It is only a s sumed  that the behavior  of the sub-  
s y s t e m s  tends to op t imize  (maximize) the functions h~. The center  is an opt imiz ing-coord ina t ing  element;  i .e . ,  
it tends to opt imize  (maximize) the functional (1.2) under the joint cons t ra in t s  (1.3) and (1.1). Its poss ib i l i t ies  
to control  the s u b s y s t e m s  a r e  based on the dependence of the control spaces  and the p e r f o r m a n c e  c r i t e r i a  of the 
l a t t e r  on the control  r ea l i zed  by the center .  If we adopt the hypo.theses of behavior  and pos se s s ion  of knowl-  
edge s ta ted in [3], then at the instant  t the s u b s y s t e m  controls  v~ and the new s y s t e m  s ta te  xt+t will  be unde-  
t e rmi ned  uncontrol lable  fac tors  for  the cen t e r  with the following domains  of feas ib le  values:  

~2~(xt, ut) { v ~ l v t ~ . t ( x t ,  u~) , h~(x~,ut, v~)>h~(xt ,  ut, z ) vzEV~(xt ,  ut)}, i~---l ,n,  
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A t ( x v  u,) = { Xt+l  I X t+l  = [~ (3(. t,  u t, u~ . . . . .  o~) V~]~ ~ ~'~ (x  t, tat), i = l,---n}. 

We shal l  a s s u m e  that  the se ts  

U~ (x0 = ~utl ut 6 V~ (x0, At (x,, u0 ~_ X,+, }v ~ 

VX, 6 Xt; 

i .e . ,  for  any al lowed s ta te  of the s y s t e m  the re  ex is t s  a cen te r  control  that  c a r r i e s  the s y s t e m  into an allowed 
s ta te  for  any opt imal  cont ro ls  of the s u b s y s t e m s .  Let  us introduce a lso  the se t s  

B, (x.  uO = { (x,+~, v~ . . . . .  v~) l v~ E ~ (xt, u3, 

- -  n 
i = I, n, xt+z ---- f, (x .  u,, vl . . . . .  vt)}, 

n 

Qt (xt, ut) -~- 1-] ~ (xt, ut), l = O, T - -  1. 
i=1 

Then the p r o b l e m  of finding an opt imal  guaranteed  center  control  (of p r o g r a m  type) and the m a x i m u m  gua ran -  
teed r e s u l t  will take the f o r m  

~r-zI fx Io = [ sup inf jr=0 ~ , u, v). (1.4) 
u t ~ ( x  t ) ( ~+l.'gt)r 

R e m a r k  !- Ex is tence  of an opt imal  control  r equ i r e s  only that the s u p r e m a  in (1.4) could be reached.  A 
sufficient  condition of reachabi l i ty  of the inf ima and s u p r e m a  in (1.4) is continuity of the mappings U~(x t) and 
Bt(xt, u t) in Hausdor f f ' s  me t r i c  [4]. 

R e m a r k  2. The uncontrol lable  fac to r s  mus t  not n e c e s s a r i l y  take the i r  w o r s t  values;  t he re fo re  the actual 
r e su l t  for the cen te r  can be a lso  l a r g e r  than I 0. For  uti l izing the favorab le  cou r se  of a p r o c e s s ,  the cen te r  
mus t  use  syn the s i s - t ype  con t ro l s ,  but the m a x i m u m  guaranteed r e su l t  will  a lso  in this case  be equal to I0, and 
the p r o b l e m s  will be  s i m i l a r .  

R e m a r k  3. P r o b l e m s  of the f o r m  (1.4) have been in fact  cons idered  in [5], but the undetermined uncon- 
t ro l l ab le  f ac to r s  w e r e  not r e la ted  in that  pape r  to the act ions of  the subsys t ems .  In [5] we have a lso  proposed  
a method of solution of this  p rob l em  in the f o r m  of a combined method of penalty functions and dynamic p r o -  
g ramming;  t h e r e f o r e  we shall  not cons ider  it here.  

2.  H i e r a r c h i c a l  S y s t e m s  w i t h  a S i n g l e  C o n t r o l  A c t i o n  o f  

t h e  C e n t e r  d u r i n g  t h e  E n t i r e  P l a n n i n g  P e r i o d  

Let  us cons ider  the ca se  that  the planning schedules  of the s u b s y s t e m s  coincide with the planning schedule 
of the cen te r  which communica t e s  i ts  contro l  in advance for  the ent i re  planning period.  Hence if the dynamic 
equations and the functionals of each  s u b s y s t e m  do not depend on the contro ls  of the other  s u b s y s t e m s ,  then we 
have for  t hem the o rd ina ry  p rob l ems  of opt imal  control .  If  the s impl i fy ing a s sumpt ion  of independence is 
dropped,  then the behavior  of the s u b s y s t e m s  cannot be desc r ibed  as  s imply  tending to max imize  the i r  func-  
tional; we mus t  introduce other p r inc ip les  of behavior ,  for  example ,  to t ry  and r each  an equi l ibr ium situation. 
For  convenience we shall  confine ourse lves  below to the case  of one s u b s y s t e m  (n = 1). Let  the s y s t e m  dynam-  
ics be desc r ibed  by the equation 

xt+l ~--- [t (xt, ut, vt), Xo is fixed, = 0 , T -  1: (2.1) 

whe rea s  the p e r f o r m a n c e  c r i t e r i a  (the functionals) of the cen te r  and of the s u b s y s t e m  a re  

T--! 

I (x, u, ~ = X g* (xt, ut, vt) + gr (Xr), (2.2) 
t=0 

T--1 

J (X, U, V) = ~ ht tXt, Ut, Or) + h r (XT); (2.3) 
t--=0 

the center  mus t  ensu re  the fulf i l lment  of the phase  cons t ra in t s  (1.3), and the control  spaces  a re  Ut(xt), Vt(xt, 
ut), t = 0, T - 1. The s u b s y s t e m  dynamics  can be ass igned a lso  by a s e p a r a t e  equation, but this makes  no 
d i f ference  at  all ,  s ince  we can always go over  to a s ingle equation by appropr ia t e ly  increas ing  the d imension 
of the phase  space.  

For  reducing  the p r o b l e m  of de te rmina t ion  of opt imal  control  by the center  to s e v e r a l  p a r a m e t r i c  p rob-  
l ems  of s m a l l e r  d imension,  we shal l  use  a modified m a x i m u m  pr inc ip le  for  a s u b s y s t e m .  The modified 
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Hamiltonian function for a subsystem for fixed u t has the form 

5,(x-,,7,+,.,,,,,,,,.',+,,cl=('i,+,,r,(;,,u,.,,,)] +h,(x",,.,.~,>--CliT,+l--f,(;,,.,.o,~tt~, <2.4~ 

t ~ - O , T - - l ,  

where xt and i t  sat isfy the original and the conjugate equations. We shall assume that requirements  are  met 
such that the necessa ry  and sufficient conditions of optimality of control consis t  in a s t r i c t  global maximum 
of the modified Hamiltonian function being reached on it [5]. These requirements  a re  weaker  than the c o r r e -  
sponding requi rements  for the ordinary  Hamiltonian function, but if the lat ter  a re  satisfied,  then it is neces -  
s a ry  to use the ordinary  Hamiltonian function; i.e., set  the constant C = 0 in (2.4). 

Although we a re  now considering the case  in which the center  selects  its control  in advance for the en- 
t i re  period T, it is more  convenient to determine the optimal control  of the center  by a r ecur s ive  procedure.  

Suppose that the sys tem has reached the state XT_j; then the optimal center  control  ~T_l(XT_l) will be a 
solution of the problem 

0 r (xr_,) = max [gr (~r) + gr-,  (Xr-,' u r - , '  Or_,)] 
UT--I~.UT--I(XT~I } 

under the constraints  

Xr --~ [r--! (XT--I' UT--,' ~r--l) E XT, 

HT--I (3CT--I' XT' UT--I' ~JT--I' ~r '  C) = max H (XT_ P Xr, UT_ v VT_  P ~r,C), 

v Er -= Ohr (xr) 
OxT 

This is a static problem of h ie ra rch ica l  control  (true, though, a pa ramet r i c  problem, but with a uni- 
modal subsys tem c r i t e r ion  ~IT_I); it has been considered,  for example, in [3], and therefore  we shall assume 
that we can find its solution: 

% (x,_o, ;~_, (,,.-o,;.-, (x._,>, ~. (,,,_,i. 

Then we have to consider  an inverse  sequence of problems (t = T - 1, 1) 

under the constra ints  

,,,, (,,,_,)--- .~ax .[gt-, (x,_,, ,,,_,, ;',_,) + ~,,+, (;,>] 
Ut--l~:U t--IlXt--II 

"x, = 5-, Cx,_,; u,_, ,~,_,) ~ X,, 
�9 # . #  

7~,,_, (x,_,.';,, .,_,.';,_,, , , ,  c} = m a x  7~ ,_, (x,_,, ";,, .,_,, ,,,_,, , , ,o ,  
VtmlEFt--l(Xt--Dut--I) 

;, =~,+, (;,) of,(';,,.,(x,~, ,,,(,,,)) + oh,(,,',,';,(;,). ,,-, (,,5)) 
Oxt Oxt 

The maximum value of the functional of the center  is equal to ~l(x0), the optimal control  at the initial 
instant is u0(x0), and for finding the other optimal controls  of the center it is necessa ry  to t r a v e r s e  the chain 
in the forward di rect ion (t = 1, T - 1). 

3. H i e r a r c h i c a l  S y s t e m s  w i t h  S u c c e s s i v e  C o n t r o l  A c t i o n s  

o f  t h e  C e n t e r  

Now let us consider  the case  in which the center  communicates  its control to a subsys tem (n = 1) only at 
a given step. In this case the subsys tem does not know the future controls of the center ,  and for it this prob-  
lem cannot be reduced to an ordinary  optimal control  problem. Once again let us move f rom the end, by a s -  
suming that the subsys tem also knows the c r i t e r i a  and the principles of behavior of the center  Oust as the 
center  has knowledge about the subsystem}. If the sys tem reaches  the state XT_ 1, then the c r i t e r i a  of the 
center  and of the subsys tem will be 

F r (xr_l, Ur_p Vr_l) -= gr-1 (Xr-p Ur-l' Vr-0 "{- gr fir-, (Xr-l, ur-,,  Vr--l)), 

G r (Xr_l, Ur_p VT_1) ~ hr--1 (XT--p UT--P vr--l) -[- hr (~r-1 (XT--P Ur--P Or--l)), 
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and the maximal guaranteed resul ts  of the center  and of the subsys tem under our assumptions will be (respec- 
tively) 

~r  (XT--~) ~ max rain F r (Xr_ v ur_ ~, vr_~), (3.1) 

where  

where  

f~r-i (xr-P ur-l) "~- {Vr-i I Vr-tEVr_~{X.r_l,Ur_l), 

O r (xr_ I, ur_ 1, Vr_ 1) ~ G r (xr_ I, at_ 1, o}) Vr ~ VT_ 1 (xr_ t , Ur_l)}; 

U~_t (xr_l) = {ur--t [ Ur_l E UT_1 (xr_i), fr--l (Xr--1, Ur-l, Vr-i)E Xr Vr)r-t E P--t-1 (XT--P Ur--l)}; 

~ r  (Xr--1) = rain max O r (Xr_1, ur_ l, vr_~), 
UT_I~ET_I(XT_ 1) V T_I EVT_I(XT~I'UT~ I) 

(3.2) 

(3.3) 

Er-l (Xr-1) = {Ur-t lur_l E U~ (xr_i), 

rain F r (Xr_ P uz_ I, vr_l) > rnin Fr (Xr-1, Y, vr-1) Vg E U~ (xr_~)}. (3.4) 
OT_IEQT--I(XT--! ,uT--1) V T~! EgT_I(XT~ l *UT~ I) 

After that we find the c r i t e r ia  of the center and of the subsys tem 

Fr- i  (Xr-~, ur-2, ~r-2) ----- Zr-2 (xr-2, Ur-~, %-2) + ~ r  fir-2 (xr-2, ur-2, vr-2)), 

Or-1 (xr-2' Ur-2' Vr-~) -~" hr-2 (Xr-2' Ur-2' Vr--") q- ~ r  (/r-2 (Xr-2, Ur-2, Vr-~)), 

and solve for them problems of the form (3.1)-(3.4), and obtain ~T_I(XT_2), ~,T_I(XT_2), etc. In final form, 
the maximal  guaranteed resul ts  of the center  and of the subsystem will be ~l(x0) and ~I,l(x0), and for finding 
the optimal guaranteed s t ra tegies  it is necessary  to t r ave r se  the chain in the forward direction. If the center 
and the subsys tem do not select  controls f rom the sets ~2 and E that are  the wors t  for the other side (here, 
for example, the "benevolence" principle would be appropriate [3]), then their  resul ts  could be even larger  
(see Remark  2 in Sec. 1). 

Remark.  In the general  case  it is impossible to say which type of control performed by the center  (i.e., 
single or successive) is bet ter  [it could be that ~l(x0) > ~ ( x  0) and ffl(x0) > ~l(x0)]. But if the optima1 controls 
of the center  and of the subsys tem are  unique, then these types will be equivalent [~ l(x0) = ~ (x0) ] . 

The solving of all these problems is based on a combination of the standard procedure of dynamic pro-  
gramming and of special methods eonsidered in [2-4]. 
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