DYNAMIC SYSTEMS WITH HIERARCHICAL CONTROL STRUCTURE
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We shall consider two-level dynamic systems with discrete time in which the upper level (the center) can
use various modes of control, One such mode that to a large extent uses information about the actions of a
lower-level element and the strategy of punishment has been studied in {1}, But the impossibility of simul-
taneously punishing all these elements which must be overcome by the center with the aid of a bluff [2] consti-
tutes a shortcoming when such a control is used in systems with arbitrarily many elements at the lower level.

In this paper we shall consider some other modes of control by the center that do not explicitly use in-
formation about the actions of the lower-level elements (subsystems). For the static case, such a control in
two-level systems has been studied, for example, in [3].

1, Hierarchical Systems with One-Step Planning in

the Subsystems

Let us consider the simplest case, when the lower-level elements are planning for only one step ahead in
time. The planning period T is represented at the center by a fixed integer.
The overall dynamic equation of the system is
X1 =f4 (Xps Ups Uy v 0y 0f), =0, T — 1, 1.1
where x; is fixed, x¢ is a phase state vector of dimension k, ut is the control performed by the center (a vector

of dimension m), Vf; is the control of the i-th element of the lower level (subsystem) (a vector of dimension ry),
i=1,n,

The (integral-terminal} performance criterion of the center is
Tl
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whereas the performance criteria of the subsystems at the instant t are h%(xt, Uy, v%), t=0,T—1,i=1, n

The control space of the center at the instant t can depend on the running state x¢ of the system, and it
is specified by the mapping Ut(x¢); the control spaces of the subsystems at the instant t depend on the system
state x¢ and the center control ug; they are specified by the mappings Vé(xt, ug). The center selects its control
u; in the knowledge of the state x¢, but without knowing the choice of the subsystems:; the center communicates
its control to the subsystems, and after that the subsystems select their controls v§, with x¢ and ut being known
to them. Moreover, the center must ensure the fulfillment of the phase constraints

5eX, t=TT. 1.3

The fulfillment of the conditions (1.3) is strongly dependent on the controls selected by the subsystems,
but the subsystems are not obliged to observe these conditions. It is only assumed that the behavior of the sub-
systems tends to optimize (maximize) the functions h% The center is an optimizing-coordinating element; i.e.,
it tends to optimize (maximize) the functional (1.2) under the joint constraints (1.3) and (1.1). Its possibilities
to control the subsystems are based on the dependence of the control spaces and the performance criteria of the
latter on the control realized by the center. If we adopt the hypotheses of behavior and possession of knowl-
edge stated in [3], then at the instant t the subsystem controls v% and the new system state xt+ will be unde-
termined uncontrollable factors for the center with the following domains of feasible values:

O (0 1) = {0 |0 € VE (g 1), B O ttn O) o B (2 0 2)  y2E ViR )}, i=T1,m,
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At (xt, ui) = {xt-{-l Ixt+1 =]ct (xt’ Uy Utly . svtn) va € Qi (xt’ ut)v l=m}

We shall assume that the sets
Uf (x)) =t | s €Uy )y Ay ) © Xer1} 72 O
vx € Xy

i.e., for any allowed state of the system there exists a center control that carries the system into an allowed
state for any optimal controls of the subsystems. Let us introduce also the sets

Bt (xts ut)= {(xt_(..l’ U}‘, ey vf) IU;EQ§ (xt’ ut)’
. —-— 1
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n D
Qt (xty ut)=nQi!(xtv ut), t==01 T‘—" l-
i=]
Then the problem of finding an optimal guaranteed center control (of program type) and the maximum guaran-
teed result will take the form

I=[ sup inf =iz, ,0). 1.4
#,€0%s,) € £ 1.99)€Bixe 2y
Remark 1. Existence of an optimal control requires only that the suprema in (1.4) could be reached. A
sufficient condition of reachability of the infima and suprema in (1.4) is continuity of the mappings Ug(xt) and
Bi(xt, uy) in Hausdorff's metric [4].

Remark 2. The uncontrollable factors must not necessarily take their worst values; therefore the actual
result for the center can be also larger than I;,. For utilizing the favorable course of a process, the center
must use synthesis-type controls, but the maximum guaranteed result will also in this case be equal to I, and
the problems will be similar.

Remark 3. Problems of the form (1.4) have been in fact considered in [5], but the undetermined uncon-
trollable factors were not related in that paper to the actions of the subsystems. In [5] we have also proposed
a method of solution of this problem in the form of a combined method of penalty functions and dynamic pro-
gramming; therefore we shall not consider it here.

2. Hierarchical Systems with a Single Control Action of

the Center during the Entire Planning Period

Let us consider the case that the planning schedules of the subsystems coincide with the planning schedule
of the center which communicates its control in advance for the entire planning period. Hence if the dynamic
equations and the functionals of each subsystem do not depend on the controls of the other subsystems, then we
have for them the ordinary problems of optimal eontrol. If the simplifying assumption of independence is
dropped, then the behavior of the subsystems cannot be described as simply tending to maximize their func-
tional; we must introduce other principles of behavior, for example, to try and reach an equilibrium situation.
For convenience we shall confine ourselves below to the case of one subsystem (n = 1). Let the system dynam-
ics be described by the equation

Xepr==f (X us, 0y), % is fixed, =0T —1, @.1)
whereas the performance criteria (the fﬁnctionals) of the center and of the subsystem are

T—1

I u,vy= 2 g (X 1ty v) 4 gy (3 2.2)
f=0
— 71

T (i, 0) = 3 e (s s 09) - oy ()5 @.3)
=0

the center must ensure the fulfillment of the phase constraints (1.3), and the control spaces are Uilxt), Vi(xt,
up), t =0, T— 1. The subsystem dynamics can be assigned also by a separate equation, but this makes no
difference at all, since we can always go over to a single equation by appropriately increasing the dimension
of the phase space.

For reducing the problem of determination of optimal conirol by the center to several parametric prob-
lems of smaller dimension, we shall use a modified maximum principle for a subsystem. The modified
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Hamiltonian function for a subsystem for fixed ut has the form

Ht (xg x 10 Uy Uy ‘PH_]’ ) = [wt+l’ ft (xt’ Uty vt)] + ht (xtv Uy Ut) —C “ Xtp1 — ft (;t’ Uyy vt) [lz, (2_4}
t=0,T—1, ‘

where §t and zit satisfy the original and the conjugate equations. We shall assume that requirements are met
such that the necessary and sufficient conditions of optimality of control consist in a strict global maximum
of the modified Hamiltonian function being reached on it [5]. These requirements are weaker than the corre-
sponding requirements for the ordinary Hamiltonian function, but if the latter are satisfied, then it is neces-
sary to use the ordinary Hamiltonian function; i.e., set the constant C = 0 in (2.4).

Although we are now considering the case in which the center selects its control in advance for the en-
tire period T, it is more convenient to determine the optimal control of the center by a recursive procedure.

Suppose that the system has reached the state x-y; then the optimal center control up_,&p_,) will be a
solution of the problem

Q. (x,_)=  max lgr ) + gry Gppp tiz_pp 071
ur—1€Ur_xro
under the constraints
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This is a static problem of hierarchical control (true, though, a parametric problem, but with a uni-

modal subsystem criterion fIT_l); it has been considered, for example, in [3], and therefore we shall assume
that we can find its solution:

O (p_y)s gy Fp_y)s 0y Er_y)s Pr (xT—l)'
Then we have to consider an inverse sequence of problems (¢t = T—1,1)
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The maximum value of the functional of the center is equal to &,(x;), the optimal control at the initial
instant is uo(xo), and for finding the other optimal controls of the center it is necessary to traverse the chain
in the forward direction t =1, T— 1).

3. Hierarchical Systems with Successive Control Actions

of the Center

Now let us consider the case in which the center communicates its control to a subsystem (n = 1) only at
a given step. In this case the subsystem does not know the future controls of the center, and for it this prob-
lem cannot be reduced to an ordinary optimal control problem. Once again let us move from the end, by as-
suming that the subsystem also knows the criteria and the principles of behavior of the center (just as the
center has knowledge about the subsystem). If the system reaches the state xq_,, then the criteria of the
center and of the subsystem will be
Fp(Sg_ytp_p» Op_) = &ry Gp_p br_107—) +&r (Fry Gp_y, Ur_y U7

Gp(tp_ptip_ppUp_y) =Ry Kp_p Uy 12 07-y) +h (Fr_y Gep_pptp_ys vT_l))
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and the maximal guaranteed results of the center and of the subsystem under our assumptions will be (respec-
tively)

~
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After that we find the criferia of the center and of the subsystem
FroyFr gty U o) =8r_p (Xp_p iy 507 ) +@p(Fr_y (¥p_pr thr_5 07
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and solve for them problems of the form (3.1)-(3.4), and obtain &, &T- 2 \IIT_I(XT_Z), ete. In final form,
the maximal guaranteed results of the center and of the subsystem will be $,(x,) and ¥,(x,), and for finding
the optimal guaranteed strategies it is necessary to traverse the chain in the forward direction. If the center
and the subsystem do not select controls from the sets @ and E that are the worst for the other side (here,
for example, the "benevolence" principle would be appropriate [3]), then their results could be even larger

(see Remark 2 in Sec. 1).

Remark. Inthe general case it is impossible to say which type of control performed by the center (i.e.,
single or successive) is better [it could be that $;{xy > &,(x,) and ¢,y > &,&,)]1. But if the optimal controls
of the center and of the subsystem are unique, then these types will be equivalent {3y = ®,&)].

The solving of all these problems is based on a combination of the standard procedure of dynamic pro-
gramming and of special methods considered in [2-4].
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