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Solitary waves in a thin layer of viscous liquid which is running down a vertical 
surface under the action of gravity are investigated. The existence of such waves 
was demonstrated in the experiments of [i, 2]. The difficulties that must be 
faced in a theoretical computation were also noted in these studies. Below a solu- 
tion of the problem of stationary waves is obtained by the method of expansion in 
the small parameter in two regions with subsequent matching and also by a numeri- 
cal integration method. It is shown that in each case a solution of solitary wave 
type exists along with the single-parameter family of periodic solutions (parame- 
ter -- the wave number ~). On decreasing the wave number, the periodic waves go 
over into a succession of solitary waves. 

As the basis of the investigation we take the equation for the thickness of the layer 
h(~:), which is obtained by integrating the basic equations of motion of a viscous liquid 
transverse to the layer. In the integration it is assumed that the boundary-layer approxima- 
tion can be used and a parabolic profile of the longitudinal velocity is taken. In the co- 
ordinate system attached to the wave this equation has the following form: 
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Here c is the wave velocity; Uo and ao are the characteristic values of the velocity 
and the thickness of the layer. In the case of a solitary wave Uo and ao denote the mean 
values of the velocity and thickness of the unperturbed layer. 

The nonlinear periodic solutions of Eq. (i) were investigated in [3]. The method of 
Fourier series expansion was used and explicit expressions were obtained for the waveform, 
the phase velocity, and the layer thickness. For a fixed number of terms considered in this 
solution, the accuracy decreases with the decreasing wave number ~ due to the fact that for 
small values of ~ the wave profile is very different from a harmonic wave. As an example, 
some results of direct numerical integration of Eq. (I) in the case of periodic waves in a 
layer of water are shown in Fig. i for Re = 3aoUov -I = 24.41 and ~ = 0.107 (curve I) and 

= 0.051 (curve 3). The integration was done over a wavelength ~io ~ ~ ~ ~Io + 2~ -~ 
The initial point ~1owas chosen at the crest of the wave h'(~1o) = 0; for given values of Re and 
~, the values of c, ao, and the initial data h(~1o), h"(~o) were chosen in such a way that 
for ~ = ~o + 2~ -~ the periodicity condition is satisfied. For the values of a lying close 
to the neutral stability curve in the Re, ~ plane the wave profiles are almost sinusoidal. 
The effect of the nonlinear terms in Eq. (i) increases with the decrease of a, and the pro- 
files become noticeably deformed, acquiring the form of solitary waves. 

The computations were carried out with a small step along parameter a. For obtaining 
the wave for ~: = ~ + As the characteristics of the wave solution corresponding to ~ were 
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used as the initial conditions. For a given value of Re such computations can be carried 

out only up to a certain finite value ak(Re). For ~ < ak the iteration process of selecting 
the initial data at the point ~o begins to diverge. Thus, although in these computations 
the tendency for the transition of the periodic waves into solitary waves is detected with 

decrease of a, a special method of solution is needed for determining the solitary waves. 

We assume that there is a solitary wave such that for ~ -- $~o § • ~, h § i, where ~o 
is some characteristic point on the wave. Let us introduce the change of variable $ = 
Re~/gY-:/a(~ -- ~:o); then Eq. (i) becomes 

h3h"+6[o)-z~(hZ--l) ]h'+h~-i-z(h-t)=0 
5=45-'Re'~.~f -'/~, o:,=5z~-i2z+6, ~=~p-~v-'/~g-','~ ( 2 )  

We investigate the asymptotic behavior of the small deviation from h = 1 for ~ + • =. 

We put h -- 1 = e exp ~. Linearizing Eq. (2) with respect to ~, for o we obtain the follow- 
ing equation: 

0 % 6 ~ o + 3 - z = 0  (3) 

For z < 3, Eq. (3) has one real root ~ < 0 and two complex-conjugate roots with posi- 
tive real part m • iZ, m = --~/2~. Accordingly, we can construct two particular solutions 
of the linearized equation (2): 

~=e~ exp ~ ,  ~=s2 exp m~ cos (b+l~) (4) 

with arbitrary constants e~, ~=, and b. The first of these solutions -- ~(~) -- decreases to 

zero as ~ § =; the second -- ~(~) -- decreases to zero as ~ +-r In the solitary wave there 
must be a continuous transition from ~(~) to ~(~). This transition, if at all possible, 
must occur on account of the nonlinear terms of Eq. (2). 

For continuing the solutions of (4) into the nonlinear region we use the method of ex- 
pansion in the small parameter. For T we write 

~ = s ~ + e ~ + e , ~ + . . .  (5) 
Substituting (5) into Eq. (2) and equating the coefficients, we obtain 

r  (3-z)  r (6) 

where the right-hand side F k is expressed in terms of functions ~m with smaller numbers and 
their derivatives. Putting p = ~z = and ~k = ck exp k~, we obtain 

r  (k '~+k~+3-z)  -'Y~ (k=2, 3 . . . .  ) 
F~=2p~--3-3~ ~ (7) 
F~= (6p~--6--27~ ~) O~+p~-- l -3~ ~ 
F , =  (12p~-6--84~ ~ ) ~ -  (4p~-3 -30~  ~) r  (3+24~ ~ ) r  ~ 

We can take ~: = 1 without any loss of generality, since this can always be achieved 
by a choice of e~. The decrease of s~, in turn, is equivalent to displacing the origin for 
in exp ~ to the right. 

For ~ we write the expansion 

r 1 6 2 1 6 2 1 6 2  . .  �9 (8) 
We introduce the notation ~ = b + ~; then the coefficients ~k in the expansion of ~ in 

powers of e2 must be of the form 

$i=exp m~ cos r r 2m~ ($~0+~:, cos 2~§ ~in 2~) (9) 
r 3m~ ($3~ cos ~ ~2 sm ~+~1 cos 3~+~2 sin 3r 

We s h a l l  r e s t r i c t  t h e  c o m p u t a t i o n  to  t h r e e  terms of  t h e  expans ion  (8) .  S u b s t i t u t i n g  
(8) i n t o  (2) w i t h  (9) t a k e n  i n t o  c o n s i d e r a t i o n ,  c o l l e c t i n g  t o g e t h e r  the  terms w i t h  equa l  
powers of e and then the terms with equal harmonics, and equating them to zero, we obtain 
the equations for ~ki" In particular, for ~2o we have 

(8m:~+ 26 o:, m -k3- z) ~'~.o =--t/~. [ 3 -  2prn +3m ( rn-~- 3Y) ] (i0) 
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For other coefficients we obtain the pairwise system of equations 

(k=2, 3 . . . .  ) 

a:~=8m (m2-3/:) +2&o m+3-z, a:2=8l (3m-'-/:) +25o~/ 
a~, =9m (3m~-/-') +36o~m+3-z, ~ :=  ( 27m~-F -) l+6o~l 
a~,=27m ( rn'~-3F -) +36oJ m+3-z, ~=27 / (3  m ' -  F') +36o)/ 

(ll) 

(12) 

The relations bk~ =--ak2 and bk2 = ak~ are satisfied for all k and i. For the right- 
hand side Fki we get 

F:,='/.,_[3--2pm+3m(m=-3l 2) ], F~.2='/:[2pl+31(F--3m 2) ] 
F~, =V~+% (rn2-312-V~p) m+ [9m (3m~-t -~) -6pro+6] ~':o 

F3~_='/~+V~m(m~-31 ~-) -'/~prn+[2V:(rn:-31:)m-3pm+3]$~, -[~/2(l:-3m:)+3p]l~'~: 
F,, =VJ( l : -3m '- ) +'/~pl+ [3 (F--3m 2) +2p]/$2o + [2'/2 (/2-3m2) +p] l$2~+ [~'V~m (m:-3/~ ) -3pro+3] q'2: 

F~=Vj  (s 3m-') +'/~pl+ [~'V2 (/=-3m;) +3p ]/q':~ + [~-V2m(m~-3F -) -3pm+3] ~'_,_~ 

(13) 

We now attempt to join solutions (5) and (8) at the point $ = 0. At this point the 
following conditions must be satisfied: 

~=~, ~'=r ~"=~" (~=0) (14) 

In order to satisfy these conditions, the three arbitrary constants z, b, and e2 must 
be suitably chosen. As regards el, it can be chosen with a certain degree of arbitrariness, 
since the choice of the point of joining is to some extent arbitrary. Changing el we will 
thereby change the value of q(0) and, hence, the position of the point of joining in rela- 
tion to the wave front. In view of the fact that only a limited number of terms are consid- 
ered in expansions (5) and (8), this arbitrariness is actually small and the choice of a 
suitable joining point becomes important. Practical computations show that it is possible 
to accomplish such joining and the existence of the solitary wave is thus confirmed. 

Let us consider a specific example. There is a layer of water for which Re = 24.41, 
y = 2850, and 6 = 0.08. We take r =-~.175; then we find that for z = 2.45, b = 4.71, r = 
0.6, at the point ~ = 0 we obtain 

~(0) =-0.132, ~'(0) =0.056, ~" (0)=-0.010 
,(0)  =-0.134. ~'(0) =0.054, r (0) =-0.021 

The joining conditions (14) are satisfied quite accurately. The wave profile computed 
from formulas (5)-(13) is quite close to that obtained from the numerical solution. 

The direct numerical solution of Eq. (2) gives another method of finding the solitary 
wave, which permits one to bypass the unwieldy procedure of matching the parameters during 
the joining of the solutions. For a given flow rate, solution (5) depends only on parameter 
z. Specifying z, ~(0), ~'(0), and ~"(0) can be found from (5), and these values can be 
used as the initial data for numerical integration of Eq. (2) for negative values of ~. The 
value of z should be chosen in such a way that as ~ § the solution h(~) tends to unity. 
The computation reduces to repeated numerical solution of the Cauchy problem from the point 

= 0 with the initial data corresponding to different z, 

Curve 2 in Fig. 1 shows the solitary wave obtained from the numerical solution corre- 
sponding to the value z = 2.335, and it is not very different from the approximate value z = 
2.45 obtained by the method of joining the expansions. It is also evident that the periodic 
wave, which is almost harmonic for a = 0.107, goes over into the solitary wave even for a = 
0.051. 

The solitary waves for a layer of water with Re = 15, 35, and 55 (curves i, 2, and 3) 
are shown in Fig. 2. The corresponding values of z are 2.6075, 2.1386, and 1.8926. 
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FORM OF A FREE SURFACE DURING STEADY FLOW OF A CAPILLARY FLUID 

IN A RECTANGULAR CHANNEL 

V. S. Temkina UDC 532.68 

The two-dimensional problem of the form of a free surface of an ideal incompressible 
fluid during steady flow from a rectangular channel through a thin slot with simul- 
taneous uniform delivery of fluid through the side walls is examined. Forces of 
gravity and surface tension are taken into account. The nonlinear problem of the 
simultaneous determination of the free surface and velocity field of the fluid is 
solved by the iteration method. Convergence of the iterations to the solution of 
the problem for small values of the parameters is investigated. The solution of 
the linearized problem is obtained in a closed form for a small depth of the dis- 
charge and small width of the channel, which is compared with the solution of the 
problem in a complete formulation. Graphs of the free surface of the fluid for 
different values of the parameters, obtained as a result of numerical solution of 
the nonlinear problem, are presented. 

i. Statement of the Problem. Iteration Method 

A discharge of thickness ~ is located at point (0, 0) of the plane region of flow 
(Fig. i). The free surface S of the fluid, described by the function y = ! + f(x), and the 
velocity potential ~ satisfy the following system of equations and boundary conditions [I~ 2] 
written in a dimensionless form: 
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