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Covariances between traits can be partitioned into additive and dominance 
genetic components and between- and within-[amily environmental 
components, using a method analogous to that used in the analysis of single 
traits. The problem arises as to whether all additive genetic components 
simply reflect a single additive component, in the sense that, given an ap- 
propriate rescaling of the breeding values, a single additive genetic 
component would adequately describe the additive genetic variation. The 
statistical procedure for testing this hypothesis is discussed in detail. 
Similar considerations apply to the dominance variation. The approach is 
applied to twin data given by Loehlin and Vandenberg (1968) on covaria- 
tion between five oJ Thurstone's Primary Mental abilities. Although the 
data do not permit a reliable separation oJ additive and dominance 
components, it is shown that a single genetic component will account for al- 
most all the genetic variation and. covariation. Unless there is marked 
linkage disequilibrium, this implies that most of the genetic variation for 
the five traits can be attributed to the pleiotropic action of genes at a com- 
mon set oJ loci. 
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I N T R O D U C T I O N  

During the last few years ,  there  have been several  a t t emp t s  to provide  
mul t ivar ia te  extensions of genetic analyses  in o rder  to e lucidate  the s truc-  
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flare of genetic and environmental covariation for multiple mcasurcnlcii[s 
(V:mdcnbcrg, [905; Lochlin, 1965; Loehlin and ~,andcnbcrg, 196~; Rou- 
dabush, 1968; Eaves. 1972a, 1973a; Eaves al~d Brumpton. 1072: Gale and 
Eaves, 1972). While these authors have partitioned covariation into genetic 
and environmental components, they have not attempted to resolve the 
genetic components any further, for example, into additive and dominance 
components. These authors have shown that it will often be necessary to 
analyze components of mean squares in order to elucidate the genetic 
system, In such cases, standard multivariate procedures, although some- 
times helpful, are not really appropriate for detailed genetic analysis of 
natural populations. 

The biometricai approach, as used in the analysis of individual 
characters (e.g., Mather and Jinks, 1971), has established a number of prin- 
ciples, which are equally relevant in the multivariate situation. First, raw 
components estimated from the analysis of variance do not in general have 
a simple genetic meaning. For example, the genetic component of variation 
~ithin pairs of dizygotic twins represents both additive and nonadditive 
variation. It is essential, therefore, to specify the expectations of the ~ 
components in terms of appropriate genetic parameters, which may then be 
estimated. Second, since such estimates are correct only if the expectations 
of components are correctly represented, it is essential to test the validity of 
the assumptions under which estimates have been made. 

In this paper, we shall suggest an approach to the analysis of genetic 
covariation which takes account of the considerations just mentioned. Our 
analysis will be in two stages. In the first, we find the simplest genetic 
model consistent with a given body of data, while leaving open the question 
of the extent to which different traits are affected by the same genes. We 
then consider the hypothesis that there are a number of loci controlling the 
traits studied and that a gene substitution at any of these loci affects all the 
traits. While this is almost certainly an oversimplification, it may well be 
the case that the bulk of the observed genetic variation and c0variation 
may be the result of variation at such a single set of loci. We shall apply 
our approach to data on cognitive abilities given by Loehlin and Vanden- 
berg (1968), 

A GENETIC MODEL FOR THE DATA 

For a single character in a randomly mating population, we partition 
the genetic variation into an addditive genetic component (DR) and a domi- 
nance component (Hn). For a polygenic system with two main alleles per 
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locus these components arc defined (Mather and Jinks. 1971 ) as follo~vs: 

HB ~ 2 2 ~  -- 16u .~h .  

where ~ indicates summation over all loci affecting the trait and, at a 
given locus; ua, c~ are the population frequencies of the two alleles, d~ is the 
absolute deviation of a homozygote from the mean of the two homozy- 
gores, and ha is the deviation of the heterozygote from the mean of the two 
homozygotes. 

The total genetic variance Vc is 

�89 + �88 

Should the data give evidence of assortative mating, this formula can be 
modified appropriately (Jinks and Fulker, 1970). Any bias due to ignoring 
assortative mating in the data actually analyzed will be discussed later. ]'he 
model could be extended to include epistasis, but, given the limited reso- 
lution in most human studies, this extension is scarcely worthwhile at 
present. 

Our model for trait covariation is analogous to that for the variation 
of a single trait. We regard some of the genes affecting one trait, say trait i, 
as though they had a p|eiotropic effect on another trait j .  Loci are assumed 
to be in linkage equilibrium. 

Thus at a locus with two alleles, we suppose that the homozygote for 
the increasing allele for trait i deviates from the mean of the two homozy- 
gotes by an amount d~,. The corresponding deviation for trait j will be d~j, 
in cases where the increasing allele for trait i is also the increasing allele for 
trait j. If this is not so, the deviation will be -d~j. For the other homozy- 
gore at this locus, we reverse the sign of d~, and d~j. The heterozygote at 
this locus will deviate by h~ in trait i, h~j in trait j. Then it is easily shown 
by the usual methods that the contribution of this locus to the population 
covariation of the two traits is 

Summing over all loci, we obtain the genetic covariance of the traits 

where 
Wo~i = �89 + $HR~t 

Dmj  = ~ 4u~v~d~d~i + ~ 4u~v~h~h,i - ~ 16u~v2.h~h~j 

- Z 4uovo(uo - vo)(do~hoi + doih~) 
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and 
= 16u,voho~hoi 

When i = j ,  this becomes the usual 

Va = �89 + ~HR 

We should stress that genetic correlations have very complicated ex- 
pectations, so that there is every advantage inworking with variances and 
covariances and not calculating genetic correlations. 

ESTIMATING THE COMPONENTS OF THE MODEL 

Experimental designs appropriate for the estimation of DR and HR for 
a single trait have been considered elsewhere Oinks and Fulker, 1970; 
Eaves, 1972b). Any design suitable for estimating genetic components of 
variance will also be suitable for estimating genetic components of 
covariance. 

We estimate components by weighted least squares which, given large 
samples, will supply approximately maximum likelihood estimates of the 
unknown components. 

We suppose that, in the usual way, observations have been made on a 
number n of classes, such as monozygotics reared together, full sibs reared 
apart, cousins. Within a class, we have variation between and within sub- 
classes, e.g., variation between and within pairs of monozygotics reared 
together, tf we have measured p traits, any class supplies both a "between" 
and a "within" p x p covariance matrix. These 2n matrices, say $1, S,, 
$3 . . . . .  S2n are our basic data, which thus consist of 

2n X �89 + 1) 

separate elements, which we shall write as a column vector y, with np(p + 
1 ) rows. We shall refer to y as the vector of raw statistics. 

The next step is to calculate the variances and covariances of the raw 
statistics. We first note that raw statistics derived from different S matrices 
have covariance zero. The variances and remaining covariances of raw 
statistics may be found from standard theory (Kendall and Stuart, 1963). 

Consider any S matrix, say S,~, with typical element s~,~. Then 

1 
Cov(s~,,j, ~,.a) = ~ (~s,.,o~8.,,, + ~sm;as.,~) (1) 

where N,, is the number of degrees of freedom of any element in S,,. Al- 
though we do not, of course, know the expected values of the sm~, we shall 
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obtain estimates of these in the course of the calculation. We shall denote 
the covariance matrix of the raw statistics as V. 

We must now write the expected values of the raw statistics in terms of 
the unknown parameters, such as DR~j, Hmj and corresponding environ- 
mental components, which we wish to estimate. We may write these un- 
known parameters, in the usual way, as a column vector e. Thus we have 

y = AO-k- t (2) 

where r is a column vector with np(p +1) rows representing sampling 
variation of the raw statistics. 

The matrix A comprises the coefficients of the unknown parameters in 
the algebraic expressions for the expected values of the raw statistics. These 
expressions are readily found from the corresponding expressions for the 
univariate case (e.g., Jinks and Fulker, 1970; Eaves, 1973b); when dealing 
with a raw statistic based on a pair of traits i and j, we simply replace the 
univariate genetic components Ds, Hn and environmental components El, 
E~ by the corresponding multivariate components Din j, Hm~, Ex,t, Ez~j. 

Recalling that V denotes the covariance matrix of the raw statistics, 
we have, from standard theory, the maximum likelihood estimates 

= (A'V-1A)-IA'V-Iy 

In the first instance, we obtain approximate values for the elements of 
V by using observed rather than expected values in equation (1). This will 
supply approximate values for the 6. We substitute these in 

= A~ 

The ~ are then improved estimates of the ~ , ~  and thus give rise to an 
improved Q. We repeat the whole procedure a number of times until stable 
values for the ~ are obtained. These will be sensible provided that our 
model, given in equation (2), is an adequate description of the data. Pro- 
vided our raw statistics are based on sufficiently large samples, we test the 
goodness of fit of the model by calculating. 

(Y -- ~')W-~(y -- ~) (3) 

where ~, is calculated using the final estimates of the ~. Given large sam- 
ples, the expression (3) is distributed as x ~, with degrees of freedom equal 
to the number of raw Statistics less the number of parameters estimated. 

EXAMPLE 

The data chosen to illustrate the genetic analysis are twin data given 
by Loehtin and Vandenberg (1968) for the covariation of five of Thur- 
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T a b l e  I. The  Genetic Model  for a Single Variable 

E.M.S> 

Mean squai~ DR Ha E2 El 

Between MZ pairs reared together  1 �89 2 1 
Within MZ p~ir,s - -  - -  - -  l 
P, e tween I)Z pairs reared toge ther  ~ ~ 2 1 
Within I)Z pairs ~ ]g  - -  1 

stone's Primary Mental Abilities, which form appendices A D of their 
paper. The authors discuss in detail the structure of their sample. The}' con- 
elude that their MZ and DZ twins can be regarded as samples from thc 
same population. 

l.imitalions in their experiment tire discussed by the authors. Indeed, 
qualitative and quantitative considerations (see, e.g., t!aves and .links, 
IL)72) combine to make this particular experiment .a relatively inefficient 
one for gene~ic analysis, since we have only [23 pairs of MZ twins ~nd 75 
pairs of DZ twins, the members of each pair having been raised together. 
We may, however, still test very simple hypotheses about the kinds of 
genetic and environmental influences contributing to variation for the five 
traits. A" relatively complete model for the various m e a n  squares ,  involving 
additive (D~) and dominance (HR) genetic components and also between- 
family (E2) and within-family (E~) environmental components, is given in 
Table 1 for variation in a single trait. The model assumes random mating. 
Although there are four raw statistics and four unknown parameters, it is 
impossible with the present design to estimate all of the latter, since the 
model is not of full rank. 

We can, however ,  provide a (not very powerful) test of the adequacy of 
a simpler model involving the Dmj and the E~,j only, while recognizing that 
if this model fails, we shall not be able unambiguously to detect the source 
of the failure. When we attempted to fit this simpler model, we found that 
solutions were unstable: the residual X ~ at successive stages were generally 
significant at the 5% level. Hence we must reject the simpler model. It was 
noticeable that the variation between DZ pairs was much larger than that 
expected on the basis of the reduced model. This discrepancy could be due 
either to assortative mating or to environmental influences common to 
mcn-tbers of the same pair. 

We extend our model, therefore, by the addition of E2,j components. 
I~r  this modeI, the residual X ~, with I5 dr, converged in four iterations to a 
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stable ~alue of 10.8 (0.7 < P<0.8).  Estimates of components are given in 
Table I I. 

T h u s  a mode l  i n c l u d i n g  on ly  a d d i t i v e  a n d  the  t ~ o  k i n d s  of e n v i r o n -  

m e n t a l  e f fec t s  g ives  a n  exce l l en t  fit to  the  d a t a .  T h i s  is not  as he lp fu l  as  it 

m i g h t  seem.  s ince  wi th  the  p r e s e n t  e x p e r i m e n t a l  des ign ,  d o m i n a n c e  ~ o u l d  

not  l ead  to f a i lu re  of t he  m o d e l .  In  fact ,  if d o m i n a n c e  is p r e s e n t ,  o u r  sup-  

posed  e s t i m a t e s  of  DR,~ a n d  E2,j a re  rea l ly  

zHmj and 82is- ~RR,~ 
respectively. However, if the Hm~ were large relative to the E2,~, our modei 
should yield significant negative estimates of the E~, s rather frequently. This 
has not happened. We shall proceed, therefore, on the tentative basis that 
our /)~,j are reasonable estimates of additive effects. A t  least, this win 
illustrate the procedure that we think should be follo~ed when more ex- 
tensive data become available. 

If assortative mating is present, any supposed t2,j is really 

A 
E 2 ~ S + � 8 9  

where A is the correlation between the breeding values of the spouses, but 

T a b l e  II .  Est imates  of Variance and Coy, l;anee 
Components  

11 3137.61 a 321.14 370.53 ~ 
12 848.66 ~ 513.17 < 96.97 
13 1671.45 < 193.44 2.16 
14 1063.20 ~ 54.46 0.00 
15 712.47 c 249.86 30.81 
22 663.57 b 667.98 ~ 159.53" 
23 242.55 438.22 c 20.27 
24 520.17 h 193.53 58.20 ~ 
25 228.79 375.56" 69.39" 
33 2426.95 ~ 837.22 b 451.02" 
34 963:50~ - 1 7 1 . 6 6  31.25 
35 571.00 ~ 85.07 16.34 
44 1095.19" --19.39 195.39, 
45 224.36 171.95 h 44.17 c 
55 184.57 354.99" 126.45" 

" Signifie'mt at  the 0.1% level. 
~' Significant at  the 5% level. 
c Significant at  the 1% level. 
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ot~t /')j,. arc slill cslimzltcs of the corrcslxmding D~,. .... eivc~l dommaacc 
:lbsc~ll. l hu s  'assortati~c mz|ting [3rcscllts a much Icss serious pioblcm thatl 
d(mfinance in the present context. 

TESTING THE S I M P L E S T  GENETIC MODEl ,  FOR 
COVAR|ATION 

We now ask: do all the five traits have a common genetic control'? In 
other words, are all five traits the pleiotropic expression of a single set of 
h)ci? We should note, however, that apparent pleiotropy would arise with 
more than one set of loci if these were in marked linkage disequilibrium, 
Since we cannot distinguish these two situations, we shall refer to both as 
the "single-set" hypothesis. 

One approach, which has appeared in the literature but is agreed to be 
unsatisfactory, is to convert the/Smj into correlation coefficients and carry 
out a principal components analysis on these coefficients. Should a single 
component account for most of the variation, this would be regarded as evi- 
dence for the single-set hypothesis. Apart from the often mentioned 
mathe'matical objections to this procedure, it is extremely difficult to in- 
terpret the procedure in genetic terms. For example, the correlation coeffi- 
cients have no simple genetic meaning. 

We shall propose a rather different approach, in which we attempt to 
fit a simple model to the/Smj. Extensions for cases where HR,j are detected 
will be discussed below. We ask: are all the Dmj really the same Dn, an)' 
differences being merely a result of the scales on which the different traits 
were measured.'? If this is so, we shall find that after an appropriate re- 
scaling of the breeding values only D;~ is required to account for all the 
additive variation and covariation. Let the breeding values for the five 
traits be (linearly) rescaled by multiplying by z~, z~ . . . . .  :5 respectively. 
Then wc have 

~bR,j = z~ziD~ 

The z, and D~ must now be estimated, account being taken of the dif- 
fering precisions of the various /)u,j. Finally. an approximate test of sig- 
nificance of this single-set model is calculated. It would, in principle, be 
possible to fit a model of this kind (taken in conjunction with environ- 
mental components) to the original raw statistics, but this would be compli- 
cated and the gain probably marginal. 

Although our approach bears an obvious relation to principal 
components analysis in this simple case, even here the results are slightly 
different, as will be seen later. Our method appears to extend more readily 
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than Others to at least some of the more complicated cases encountered in 
practice. For example, if HH,j aredetected we can attempt to fit a single D~ 
and a single H .  to the D.,: and the H.,:  taken together using the same  five 
z, for both. Only if this model failed would we fit separate z, for additive 
and dominance components, which would be roughly equivalent to separate 
principal components analyse s of the additive and dominance effects, 
Similar considerations apply if we have data from different populations. 
Testing the significance of departures from the various models is also quite 
straightforward, provided, of course, that samples are large. 

For brevity, we shall write D,i as short for Dmj and D as short for Dn. 
We write p for the number of z, (five in our case). Let R,~ .... be the element 
of the information matrix (of the D,j) corresponding to /5~: and /5 .... We 
minimize 

F = T .  - 

i j  rnn 

for variation in the p z, and in D. 
Given sufficiently large samples. F is distributed as • and the 

logarithmic likelihood L is -1/2 (this X~), so that we should obtain approxi- 
mate maximum likelihood estimates, given our present data. 

One important point is the restraint which must be imposed on the z,. 
Our estimation will be subject to the condition 

~? = 1 

so that we have p independent parameters. Writing 4~, (i = 1.2 . . . . .  p)  for 
the independent unknown parameters (four of the z~ and D in the present 
case) we must solve the equations 

aF 
- o ( i  = 1, 2 , . . . ,  p )  

We may take any (p - I ) or" the z, as free parameters without affecting the 
final result; we follow the usual procedure of taking the"last. '" z., as the 
dependent parameter. Then, writing 

O*F 

for the formal derivative of F with respect to any q~,, including zp, obtained 
by regarding all the z, as free parameters, we have 

0/; 0"t: O*FOzp O*F O * l , ' { - z ~  
Ozk Ozk + Oz, Ozk Oz~ + - O Z i : k Z ~ /  (k = 1, 2 . . . .  , p - 1) (4) 
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where the "starred" derivatives are obtained from the usual rules for dif- 
ferentiation of matrix products, as follows. 

l_.el the D,j(i <__ j) be written in any convenient order. W'e denote the 
rth D,j in this list by the symbol 0~. Thus we wish to minimize 

F = 5 2  5 2  - - .4,) 
r 

which we may write in matrix form 

We nmv haw, 
,3*r  6)'R o 

Then the #F/&~ follow at once from (4); OF/OD is, of course, the same as 
~;*F/OD. 

' : j  f ~  , ~  ~ 

We write T for the column vector whose elements are OF/ . . . . . .  d the 
(p - I) OF~Oz.. The matrix of maximum likelihood "'scores," in Fisher's 
(I946) terminology (see also Bailey, 1961, Appendix [), is 

S = - � 8 9  

given the qualifications about sample size discussed earlier. 
Again. using the "s tar"  notation for formal differentiation when all 

parameters arc regarded as free, we have 

O~F O*2F 
OzkOz; O&Ozl 

In this expression 

Also, 

~ | l l d  

+ O*ZF Ozp O*2F Ozp O*F 02zv O*2F Oz~ Oz v 
OzkOzp Oz~ + OzzOzp Ozk + Oz~, OZkOZl + OZv 20Zk OZt 

Oz._.Z = Zt 02Zp _ ZkZt. 
OZt Zp OZkOZt Z~, 3 

02F O*~F O*2F ( z~) 
ODOzt - ODOzt W ~ - 

O~F O*~F 
OD ~ OD 2 

']'lw "starr~,d '~ derivatives arc, given by 

O*2F _ 2I O ] 0  02 
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we write J for (1.2) times the p • p matrix of "'unstarred'" scc,~nd de- 
rivatives. Then J is, approximately, the matrix of information observed. 

In carrying out the computations, the first step is to evaluate R l'his is 
done, in the usual way, by taking the covariance matrix of the estimates of 
all the genetic and environmental components in the first analysis, namely 
the covariance matrix 

(A'V-IA)-I 

striking out all rows and columns except those pertaining to the variances 
and covariances inter se of the b,j and inverting what remains. 

The equations 

S = O  

must be solved numerically. Since we are attempting a kind of weighted 
components analysis, appropriate trial values ~,o~ for the unknown pa- 
rameters are for D the first eigenvalue of the,matrix of the /~,j and for 
the z, the elements of the corresponding eigenvector. We now evaluate S 
and J using these trial values and find the improved estimates 

~'<~) = s + J-1S 

The process can be repeated, using the improved estimates as trial values to 
obtain still better estimates. We continue to repeat the process until we ob- 
tain stable estimates. However, since some of our expressions will, in 
practice, involve the dependent parameter zp, care must be taken when ob- 
taining this parameter as 

( p - - 1 ) I / 2  

"i~ l 
We take the sign which gives best agreement between observed and ex- 
pected D,j. This can be done without difficulty unless there is a gross failure 
of the model. Again, although there are presumably maxima in the likeli- 
hood surface corresponding roughly to the other eigenvalues, we should not 
be in any serious danger of converging on such irrelevant maxima, except 
perhaps in cases where the model is clearly inappropriate. 

RESULTS 

Starting with the /3mj obtained from Loehlin and Vandenberg's data, 
stability (to the tenth significant figure) was obtained after six iterations. 
Trial values and final estimates, together with their approximate standard 
errors (obtained, for the free parameters, as the square root of diagonal ele- 
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ments of J -~), are given in Table lIl .  The standard error of _~s is estimated 
by 

--- ~&. Cov(~;, 2i 

From these, values for expected/Smj were calculated. These are given 
in Table IV. 

The approximate Xfo 
proved to be 

testing the goodness of fit of our simple model 

20.41, P = 2.6% 

indicating that the fit is not completely satisfactory. 
On the other hand, there is no doubt that the bulk of the genetic varia- 

tion can be accounted for in terms of our simple model. For on testing the 
null hypothesis that the bRu are, jointly, not significantly different from 
zero, we obtained 

x~5 = 44.58, P = 0.01% 

so that the reduction in • obtained on fitting our simple model is 

• = 24.17, P = 0.02% 

In view of this, there is little point, in the present case, in attempting to 
fit a more complicated model  such as one involving additional loci with ef- 
fects on some of the characters only or perhaps with effects specific to 
particular characters. Since an improved fit would, in the present case, be 
obtained using any one of a number of distinct genetic models, it is unlikely 
that any decision could be made as to which of these models is correct. 

Table  lI1. Estimates of Parameters of the Single-Set 
Model 

Parameter Trial value Final value Standard error 

DR 5387.9235 5349.2000 1164.3186 
z] 0.7076 0.6983 0.0863 
z2 0.2015 0.2307 0.0854 
z~ 0.5599 0.5355 0.1164 
z4 0.3348 0.3772 0.0871 
z5 0.1816 0.1736 0.0557 
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Tab le  IV. Expected ','alues of ~R:.~ Obtained by Fitting 
the Single-Set .Mode! 

Scale N V S W II 

N 260S.39 861.74 2000.28 140S.97 64,~46 
V 2S4.70 660.S-t 465,49 214.23 
S 1533.94 1080.49 497,2S 
W 761.0S 350.28 
I~ 161.21 

DISCUSSION 

In the present case, our results are substantially the same as those 
reached by Loehlin and Vandenberg, who found that a single factor would 
account for most of the genetic correlation between the traits studied. We 
suggest, however, that even in the present case our approach has ad- 
vantages. In that our simple model is formulated in precise genetic terms, it 
is easy to see which hypothesis is actually being tested. Our method also 
provides an approximate test of significance of departures from the model. 

We nov, consider briefly more general situations. We have shown that, 
given an adequate experimental design, the critical separation of genetic 
variation into additive and dominance effects may be carried out as readily 
in the multivariate as in the univariate case. 

Analysis of unresolved genetic components, in cases where the single- 
factor model failed, would not enable us to distinguish between the 
following two distinct situations. In the first, there are two or more 
separate sets of loci affecting at least some of the traits. In the second, 
there is just one set of loci, but the degree of dominance varies from one 
character to another. In this latter case, a model with one DR, one HR but 
the same set of z, both for dominance and for additive effects would fail, 
whereas a model with one DR, one HR, but two different sets of z~ (one for 
additive effects, one for dominance effects) should fit the data. In such a 
case, attempts to explain the data in terms of orthogonal factors would lead 
to purely formal results, with a misleading genetic interpretation. Al- 
though, in factor terms, the correct result would be two oblique factors, one 
for additive effects and one for dominance, we would not arrive at this con- 
clusion by oblique rotation to simple structure, so that there is no known 
method by which the factor approach can be made to yield the correct 
result. 

Extension to the case where we must fit two or more DR, or two or 
more HR, iS more difficult. Here we encounter the same difficulties with 
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regard to nonuniqueness of solutions as are found in standard factor 
analysis. We may ~ote that this nonuniqueness is, in fact, a mathematical 
reflection of a real limitation in the inferences that can be made about the 
genetics of covariation for an organism in which breeding experiments are 
not possible. . Consider the following very simple artificial example. Two 
traits A and B are genetically correlated with one another, but genetically 
uncorrelated with two other traits C and D, which in turn are genetically 
correlated with one another. It is natural to interpret this result as the out- 
come of two sets of loci, one for A,B and one for C,D. On the other hand, 
we can explain the results equally well by postulating one set of loci, half of 
which affect A, B. C, D in a consistent manner, whereas for the other half, 
increasing alleles for A,B are decreasing alleles for C,D. If the first in- 
terpretation is correct, a two-factor simple structure representation would 
correctly reflect the genetic situation. If the second interpretation is correct, 
then the genetic situation should be represented by one general factor and 
one bipolar factor. The interpretations could be distinguished only if we 
were in the position to carry out an appropriate selection experiment. 
Otherwise, as we have discussed elsewhere (Gale and Eaves, 1972), we have 
to postulate consistency of gene action if we are to identify factors with sets 
of loci.in cases where a single-factor model fails. The same problem will 
arise in the present context if we are required to fit more than one De, or 
more than one HR. 
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