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Covariances between traits can be partitioned into additive and dominance
genetic components and between- and within-family environmental
components, using a method analogous to that used in the analysis of single
traits. The problem arises as to whether all additive genetic components
simply reflect a single additive component, in the sense that, given an ap-
propriate rescaling of the breeding values., a single additive genetic
component would adequately describe the additive genetic variation. The
statistical procedure for testing this hypothesis is discussed in detail.
Similar considerations apply to the dominance variation. The approach is
applied to twin data given by Loehlin and Vandenberg (1968} on covaria-
tion between five of Thurstone's Primary Mental abilities. Although the
data do not permit a reliable separation of additive and dominance
components, it is shown that a single genetic component will account for al-
most all the genetic variation and covariation. Unless there is marked
linkage disequilibrium, this implies that most of the genetic variation for
the five traits can be attributed to the pleiotropic action of genes at a com-
mon set of loci.
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INTRODUCTION

During the last few years, there have been several attempts to provide
multivariate extensions of genetic analyses in order to elucidate the struc-
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ture of genctic and environmental covariation for multiple measurements
(Vandenberg, 1963 Lochlin, 1965; Loehlin und Vandenberg, 1968; Rou-
dabush, 1968; Eaves, 1972a, 1973a; Eaves and Brumpton, 1972; Gale and
Laves, 1972). While these authors have partitioned covariation into genetic
and environmental components, they have not attempted to resolve the
genetic components any further, for example, into additive and dominance
components. These authors have shown that it will often be necessary to
analyze components of mean squares in order to elucidate the genetic
system. In such cases, standard multivariate procedures, although some-
times helpful, are not really appropriate for detailed genetic analysis of
natural populations.

The biometrical approach, as used in the analysis of individual
characters (e.g., Mather and Jinks, 1971), has established a number of prin-
ciples, which are equally relevant in the multivariate situation. First, raw
components estimated from the analysis of variance do not in general have
a simple genetic meaning. For example, the genetic component of variation
within pairs of dizygotic twins represents both additive and nonadditive
variation. It is essential, therefore, to specify the expectations of the-
components in terms of appropriate genetic parameters, which may then be
estimated. Second, since such estimates are correct only if the expectations
of components are correctly represented, it is essential to test the validity of
the assumptions under which estimates have been made.

In this paper, we shall suggest an approach to the analysis of genetic
covariation which takes account of the considerations just mentioned. Our
analysis will be in two stages. In the first, we find the simplest genetic
model consistent with a given body of data, while leaving open the question
of the extent to which different traits are affected by the same genes. We
then consider the hypothesis that there are a number of loci controlling the
traits studied and that a gene substitution at any of these loci affects all the
traits. While this is almost certainly an oversimplification, it may well be
the case that the bulk of the observed genetic variation and covariation
may be the result of variation at such a single set of loci. We shall apply
our approach to data on cognitive abilities given by Loehlin and Vanden-
herg (1968).

A GENETIC MODEL FOR THE DATA

For a single character in a randomly mating population, we partition
the genetic variation into an addditive genetic component (D) and a domi-
nance component (Hz). For a polygenic system with two main alleles per
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locus these components are defined (Mather and Jinks. 1971) as follows:
D = Z 4uuad® + 2 duacnh? — Z 16ui%h] — T Suai(ia — va)dah,
HR = 2 lﬁuiiﬁhi

where Y indicates summation over all loci affecting the trait and. at a
given locus; u,, ¢, are the population frequencies of the two alleles, d,, is the
absolute deviation of a homozygote from the mean of the two homozy-
gotes. and A, is the deviation of the heterozygote from the mean of the two
homozygotes.

The total genetic variance V is

1Dx + 1Ha

Should the data give evidence of assortative mating, this formula can be
modified appropriately (Jinks and Fulker, 1970). Any bias due to ignoring
assortative mating in the data actually analyzed will be discussed later. The
mode] could be extended to include epistasis, but, given the limited reso-
lution in most human studies, this extension is scarcely worthwhile at
present.

Our model for trait covariation is analogous to that for the variation
of a single trait. We regard some of the genes affecting one trait, say trait i.
as though they had a pleiotropic effect on another trait j. Loci are assumed
to be in linkage equilibrium.

Thus at a locus with two alleles, we suppose that the homozygote for
the increasing allele for trait i deviates from the mean of the two homozy-
gotes by an amount d,,. The corresponding deviation for trait j will be d,,,
in cases where the increasing allele for trait i is also the increasing allele for
trait j. If this is not so, the deviation will be —d,;. For the other homozy-
gote at this locus, we reverse the sign of d,; and d,;. The heterozygote at
this locus will deviate by A, in trait i, &,; in trait j. Then it is easily shown
by the usual methods that the contribution of this locus to the population
covariation of the two traits is

2uavadmda,~ + 2uavahaihaj - 4u§vikaihaj - 2uovn(ua - Ua) (duihaj -+ dqjkai)

Summing over all loci, we obtain the genetic covariance of the traits

Weaij = $Dgij + YHgy;
where

DR{]' = 2 4uavadaidaj + E 4uavahq.'haj - 2 lﬁuiUZh,”haj
— 2 4uoa(us — Vo) (daitia; + dojhias)
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and
HRii =2 IGuZUf;haihaj

When ¢ = j, this becomes the usual
Ve = 3D + tHz

We should stress that genetic correlations have very complicated ex-
pectations, so that there is every advantage in working with variances and
covariances and not calculating genetic correlations.

ESTIMATING THE COMPONENTS OF THE MODEL

Experimental designs appropriate for the estimation of Dy and Hpy for
a single trait have been considered elsewhere (Jinks and Fulker, 1970;
Eaves, 19725). Any design suitable for estimating genetic components of
variance will also be suitable for estimating genetic components of
covariance.

We estimate components by weighted least squares which, given large
samples, will supply approximately maximum likelihood estimates of the
unknown components.

We suppose that, in the usual way, observations have been made on a
number n of classes, such as monozygotics reared together, full sibs reared
apart, cousins. Within a class, we have variation between and within sub-
classes, e.g., variation between and within pairs of monozygotics reared
together, If we have measured p traits, any class supplies both a “*between”
and a “within” p x p covariance matrix. These 2n matrices, say S,, S,,
S, ..., S;, are our basic data, which thus consist of

2n X 3plp+ 1)

separate elements, which we shall write as a column vector y, with np(p +
1) rows. We shall refer to y as the vector of raw statistics.

The next step is to calculate the variances and covariances of the raw
statistics. We first note that raw statistics derived from different S matrices
have covariance zero. The variances and remaining covariances of raw
statistics may be found from standard theory (Kendall and Stuart, 1963).

Consider any S matrix, say S,,, with typical element s,,,,. Then

1
COV(Smijy smab) = F (Esmiuesmjb + esm;’aismib) (1)

where ¥, is the number of degrees of freedom of any element in S,,. Al-
though we do not, of course, know the expected values of the s,,,,, we shall
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obtain estimates of these in the course of the calculation. We shall denote
the covariance matrix of the raw statistics as V.

We must now write the expected values of the raw statistics tn terms of
the unknown parameters, such as Dpg,;, Hg,; and corresponding environ-
mental components, which we wish to estimate. We may write these un-
known parameters, in the usual way, as a column vector 8. Thus we have

y = Ab+ ¢ (2)

where ¢ is a column vector with np{(p +1) rows representing sampling
variation of the raw statistics.

The matrix A comprises the coefficients of the unknown parameters in
the algebraic expressions for the expected values of the raw statistics. These
expressions are readily found from the corresponding expressions for the
univariate case (e.g.. Jinks and Fulker, 1970; Eaves, 19735); when dealing
with a raw statistic based on a pair of traits / and j, we simply replace the
univariate genetic components Dy, Hy and environmental components £,,
E, by the corresponding multivariate components Dg,j, Hrij, Evij Eay.

Recalling that V denotes the covariance matrix of the raw statistics,
we have, from standard theory, the maximum likelihoad estimates

8 = (A'VIIA)-1A'V-1y
In the first instance, we obtain approximate values for the elements of

V by using observed rather than expected values in equation (1), This will
supply approximate values for the §. We substitute these in

§ = Ad

The § are then improved estimates of the &s,,, and thus give rise to an
improved V. We repeat the whole procedure a pumber of times until stable
values for the & are obtained. These will be sensible provided that our
model, given in equation (2), is an adequate description of the data. Pro-
vided our raw statistics are based on sufficiently large samples, we test the
goodness of fit of the model by calculating.

G-V -9 (3)
where § is calculated using the final estimates of the 6. Given large sam-

ples, the expression (3) is distributed as x® with degrees of freedom equal
to the number of raw statistics less the number of parameters estimated.

EXAMPLE

The data chosen to illustrate the genetic analysis are twin data given
by Loehlin and Vandenberg (1968) for the covariation of five of Thur-
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Table I. The Genetic Model for a Single Variable

EALS,
Mean square Dr Hp E. E
Between MZ pairs reared together 1 H 2 1
Within MZ pairs — — — 1
Between DX pairs reared together 3 s 2 1
Within DZ pairs : = — 1

stone’s Primary Mental Abilities, which form appéndices A D of their
paper. The authors discuss in detail the structure of their sample. They con-
clude that their MZ and DZ twins can be regarded as samples from the
same population.

Limitations in their experiment are discussed by the authors. Indeed,
qualitative and quantitative considerations (see. ¢.g.. Faves and Hnks,
1972) combine to make this particular experiment a relatively inefficient
one for genetic analysis. since we have only 123 pairs of MZ twins and 75
pairs of DZ twins. the members of each pair having been raised together.
We may. however, still test very simple hypotheses about the kinds of
genetic and environmental influences contributing to variation for the five
traits. A relatively complete model for the various mean squares, involving
additive (Dg) and dominance (Hg) genetic components and also between-
family (E,) and within-family (£)) environmental components. is given in
Table | for variation in a single trait. The model assumes random mating.
Although there are four raw statistics and four unknown parameters, it is
impossible with the present design 1o estimate all of the latter, since the
model 1s not of full rank.

We cun. however, provide a (not very powerful) test of the adequacy of
a simpler model involving the Dg,; and the £,,; only. while recognizing that
if this model fails. we shall not be able unambiguously to detect the source
of the failure. When we attempted to fit this simpler model. we found that
solutions were unstable: the residual x* at successive stages were generally
significant at the 5% level. Hence we must reject the simpler model, 1t was
noticeable that the variation between DZ pairs was much larger than that
expected on the basis of the reduced model. This discrepancy could be due
cither to assortative mating or to environmental influences common to
meatbers of the same pair.

We extend our model. therefore, by the addition of £,,, components.
For this model. the residual x* with 15 df, converged in four iterations to a
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stable value of 10.8 (0.7 < P<0.8). Estimates of components are gnen in
Table 11,

Thus a model including only additive and the two kinds of environ-
mental effects gives an excellent fit to the data. This is not as helpful as it
might seem, since with the present experimental design. dominance would
not lead to failure of the model. In fact, if dominance is present. our sup-
posed estimates of Dg,, and £,,, are really

ij + %Hﬂi:' and E?:'j - 'é‘fiku

respectively. However, if the Hy,, were farge relative to the £,,,. our modei
should vield significant negative estimates of the £,;, rather frequently. This
has not happened. We shall proceed. therefore, on the tentative basis that
our Dy, are reasonable estimates of additive effects. At least. this wili
illustrate the procedure that we think should be followed when more ex-
tensive data become available.

If assortative mating is present, any supposed £y, is really

4 .
B+ 3 -4 Dgs;

where A is the correlation between the breeding values of the spouses. but

Table II. Estimates of Variance and Cov. riance

Components

if D o By
11 3137.61° 321.14 370.53¢
12 848 .66 513.17¢ 96.97
13 1671 .45° 193 .44 2.18
14 1063 .20¢ 534 .46 0.00
15 712.47° 249 .86 30.81
22 663 .57 667 .98 159.53¢
23 242 .55 438 .22¢ 20.27
24 520.17% 193.53 58.200
25 228.79 375.56¢ 69 .39
33 2426 .95¢ 837.220 451.02¢
34 963 :50° —171.66 31.25
35 571.00° 85.07 16.34
44 1095 .19 —19.39 195.39¢
45 224 .36 171.95 44.17¢
55 184 .57 354.99¢ 126 .457

* Significant at the 0.19% level.
¢ Significant at the 59, level.
¢ Significant at the 19, level,
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our Dy, are still estimates of the corresponding 0. aiven domnmane
absent. Thas assortative mating presents & much less serious problem than
dominance in the present context.

TESTING THE SIMPLEST GENETIC MODEL FOR
COVARIATION

We now ask: do all the five traits have a common genetic control? In
other words, are all five traits the pleiotropic expression of a singie set of
loci? We should note, however, that apparent pleiotropy would arise with
more than one set of loci if these were in marked linkage disequilibrium.,
Since we cannot distinguish these two situations, we shall refer to both as
the ““single-set™ hypothesis.

One approach, which has appeared in the literature but is agreed to be
unsatisfactory_ is to convert the ﬁ,,,j into correlation coefficients and carry
oul a principal components analysis on these coefficients. Should a single
component account for most of the variation, this would be regarded as evi-
dence for the single-set hypothesis. Apart from the often mentioned
mathematical objections to this procedure, it is extremely difficult to in-
terpret the procedure in genetic terms. For example, the correlation coeffi-
cients have no simple genetic meaning.

We shall propose a rather different approach. in which we attempt to
fit 4 simple model to the 13,;,,. Extensions for cases where H,,, are detected
will be discussed below. We ask: are all the Dy, really the same Dy, any
differences being merely a result of the scales on which the different traits
were measured? If this is so, we shall find that after an appropriate re-
scaling of the breeding values only Dy is required to account for all the
additive variation and covariation. Let the breeding values for the five
traits be (lincarly) rescaled by multiplying by z,, z5, . .., z, respectively.
Then we have

EDR iy = ZiZjDR

The z, and Dy must now be estimated, account being taken of the dif-
fering precisions of the various Dy,,. Finally, an approximate test of sig-
nificance of this single-set model is calculated. It would, in principle, be
pussible to fit a model of this kind (taken in conjunction with environ-
mental components) to the original raw statistics, but this would be compli-
cated and the gain probably marginal.

Although our approach bears an obvious relation to principal
components analysis in this simple case, even here the results are slightly
different, as will be seen later. Our method appears to extend more readily
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than others to at least some of the more complicated cases encountered in
practice. For example, if H,,, are-detected we can attempt to fit a single Dy
and 4 single H, to the Dy, and the H,,, taken together using the sane five
=, for both. Only if this model failed would we fit separate -, for additive
and dominance components, which would be roughly equivalent 1o separate
principal components analyses of the additive and dominance effects.
Similar considerations apply if we have data from different populations.
Testing the significance of departures from the various models is also quite
straightforward, provided, of course, that samples are large.
For brevity, we shall write D,; as short for Dy, and D as short for Dy.
We write p for the number of z, (five in our case). Let R, ., be the element
of the information matrix (of the D,;) corresponding to D,, and B,,,. We
minimize
F =23 2 RjmDy— eDi)(Don — eDun)
ij wmn

i<jm<n

for variation in the p z, and in D.

Given sufficiently large samples. F is distributed as yx* and the
logarithmic likelthood L is —Y (this x?), so that we should obtain approxi-
mate maximum likelihood estimates, given our present data.

One important point is the restraint which must be imposed on the z,.
Our estimation will be subject to the condition

Zé(2=1

so that we have p independent parameters. Writing ¢, (i = 1.2, ..., p) for
the independent unknown parameters (four of the =, and D in the present
case) we must solve the equations
aF
— =0  (@=12..,p)
i

We may take any (p ~ 1) of the z, as free parameters without affecting the
final result; we follow the usual procedure of taking the*last.” z,, as the
dependent parameter. Then, writing

*F

dp;

for the formal derivative of F with respect to any ¢,, including =, obtained
by regarding all the z, as free parameters, we have

orF  o*f  9*F dz, o¥F N [— zk)
e e i SRl S k=12 ..,p—1 1)
dz; dzi + 9z, D2k Az + < 2, ( ’ ! )
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where the “starred™ derivatives are obtained from the usual rules for dif-
ferentiation of matrix products, as follows.

Let the D, (i £ j) be written in any convenient order. We denote the
rth D, in this list by the symbol 8,. Thus we wish to minimize

= Z Z Rn(ér 557)(0. — °8,

which we may write in matrix form

6 —b)'RE — b)
We now have
or _

= 2(6 — se)’R 6~ <b)
0¢r o¢r

Then the dF/dz, follow at once from (4); dF/aD is. of course. the same as
G*F/aD. A
We write T for the column vector whose elements are 9/ 0. and the

(p ~ 1) aF/oz,. The matnx of maximum likelihood “scores,” in Fisher’s
(1946) terminology (see also Bailey, 1961, Appendix I), is
S =—4T

given the qualifications about sample size discussed earlier.
Again, using the “star” notation for formal differentiation when all
parameters are regarded as free, we have
PF 9WF | 9%F 9z, | 9%F 3z, | &*F 3%, | 9" dz,0z,
dudz,  omdu | 0udz, 0z | 32192, O 02, 02,02, 02,2 Oz 8z

In this expression

by . _ 2% _ &
9z; Zp 02:0z; 25t
Also,
*F i d ¥R 2
3Daz Doz T aDaz, <~ 2;)
and
#F _ o
aD*  aD?

The “starred” derivatives are given by

¥ J . . A . X .
| . 8 — 2 R ~— _— — + -
Sorden [a% ( ) ] o ® €0) + 2(6 e0)’'R 3 (6 —~ £0)

7
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We write J for (%) times the p x p matrin of “unstarred” second de-
rivatives. Then J is, approximately, the matrix of information observed.

In carrying out the computations, the first step is to evaluate R. This is
done, in the usual way, by taking the covariance matrix of the estimates of
all the genetic and environmental components in the first analysis. nameiyv
the covariance matrix

(A'V-1A)

striking out all rows and columns except those pertaining to the variances
and covariances inter se of the D,; and inverting what remains.
The equations

5=0

must be solved numerically. Since we are attempting a kind of weighted
components analysis, appropriate trial values ¢,, for the unknown pa-
rameters are for D the first eigenvalue of the ‘matrix of the ﬁij and for
the z; the elements of the corresponding eigenvector. We now evaluate S
and J using these trial values and find the improved estimates

dwm = @ + J'S

The process can be repeated, using the improved estimates as trial values to
obtain still better estimates. We continue to repeat the process until we ob-
tain stable estimates. However, since some of our expressions will, in
practice, involve the dependent parameter z,, care must be taken when ob-

taining this parameter as
-1 1/2
5-(1-T4)
ym=]

We take the sign which gives best agreement between observed and ex-
pected D, This can be done without difficulty unless there is a gross failure
of the model. Again, although there are presumably maxima in the likeli-
hood surface corresponding roughly to the other eigenvalues, we should not
be in any serious danger of converging on such irrelevant maxima, except
perhaps in cases where the model is clearly inappropriate.

RESULTS

Starting with the DRU obtained from Loehlin and Vandenberg’s data,
stability (to the tenth significant figure) was obtained after six iterations.
Trial values and final estimates, together with their approximate standard
errors (obtained, for the free parameters, as the square root of diagonal ele-
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ments of J 1), are givén in Table I1l. The standard error of 3, is estimated
by

1T v
= [Z > 4.5 Cov(s, 31)]

<o Ljwy jm

From these, values for expected ﬁm, were calculated. These are given
in Table IV,

The approximate x?, testing the goodness of fit of our simple model
proved to be

2041, P =269

indicating that the fit is not completely satisfactory,

On the other hand, there is no doubt that the bulk of the genetic varia-
tion can be accounted for in terms of our simple model. For on testing the
null hypothesis that the Dm, are, jointly, not significantly different from
zero, we obtained

xk = 44.58, P = 0.01%
so that the reduction in x? obtained on fitting our simple modet 15
X2 = 24.17, P = 0.02%

In view of this, there is little point, in the present case, in attempting to
fit a more complicated model, such as one involving additional loct with ef-
fects on some of the characters only or perhaps with effects specific to
particular characters. Since an improved fit would, in the present case, be
obtained using any one of a number of distinct genetic models, it is unlikely
that any decision could be made as to which of these models is correct.

Table 1. Estimates of Parameters of the Single-Set
Model

Parameter Trial velue Final value Standard error

Dg 5387.9235 5349.2000 1164.3186

2 0.7076 0.6983 0.0863
23 0.2015 0.2307 0.0854
23 0.5599 0.5355 0.1164
2 0.3348 0.3772 0.0871

25 0.1816 0.1736 0.0557
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Table IV, Expected Values of Dry; Obtained by Fitting
the Single-Set Model

Seale N \ 3 w R
N 2608.30 86174 2000.28 1408.07 64840
v 284,70 660.84 40340 214.23
8 1333.94 1080.40 497.23
) 761.08 350.28
R 161.21

DISCUSSION

In the present case, our results are substantially the same as those
reached by Loehlin and Vandenberg, who found that a single factor would
account for most of the genetic correlation between the traits studied. We
suggest, however, that even in the present case our approach has ad-
vantages. In that our simple modei is formulated in precise genetic terms, it
is easy to see which hypothesis is actually being tested. Our method also
provides an approximate test of significance of departures from the model.

We now consider briefly more general situations. We have shown that,
given an adequate experimental design, the critical separation of genetic
variation into additive and dominance effects may be carried out as readily
in the multivariate as in the univariate case.

Analysis of unresolved genetic components, in cases where the single-
factor model failed, would not enable us to distinguish between the
following two distinct situations. In the first, there are two or more
separate sets of loci affecting at least some of the traits. In the second,
there is just one set of loci, but the degree of dominance varies from one
character to another. In this latter case, a model with one Dy, one H but
the same set of z, both for dominance and for additive effects would fail,
‘whereas a model with one Dg, one Hpg, but two different sets of z, (one for
additive effects, one for dominance effects) should fit the data. In such a
case, attempts to explain the data in terms of orthogonal factors would lead
to purely formal results, with a misleading genetic interpretation. Al-
though, in factor terms, the correct result would be two oblique factors, one
for additive effects and one for dominance, we would not arrive at this con-
clusion by oblique rotation to simple structure, so that there is no known
method by which the factor approach can be made to yield the correct
result.

Extension to the case where we must fit two or more Dy, or two or
more Hp, is more difficult. Here we encounter the same difficulties with
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regard to nonuniqueness of solutions as are found in standard factor
analysis. We may note that this nonuniqueness is, in fact, a mathematical
reflection of a real limitation in the inferences that can be made about the
genetics of covariation for an organism in which breeding experirments are
not possible.-Consider the following very simple artificial example. Two
traits A4 and B are genetically correlated with one another, but genetically
uncorrelated with two other traits C and D, which in turn are genetically
correlated with one another. It is natural to interpret this result as the out-
come of two sets of loci, one for 4,8 and one for C,D. On the other hand,
we can explain the results equaily well by postulating one set of loci, haif of
which affect 4, B. C, D in a consistent manner, whereas for the other half,
increasing alleles for 4,B are decreasing alleles for C,D. i the first in-
terpretation is correct, a two-factor simple structure representation would
correctly reflect the genetic situation. If the second interpretation is correct,
then the genetic situation should be represented by one general factor and
one bipolar factor. The interpretations could be distinguished only if we
were in the position to carry out an appropriate selection experiment.
Otherwise, as we have discussed elsewhere (Gale and Eaves, 1972), we have
to postulate consistency of gene action if we are to identify factors with sets
of loci.in cases where a single-factor model fails. The same problem will
arise in the present context if we are required to fit more than one Dy, or
more than one M.
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