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DIFFERENTIAL EQUATIONS WITH DISPLACED ARGUMENTS
IN STATIONARY PROBLEMS IN THE MECHANICS OF
A DEFORMABLE BODY

G. G. Onanov and A. L. Skubachevskii UDC 539.3: 517.946
1. The Elastic Model. Figure 1 shows an elastic system consisting of two parallel plates connected

by a regular system of vertical and slanting ribs (at an angle & to the vertical), all oriented in the same
direction.

It is natural to contrast this discrete—continuous system with a continuous model, "spreading out" in
the space between the plates both the vertical ribs (O-braces) and the slanting ribs (@-braces). To do this,
we must introduce kinematically independent continuous fields of elastic displacements of the O-braces and
a-braces uniformly distributed in the space between the plates. As a result, we arrive at a three-layer
plate with a "two-phase" model of a filler, which combines in itself a medium of O-braces and a medium of
a-braces.

We introduce a unified system of Cartesian coordinates x, y, z, making the middle surfaces of the
plates coincide with the planes z = +h in such a way that the ribs will be directed along the axis Ox. We also
introduce the local Cartesian coordinates x Bs Og, g (B = 0, @) in the planes of the ribs, making the axis
Opxp coincide with the line of intersection of the corresponding rib and the plane xOy. We shall assume for
the sake of simplicity that both the planes themselves and the ribs, both vertical and slanting, are moment-
free (zero rigidity out of the plane); the ribs offer no resistance to tension or compression in the Longitudinal
direction but are absolutely rigid in the transverse direction (in the plane of the ribs).

Let us examine a single rib. Obviously, by virtue of the simplifications we have made, the cross
section xj3 = const of the rib is displaced in the plane of the rib like a rigid body. Consequently the elastic
displacements u B> VP of an arbitrary point of the rib in the direction of the axes Xg, Y can be represented
in the form

Ug (x4, yp) =@ (xﬂ) - ‘pﬁ (xﬂ) Y Y (xﬁs yﬁ) =g (xﬁ)r (1. 1)
where ¢ gr bpare the translational displacement in the direction of the axis Ogxp and the rotation . in the plane

xp0gyp  of the rib cross section xpg = const,

Having established the explicit relation (1.1) between the displacements of an individual rib and the
coordinate y B we turn to the continuous model. The local coordinates are connected with the unit coordinates

xp=x; yg=2/cos p (p=0, a). (1.2)
The equation of the plane of the rib in the unified system of coordinates has the form
y—ztg B=const (B=0, a). (1.3)
- NN
]
. :
Fig., 1
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Spreading out the ribs in the space between the plates, we must introduce the continuous fields u B Y,
z), V ﬁ(x, ¥, z) of the elastic displacements of the 8-braces (8 = 0, @). To do this, we must, after first
passing from the local coordinates to the unified system of coordinates, "extend" the expressions (1.1), which
relate to an individual rib, in accordance with the condition
g (x, const 4 ztg B, 2) = g (x5, y); vy (¥, const + 218 B, 2) = v, (x5, Yp) (L.4)

to the entire space between the plates.
From (1.1)~(1.3) it follows that we have, corresponding to the condition (1.4), the representations
ug (%, 4,2) = @ (x,y — 21gP) — ¥ (x,y —21gP) z/cos p;
Up (xvy' 2) =Vﬂ (x’y—Ztgﬁ)v
where « gr ¥8» Vg are some functions of two variables each,

(1.5)

The expressions (1.5) for g = 0, @ represent kinematically independent continuous fields of elastic
displacements of the two-phase filler of a three-layer plate, These fields must be subjected to the conditions
of the kinematic connection of the filler with the supporting layers

uﬂ (x’ y9 j-_- h) = ui (x, !/);
N (1.6)
U (% 9, £ 1) = v* (x, ) sin B+ w* (x, y) cos B,
where u¥, v*, w* are the displacements of the surfaces of the lower plate (z = h) and the upper plate (z =
—h); =0, a.

From (1.5), (1.6) it follows that the field of elastic displacements of a three-layer plate with a two-
phase filler is determined by 12 functions of two independent variables u~, v-, w-, uf, v*, w¥, &), ¥, Vy, &4,
Yoy Vg, connected by the eight relations '

uE (x, §) = @y (x, y F 1 tgp) T ¥y (v, y F h1gp) h/cosB; .
(1.7)
vE (x, ) sinp + w (x, 5) cosp =V, (v, yFhtgp) ¢ =0, 0).
2, Variational and Boundary- Value Problems. The boundary-value problems corresponding to the

proposed adequate continuous interpretation of the discrete—continuous systems under consideration can be
naturally formulated on the basis of Lagrange's principle.

As our main unknown, we introduce the four-dimensional vector function u of two variables:

W=Qq;, =Y, ®=V,;, ut =V, (2.1)
Then
U = u%T T hsec 0‘”2;1; v~ = cosec ocu3P —ctg owt;
w* =ut; @y = 0,5l + ') +0,5 hseca (Wl — ulo); @.2)

W, = 0,58 (uhy —uly) + 0,5 seca (@i +ulo),
where +7 denotes the displacement of the second argument by 7 = h tanc, e.g., uii = ul(x, y 7).
We shall assume that the plates are rectangular {0=x=a; 0= y= b} and the B-media are included
between the plates in a rectangular parallelepiped VP ={0= x=<4; 0=<y=b; —h= z = h}.

The functional of the total potential energy of the three-layer plate with a two-phase filler can, by virtue

-of (L.5), (2.1), (2.2), be represented in the form
ab

3@ = [ {{ 3 811 —v7 (e + ik seca @i+

60 t=1—1
+ 0,5 (k) + ik sec a (uf),)% + (1 —v) " (cosec & (uly), —ctga u)? -+
-+ 0,5 (coseca (“.?T)x —ctg ozu'f,)2 +2v({l — v)—1 ((u},)x - ihseca (u?r)x) %
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X (coseca (u;?‘r)y —ctg au?,) +- ((u}t)y J-ihseca (u,?,)y) (coseca (ufr)x —
—ctgauf)] + Ghu,, (U — u? - Ghy, [0,567" (4} —u! )+ 0,5seca w2 +u? ) —
— ] — 2 [X ™" (b + ik cos auks) + Y (cosec aud, — ctg aut) + Z[u‘]} dxdy,
=, =l
where G, v are the shear modulus and the Poisson coefficient, respectively; o is the thickness of the plates;
pg (B = 0, @) are the volumetric content of g-braces in a unit volume V5 after spreadingout; X1, y!, zi (i =1,
— 1) are the components of the external loading on the upper and lower plates in the unified system of
coordinates,
We calculate the variation of the functional 2 (u). We write @, = {0 <x<g; T<<y<<b—1} Q,={0<

s<a 0<y<<h) G={0<x<o —Tv<Y<t} G,={0<x<a b—T1<<y<<b-1}, using V to denote the variation
of the function @i; we subdivide the resulting integral into the sum of integrals of the form

S S & LL, vdxdy,
Q:

where the operators Ly’ =u', Ly = ub, Ly’ =u}, Lid =u' oLy’ = (b, Let’ = (s JyLan’ = b, Lou' = (ulo),,
Lou' = (uto)y: Kinare constants (i, j=1,...,4;r,m=1,...,9).
In the integrals containing the functions vii,r, (Vi'r)}b '\ ;_ 7_)y (i=1,...,4) we make the change of wariables

y' =y = 7, thereby passing from integrals over the region Q, to integrals over the regionQ, U G,ify' =y +7
and over the region Q; |J Gy if y' = ¥y — 7. Reducing similar terms and setting the variation of the functional
3 (u) equal to zero, we obtain ’

> (7] ! 3

: . . s 2 4 . . . - Py
2 (Dyju! 0" 4 Dot 05+ Dt +0}) { dxdy+ 2 2 ﬁ [ 2 (Buinte ' +v" + Byyjyts’ 0%+ Byyzots’ -0)
=1 Gr

j=1 | k=1 i=1 j=1

+{

Q

dxdy +

4 .
N (Dygst 0 + Dypt’ -0 + Dygott .v;)] dedy =3 ({ Fededy+ §Q { Fordxdy, (2.3)

=1 i=1 Qq

where Dijn(ia i=i,..,4n=1,2, 3); Bkijn k=12;i,n=1,2,3;i=1,...,4) are some differential—dif-
ference operators; fl=Xi4 X, 2 =hseca (XT; — X4, 3= coseca (Yot 4 Y f¢ = coseca[(Z7'+2Y sing —
(Y7 + Y cosal.

If on the left side of (2.3) we formally integrate by parts integrals over @ and Q,, we find that u satisfies
a system of partial differential equations with displaced argument:

—2G8[Aut + (1 4 v) (1 —v) ] — 2GS coseca (1 4+ v) (1 —v) ™" ud, 4
4 GBetga (14 %) (I —¥) " (Rysf)zy + Gpto (R1tt®), + 0.5Guh ™Ry ' —
—0,5Gp, sec a R_qu? = f1;
— 2Gbh2sec?ar [Aur-(14-v) (1—v) " ul]—Gdh cosec a (1-+v) (1 —v) "(R_u4),,—
— 2Ghp u2 — Ghy, sec & (R,u?), + 0.5Gp, sec aR_ut
- 0.5Ghp, sec? aRTu? 4 26Ghp u* = 7, (2.4)
—2G6 cosec a (1 4 v) (1 —v)"'ux,—2G6 cosec?a [Au? 4 (1 4 v) (1 —v) " uedy] +
~+ G ctg a cosec e [A (Ryuf) -+ (1 4-v) (1 — ) (R, ] —
— 2Ghp, @3, + 2Ghp u? = f3
G ctg e (1 4 v) (1 —v) ™" (Rytt)y + GOh-cosec o (1 4-v) (I —v) ™ (Ryud),, +
+ Gb ctg o cosec a [A (Ry) 4 (1 +v) (1 —v) ™ (Ryeed) ] —
— 268 ctgra [Aut + (1 4 v) (1 — v) "] — 2Ghpguts +
+ Gt (Rt + Ghp sec o (R, = &,

where, as we can see from (2.3), the first three equations are determined for (%, y) ¢ Q,, and the last equation
for (x, y) ¢ Q,. Here R means the difference operators:
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Rju=u, ,—~u_jRu=u, +u g Ru=u,—u
Rou=2u-—u 9y —uion Riu=2u tioog+ tiron

We shall assume that in addition to the internal connections, the system is subjected to absolutely rigid
external geometric connections which ensure the existence and uniqueness of the fields of elastic displace-
ments (homogeneous geometric boundary conditions),

We take:

a) for x= 0, a there are no displacements of the g-media (8 = 0, ), i.e., for x=0, @, Ug(X, y, 2} =
VpE, ¥, 2) =0, and hence, by virtue of (1.5), (2.1), we obtain

Wy =wy) =@y =0 (nPHelr=0a —1y<b+T);
Wiy =0 (nyelr=0a 0y<H): (2.5)

by for (x, y DEP<x<a; —t<y—zigay —hz<MUO<s<<a b—t<y—2ztga<b+T1 —h
2z}  there are no displacements of the a-braces, i.e., ug(X, ¥, 2) = Vg (X, ¥, 2) = 0, and for (%, y, z) €
{0= x=a;y=0, b; —h= z = h} there are no displacements of the O-braces, i.e., uy(x, y, 2) = Vo(%, ¥, 2) =
0. From this, by (1.5), (2.1) we obtain

ul(ny) =w(x y) =u(x, g =0 ((xy€GUG);

(2.6)
w(x y) =0 (rye0<x<<a y=0,5)

Since the vector function v satisfies the boundary conditions (2.6), the integrals over the regions Gy and
G, in formula (2.3) vanish. Consequently, if u gives us the minimum of the functional 9 (u) with boundary
conditions (2.5), (2.6), then it is the solution of the boundary-value problem (2.4)-(2.6).

It should be pointed our that the conditions for fixing the o -braces are not traditional, since they are
given not only on the lateral faces of the three-layer plate but also in some volumes. It should be noted that
the conditions for fixing only on the lateral faces lead to some additional equations in the regions G, and G,
‘which are specific for differential equations with displaced arguments. In the present paper we shall not con-
sider such fixing conditions.

3. Generalized Solutions of Two-Dimensional Boundary-Value Problems. As in the simple example-
(see [2]), Eq. (2.3) with the boundary conditions (2.5), (2.6) can have solutions whose derivatives are dis-
continuous inside the region. Therefore the integration by parts which we used to derive the system of
equations with displaced argument (2.4) is not valid in the general case, The equivalence of Eq. (2.3) and the
system of equations (2.4) can be established by using the concept of generalized functions.

We introduce the real spaces of vector functions
Li’ =L, Q) X L, Q) X Ly Q) X Lzo(Qz);
] 0 [ 0
; HY = H' Q) X H*(Qy) X H' (@) x H'(Q)-
0

Here Ly(Q;) (i = 1, 2) is the space of functions which are square integrable over the region Qy; H1(Qi) i=1,2
is the Sobolev space of functions which are square integral over Q; together with their first generalized
derivatives and are such that the traces of these functions on the boundary of Qi are equal to zero (see [3],
Ch. II). '

We shall try to find the extremum of the functional 2 (ﬁ) with the boundary %onditions (2.5), (2.6) and
the corresponding solution of the boundary-value problem (2.4)-(2.6) in the space H' 4, setting ul(x, y) =0
for (x, ¥) € Gi-U G, (i = 1, 2, 3). We assume that £={f?, % 3, f% ¢ Li. We shall assume that the dif-
ferential and difference operators on the left sides of Egs. (2.4) act in the space of generalized func-
tions (see [1], Ch. XIV), where we assume ui(x, yy=0(i=1, 2, 3) for (x, y) <Gy U G, We shall call u €
the generalized solution of the system of equations (2.4) with the boundary conditions (2.5), (2.6) if i satisfies

~ the system of equations (2.4) in the sense indicated above,

Hia

_ ¢
From the rules for operations on generalized functions it follows that the vector function it ¢ H!? satis-
fies Eq. (2.3) with the boundary conditions (2.5), (2.6) if and only if it is a generalized solution of the system
of equations (2.4).
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Earlier we proved that if the vector function u ¢ HY¢ yields 2 minimum of the functional 3 (1) with the
boundary conditions (2.5), (2.6), then u is a general solution of the system of equations (2.4) with boundary
conditions (2.5), (2.6). The contrary can also be proved. We state this in the form of a theorem.

-, 9 -
THEOREM 1. The vector function il € H*¢ yields a minimum of the functional 3 (i) with boundary
conditions (2.5), (2.6) if and only if it is a generalized solution of the system of equations (2.4) with boundary
conditions (2.5), (2.6).

We rewrite the system of equations (2.4) in the form
Lu=F, (3.2)

- [t] - .
where D(L) ={u € H'*: Ll ¢ L} is the domain of definition of the operator L and the differential and difference
operators constituting it act in the spaces of generalized functions; here ul(x, y) =0 (i=1, 2, 3} for {(x, y) €
Gy Ga

We denote by B(ﬁ, \—r) the left side of Eq. (2.3). We can prove the following lemma,
- - 0
LEMMA, The bilinear form B(u, v) is an equivalent scalar product in the space HY 4,

Making use of this lemma, using ordinary methods (see [3], Ch. IV, and [1], Ch. XiIV), we can easily
establish the following assertions, v

THEOREM 2. The solution of the system of equations (2.4) in the class of vector functions u - D(L)
exists and is unique for any f € L‘;, where [ ull 4,0 = clfl Lés with ¢ > 0.

THEOREM 3. The spectrum of ¢ (L) is discrete and of finite multiplicity and has no finite limit points,
and o (L) < (0, =).

In order to apply variational methods to the solution of the corresponding boundary-value problem,
instead of the total-energy functional 3 (1), it is more convenient to introduce in H!s* othe functional E(;r) =
B(v, V)—2(f, v)Li. It can be shown that d = i%f E(V) > —«, The sequence \—im ¢ Hb4m = 1,2,...)

Ve H19 4

0 -
is called the sequence minimizing the functional E on H:¢ if lim E(vp,)=d.
m — ©

0 -—
In H!s* we take an arbitrary independent system ey (k=1,2,...), whose linear envelope is dense in

1211’ 4, We denote by ‘_’k the element which realizes the minimum of the functional E on the linear manifold
spanned over the vector functions ey,...,&,. It is not difficult to show that there exists exactly one such
element v = cy€;+...+Cki8,. The sequence ¥ (k=1,2,...) is called the Ritz sequence for the functional
E with respect to the system €,,...,¢j.

We have the following assertion,

THEOREM 4. The Ritz sequence of the functional E constructed with respect to an arbitrary linearly
independent system of functions, whose linear envelope is everywhere dense in fl‘r 4 converges in H:% to

the solution of the system of equations (2.4).

4, The Boundary-Value Problem in the One-Dimensional Case, The one-dimensional analog of the
three-layer plate with a two-phase filler which is under consideration here is the continuous interpretation of a
two-belt rod system — a truss with a regular set of absolutely rigid vertical and diagonal braces (Fig. 2). A
representation of the field of elastic displacements of thismodel can be obtained from the corresponding
expressions for a three-layer plate, assuming that the displacements take place only in the plane yOz and are
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independent of the coordinate x, Making use of (1.5) and (1.7), we have (8 =0, a)
(Y, 2) =V ly —2126); 4.1y
v (y) sinp + o () cos p =V, (yF high) (4.2)

from which it follows that the field of displacements of a three~layer beam with a two-phase filler is deter-
mined by six functions of one variable (v-, w-, v, w', Vys Vg)s connected by four relations (4.2).

Introducing the two-dimensional vector function ﬁ, we have
= Va ; uz == VO; (4. 3)
o¥ = cosec auﬁ:, —ctgau?; wE =u (4.4)
On the basis of (4.1)-(44), in a2 manner analogous to the previous case, we arrive at a _;Sroblem involving
the minimum of the functional
b
3w = S' { 2 [EF (1 — vy ' [coseca (b)) —ctge (WY —v* [cosecaul — cig qu?] — Z‘uZ]; dy (4.5)
0 ‘i=l,—I1
with the boundary conditions
w{y)=0 Ye[—vAdUb—1b4 1),

@) =0 (y=0,b),
where E is Young's modulus; F is the cross-sectional area of the belts; Yi, 7! are the components of the
external load on the belts.

4.6)

- (]

As in the previous case, we can show that the vector function u ¢ I(-‘Il’ z = 1211( (r, b—T7)) xH L((0, b)) yields
a minimum of the functional (4.5) with boundary conditions (4.6) if and only if it is a generalized solution of the
system of equations

—2(uYy +cosa (Ryu?)” = f4 cosa (Ryut)” — 2 cos?a (13" = f?, (4.7)

where fl=(1—v) sina(2EF) " (Y2i+YieL, (@b —7) fF=(1—v) sina@ER™ (Z™ +ZY)sina — (Y + 1Y)
cosal €Ly (0 b))

It should be noted that the ﬁrst equation is considered in the interval (r, b —7) and the secondinthe
interval (0, b) and that we set u!(y) = 0 for y ¢ [~1,7] ulb—T, b+ 1.

We rewrite the system of equations (4.7) in the form
Lu=},
where D(L) ={u ¢ H1 2:LueLd} is the domain of definition of the operator L, which acts in the space of
generalized functions, where we set u (y) =0forye[—7, 71U -7, b+7].
It can be shown that, as in the two-dimensional case: 1) the solution of the boundary-value problem
(4.7), (4.6) exists and isunique; 2) the spectrum of o (L) is discrete and of finite multiplicity and o (L) < (0, «);
3) the Ritz method converges,

We write n = b/7 (for the sake of simplicity we shall assume that n is an integer). We introduce the
(2n—2)-dimensional vector function W ={w!,...,w™ 2}, defined in the interval [0, 7]:

v(y+11;) (]=],...,n——2), (48)
Y+ ({i—n-+1)7) j=n—1,.., 2n —2).

Then, passing to the variables (4.8), we reduce the system of differential equatlons with displaced
argument (4.7) to a system of 2n—2 ordinary differential equations in the functions wh,...,w™"%  Using this
method, we can prove the following assertion.

THEOREM 5.. Let f! € C (7, b—1]), 2 € C([0, b]). Then u' € C([r, b= 7)), u? ¢ C ([0, b]) and u! & C¥([jr,
G+1r]) G=1,...,0—2),ute CE(fiT, G+ T (G=0,..., n"1).

Theorem 5 indicates a method of finding the solution of the system of equations (4.7) in explicit form
if the right-hand sides f!, 2 are continuous. We first find the general solution of a system of 2n—2 equations

wf<y)={
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dependent on (2n—2) X 2 arbitrary constants, The conditions for the continuity of the functions ul, u? and the
boundary conditions u' (j7—0) = u' G7 + 0) (j = 2,...,0—2), W' @) =u' O~ 7)=0; u¥ (jT—0) = v¥(GiT + 0) G=1,...,
n—1), uZ(O) = u(b) = 0 enable us to eliminate 2n constants. By Theorem 5, the functions ry(y) = —2(u,)' +

cosa (Rqu?)' and ry(y) = cosa (Rqul)'—2 cos’a (u,)' are piecewise continuously differentiable, but, by the
definition of a generalized solution, r;'(y), ry' (y) must not contain any terms of the ¢-function type. The condi-
tion for this is the continuity of the functions r(y) on [r, b— 7jandry(y)on [0, b] [ry(jT—0) = r (it + 0) {j = 2,

e essD—2); Ty(jT—0) = ry(jT + 0) (j = 1,...,n—1)], whichenables us to eliminate the remaining 2n—4 constants.
By the existence and uniqueness theorem, the functions u!, u? we have obtained are the solution of the system
of equations (4.7).

It must be noted that the last 2n—4 constants are eliminated precisely from the condition of the absence
of 6-functions on the right-hand sides of the system of equations (4.7), and not from the condition of continuity
of the first derivatives of the functions u' and u?® at the corresponding points, which at first glance secms
more natural (see [2]).

Example, We consider the three~-dimensional beam (b=3,7 =1, ¢ = 1/3) shown in Fig. 3; the belts
of this beam are loaded with the uniformly distributed load q*(y), applied in the direction of the oblique braces
) =1, f) = 0.

The boundary-value problem (4.7), (4.6) takes the form

—4{w)" + (Ryw?)" =2  (Ryt)" — (&) =0 4.9)
wy) =0y [—LIUERA); (@) =0(=03). (4.10)

We can convince ourselves without difficulty that the solution of the problem is given by the functions
al(y) = —0.5 (y*—3y + 2);

—05{y*—y) welo 1)y
ut (y) = 0 ey
~—05(y2—5y+6) (y€ (2, 3]).

0
To see this, we note that ul(1) = u}{2) = 0; u%(0) = u%(3) = 0. In addition, it is obvious that u' « HY((1, 2)),

u? ¢ IO{1 ((0, 3)). We can convince ourselves without difficulty that in the interval (1, 2) the functions ui(y), uz(y)
satisfy the first equation of the system (4.9). Taking account of the fact that u%y) =0 for y ¢ [—1, 1} U [2, 4],
we find that B.lu1 ) = u’(y) for y « (0,3). Consequently the functions u'(y), uz(y) satisfy the second equation

of the system (4.9). We note that the function (Ryu')" = (9" is singular, since (3" = y (y) + 0.56(y—1) + 0.55°
(y—2), where i (y) = —8 (1—-y) + 6 (y—2); 8(y) is the Heaviside unit function.

The resulting solution u (Fig. 4) is quite obvious, even though it is rather unusual. We introduce the
variable ; = y—ztanqa, which, as can be seen from Fig. 3 is the y coordinate of the point of intersection of the
« -brace passing through the point (y, z) with the axis Oy, Then from (4.1), (4.3), (4.4)it follows that

W) =V, (1 —ziga) =0, (2 () = Vo () = 05 (4) = w* (). (4-11)
From the conditions of fixing of the O-braces and a-braces, for y = 0,3, ~—h=z=<h, inaccordance with
Fig. 4, we have ul(s) = 0(—1=i= 152 = ;= 4); u’(0) = u(3) = 0.

The load q~ in the interval 1 =y =< 3 and the load " in the interval 0 =y =2 are directly taken up by the
absolutely rigid fixed a-braces (—1=£=1; 2 =< ¢ =4, Therefore, as a result of the simultaneousness of the
deformations of the braces and belts, there are no displacements of the vertical braces in the interval 1= y =
2 (Fig. 4). In the interval 1 = ¢ = 2 the displacements of the o -braces vy are caused by the load g~ in the
interval 0 =y =< 1 and by the load ¥ in the interval 2 = y = 3. Because of the compatibility of the deformations
of the braces and belts, simultaneously with these deformations there are deformations of the vertical braces,
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