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The development of  methods o f  minimization of  nondifferentiable functions is of  great interest for the 
solution o f  many problems such as minimax problems, two-stage mathematical-programming problems, etc. From 
the point o f  view of  practical application it is o f  considerable interest to ascertain the performance of  these 
methods in the presence of  noise. The principal result o f  this paper consists in the fact that the specific char- 
acter of  nondifferentiable functions makes it possible in certain cases to get rid of  the conventional conditions 
o f  stochastic approximation used for the suppression of  random noise. 

We shall consider nonconvex nondifferentiable functions whose properties are defined as follows [1, 2]. 

Definition. A continuous function f(x)  is said to be weakly convex if for any x there exists a set M(x) 
of  vectors g such that for any y, 

f (y) --- [ (x) ~ (g, y - -  x) -k r (x, y) 

where for y -* x we have r(x, y)[ x - y [  -~ ~ 0 uniformly in x in any closed bounded subset of  E n. 

(1) 

In [1] ,  the vector g is called the quasigradient of  a weakly convex function. 

For  solving the problem 

rain f (x) (2) 
xEE. 

we have proposed in [2] the quasigradient method 

x s + l = x  ~-9sg(xs) ,  s = 0 , 1  . . . .  

and we proved its convergence under appropriate assumptions. In the present paper we shall ascertain the 
conditions of  convergence o f  the algorithm 

x S+1 (co) = x ' (~) - -  p~s  (xs, o)), 

where 
~s (x S, ~) = g (x S (~)) + n s (~o), 

r?s(co) being independent  uniformly distributed random disturances, El r? s [2 < oo. In the following we shall 
sharpen the requirements towards rlS(co). We shall assume that problem (2) has the following property:  If  we 
denote by X* the set {x*:0 E M(x*)}, then there exists a positive 6 such that for any x ~ X* we have 
g ~> ~, where g E M(x). 

This property is not  very rigorous, and it holds for practically all linear minimax problems, i.e., for 
problems of  form (2) in which [(x) = max(cz, x). 

iEl 

We have the following theorem. 

THEOREM. Let E[ rlsl ~< 7, where 3' is sufficiently small, 

EPs = oo, ps/ps+l --~ 1, Ps "--)" -t- 0, 

f(x) assumes on X* not  more than a countable number o f  values, and the set {f (x)  ~< f ( x  ~ + C} is bounded 
for a positive C. Then the algorithm 

xs s (co) - -  p , ~ s  ( x ,  ~) ,  f (x ~) < [ (x ~ + C, xs+  1 

X 0 
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will be convergent with probability 1, i.e., any limit point of the sequence (xS(o~)} will belong to the set X* 
with probability 1. 

The conditions of the theorem contain an uncertainty related to the absence of an estimate for the 
quantity % This estimate will be obtained during the proof. 

Suppose that the assertion of the theorem is not true a n d  that for a set B, P(B) > 0, there exists for 
an w E B a subsequence {xnk(cO)} that is convergent to x'(co) E X*. Let us specify an co E B and omit in 
the following the dependence on co. 

Let us take a positive e 0 such that for all vectors g we have 
1 

gEco{ U M(x)}, le l  ~ , 5 ,  (3) 
~EU4s~ 

where U4e 0 = (x:l x - x ' l  ~< 4%}. 

For the time being we shall assume that f(x') < f ( x  ~ + C. Therefore, e 0 can be taken in such a way 

that f(x) ~< f(x ~ + C for x ~ U4eo(X'). Later on we shall drop this assumption. By virtue of the semi- 

continuity from above of the set mapping M(x) [1], it is always possible to take e o in such a way that (3) is 
satisfied. 

Now let us assume that for a k' we have Ix s - xnk'l <~ e 0 for any s >~ nk,. By setting s = n m and 

going over to the limit for m -+ 0% we obtain I x ' - - x % ' l ~ < e  o or I x ' - - x ~ l ~ 2 %  for s t> nk,. Let us 

consider the following quantities: 

S + I  m x m  m . d~=(gs+~,x~+~--x~)=  g , ~ p ~  ( ,o) = g'+~, ,,g + g~+~, "~ 
k m ~ t ' t  h 

In [2] we have shown that for sufficiently large s > n k /> n k, 

+1, p~ ~ y Pm 
\ r n ~ n  k ,i m = n  h 

o r  
s s 

d ~ ' -  8- Z P ~ - - A  Z P~l*l~(r 
r r t~ r /h  t / - t~n h 

It is possible to show that with probability 1, 

~ p,,, I rl'~ (o~) ! 
lim m=~ = Elnl .  s 

t t l ~ n k  

Hence, for E I 7/{ ~< 7 = 52/32 A we have in the case of sufficiently large s, 
s 

/52 
d > q-6- 2 p~" 

t r t ~ h  

On the other hand, 

[ (x ~+~) - -  : (x "h) ~< - -  d~ + r (x ~+~ , Zk). 

Since by assumption we have x s+~ E U~o (x~'), it can be assumed that 
s 

l r (x ~+l, x"h)[ < e' Ix ~+1 - - x  nk I ~ ~" ~] O,: 
m = n h  

where e" is as small as desired. In particular, it can be assumed that e" < 62/32. Finally, we obtain 
$ 

6= 
: (x~+ ') - -  ~ (x "k) ~< - - - ~  E O,.. 

m ~ n  k 

By going over in (4) to the limit for s --> oo, we obtain a contradiction to the boundedness of the 
continuous function f(x) on the closed bounded set U4e0(X'). 

the proof is not true. Otherwise, we can say that 

(4) 

Hence, the assumption made at the beginning of 
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min r: l  x' - - x ~ "  I > e o = m ,  < oo. 
r ' ~  n h 

Since for sufficiently large k we have x mk E U4eo(X'), it  follows that (4) holds also for s = m k 

denoting - f ( x )  = W(x), we obtain 
mh--I 

82 2 p'" W (Z ~) >/I~ (x nk) + -~-  

s = n  h 

tn h -  1 

8 o 
E Ps ' 

whence Since x i n k -  x'~ k ] > % it follows that -~-~< 

S~rl#t 

- 1. 

(5) 

By 

8o 82 
W (x mh) - -  W (x ~k) >~ 32c " 

By going over in this inequality to the limit for k --> oo, we obtain 

lira W (x ink) > lira W (x~k). (6) 
k--~:o h--~r 

By virtue of  formulas (5 ) - (6 )  proved above, the convergence of  the algorithm follows from the general results 
o f  [3].  The subsequent analysis does not  depend on the structure of  the algorithm and can be carried out in 
the same way as in [2].  

Let us make several remarks about the obtained result. First of  all, let us note that in contrast to the 
conventional conditions of stochastic approximation (see, for example, [4]) ,  it is not required that the step 
multipliers Ps satisfy the condition 2;ps2 < oo. Moreover, the noise r:(co) can be biased, ET? s 4= 0; in particular, 
we can have rf(co) = const, or, as can be easily seen from the proof,  r?(co) 4= const, but  b?sl ~ 7- This 
makes it possible to use finite-difference counterparts o f  the quasigradient method. In particular, if  f(x) = 
= max f(x, y), y E Y, where f (x ,  y) is differentiable with respect to x, it  is possible to solve the minf(x)  
problem by the following method: 

x~+~ = o,g (x), : (x ~) .< : (x ~ + C, 
X0~ 

where g ( x  ~) = [f(x s + A, y s ) - f ( x ~ ,  y~)]/A, yS is a solution of  the problem m a x f ( x  s, y), y ~ Y, and A is a 
sufficiently small constant. 
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